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Symmetric powers of unstable spheres

SP"(SY) = (58" x...x SY)/x, = (8V)*"/x,

SP"(8Y) =SP"(SY)/SP" (V) = (s)"/x, = §" /T, = S¥®V/x,
R" = ( diagonal copy of R) & W,

SP"(8Y) = sVeme) s, = 5Y(s"®Y /5,

SP"(S8°%) = Lmvz—VSP"(sv)

SP"(S%) = lim SW®V /¥, = 5" 5 = 5 (S(coW,)/En).
-V
SP(s) = st SP"(S%) =P"
SP"(s") =0 SP"(§%) = s

There are natural product maps SP"(SY) x SP™(S") — SP™(SY®") and
SP"(5Y) ASP™(S8Y) — SP""(5VeW),
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Nontransitive subgroups

Let F be a family of subgroups of a finite group G, closed under subconjugacy.
Then there is a G-space EF with

EFH — contractible if He F
0 if He F.
We put BF = EF/G.

Take P, = {nontransitive subgroups of ¥}
then EP, = S(coW,) and so SP"(5°) = =BP,.



K-theory of multisets



K-theory of multisets

A multiset is a finite set with multiplicities.

1e

1le



K-theory of multisets

A multiset is a finite set with multiplicities.

3e o3
le
1e o4



K-theory of multisets

A multiset is a finite set with multiplicities.
Morphisms are functions, bijective up to multiplicity.

3e o3

1e

 }
1-//.4




K-theory of multisets

A multiset is a finite set with multiplicities.
Morphisms are functions, bijective up to multiplicity.

3e o3

1e

1- *.4
//

2e

M = {multisets} is symmetric bimonoidal under I and X, so K(M) is a ring
spectrum. In fact K(M) = H.



K-theory of multisets

A multiset is a finite set with multiplicities.
Morphisms are functions, bijective up to multiplicity.

3e o3

1e

1- *.4
//

2e

M = {multisets} is symmetric bimonoidal under I and X, so K(M) is a ring
spectrum. In fact K(M) = H.
M, maximum multiplicity < n;  M¥: total multiplicity k; M = M, N M*



K-theory of multisets

A multiset is a finite set with multiplicities.
Morphisms are functions, bijective up to multiplicity.

3e o3

1e

1- *.4
//

2e

M = {multisets} is symmetric bimonoidal under I and X, so K(M) is a ring
spectrum. In fact K(M) = H.

M,: maximum multiplicity < n;  M¥: total multiplicity k; M¥ = M, N M*
Theorem(Lesh): K(M,) = SP"(S°) and BM}_, = BP, and
K(M,)/K(M,_1) = SP"(8%) = SBM!_;.



K-theory of multisets

A multiset is a finite set with multiplicities.
Morphisms are functions, bijective up to multiplicity.

3e o3
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1- *.4
//

2e

M = {multisets} is symmetric bimonoidal under I and X, so K(M) is a ring
spectrum. In fact K(M) = H.

M,: maximum multiplicity < n;  M¥: total multiplicity k; M¥ = M, N M*
Theorem(Lesh): K(M,) = SP"(S°) and BM}_, = BP, and
K(M,)/K(M,_1) = SP"(8%) = SBM!_;.

Free(M)_;) — M1 YPBM; 1 —— K(M,-1)

Y |

Free(M;) —= M, SO ———— K(M,)
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Mod p (co)homology
The filtration of H = HZ by the spectra H(k) = spP" (5% gives rise to a
filtration of H = HZ/p by spectra H(k).

Theorem (Nakaoka): H'H = A" = Steenrod algebra;
H" H(k) = A*/( admissibles of length > k).

Operations of length k are related to H (BX ) and to H (B(Z/p)*)c+*/?)
by the extended power construction.

There are still some open questions about how all this fits together, and how it
dualises.
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Products of partitions

P(A) is a lattice with n v’ = {BNB' |Bewr, B exn’, BNB #0}.

The map V: P(A) x P(A) — P(A) makes PA a (contractible) commutative
topological monoid.

Put P(A) = P(A)/(simplices not containing L). There is an induced map
w: P(A) A P(A) — P(A), making =°°P(A) a (contractible) ring spectrum.

There is a filtration of P(A) by ranks of partitions, with associated graded
V.. P(7). The homology of this is thus a DGA, probably chain contractible.

We have not yet understood the structure of this.
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Partitions

C(A) = { nonempty subsets of A}
IC(A)] = {x: A—[0,1] | max(x) =1} ~ B(WA)

sC(A) = { chains in C(A)}; |sC(A)| = |C(A)| by barycentric subdivision.
We can define ¢: sC(A) — P(A) by
¢(BoC -+ CB)={Bo,B1\ Bo,...,B,\ Br_1,A\ B/}

—pY

This gives B(WA) — P(A) and "4 = B(WA)/0B(WA) — P(A).
More generally, we can use the monoid structure on PA to get
B(WA)" — P(A) and S"A — P(A).
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A height function on Ais a map h: CA = { nonempty subsets of A} — [0, 1]
with h({a}) = 0, and h(U U V) = max(h(U), h(V)) whenever UN V # (.

A partition 7 gives a height function h, with h(U) = 0 if U is contained in a
block of 7, and 1 otherwise.

The space H(A) of height functions is homeomorphic to P(A) = |P(A)|.

Say that a set U is h-critical if every strict superset V has h(V) > h(U). These
sets form a tree. This gives a cell structure on H(A) = P(A) indexed by trees.

h({a,b})

a b

By grafting trees, we make the spaces P(n) = P({1,...,n}) into an operad.
The operad structure maps are nearly embeddings.

By a Pontrjagin-Thom construction, we make the spaces ﬁ(n) into a based
cooperad (a theorem of Ching).
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Configuration space

Put
Injo(k, R") = {(x1,...,x) € (R")*| % =0, x # x;} C Wi @ R" C SWkE",

These spaces form an operad up to homotopy, as they are homotopy equivalent
to the Fulton-MacPherson spaces (cf Singh).

It is well-known that H. Inj,(*,R") is the operad for Poisson algebras, which
are graded commutative rings with a compatible Lie bracket.

The based spaces S form a (co)operad whose structure maps are
homeomorphisms.

The spectra =~ "k Inj, (k,R")+ = D(S5"¢/Injy(k,R")) form an operad with
Ho = Lie, and Hx = 0 for kK > 0.

There is a natural map S"Y/ Injy(k, R") — .B(k) and by duality we get a map
Q(k) = F(P(k),S"k) — ¥~k Injy(k,R")+. This gives H.Q = Lie.

Theorem (Arone-Dwyer): SP"(S%) = (8" A ﬁ(n))gzn

Theorem (Johnson, Arone-Mahowald): Q(n) controls the layers in the
Goodwillie tower.
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Put 0T (A) = [J(simplices not containing {0, A}), and ?(A) = T(A)/OT(A).

It is well-known that this is homotopy equivalent to a wedge of spheres of
2
dimension d, the number of spheres being p(d —d/2,

St(A) = Ha(T(A); Z/p) is a projective cyclic module over (Z/p)[Aut(A)],
called the Steinberg module.

It follows that for any Aut(A)-spectrum X, the spectrum

(Z’d?\'(A) A X)haut(a) is a retract of X, called Steinberg summand of X.

We can map ?(A) to ﬁ(A) by sending B € 7 (A) to the corresponding coset
partition of A. This respects the actions of Aff(A) on T(A) and X4 on P(A).

Theorem (Arone-Dwyer):

(T (A har) = (ZP(A))hs, = SP” (50) Y9L(d), and so L(d) is the
Steinberg summand in (5,4, which is a Thom spectrum over BA.



Mitchell's complexes



Mitchell's complexes

Put X(A) = (£~ “Bases(C[A])+ A T(A))nari(a)-



Mitchell's complexes

Put X(A) = (X~“Bases(C[A])+ A T(A))naf(a).

This is the Steinberg summand in Bases(C[A])/A.



Mitchell's complexes

Put X(A) = (= 9Bases(C[A])+ A T(A))has(a)-
This is the Steinberg summand in Bases(C[A])/A.

Theorem (Mitchell): this has type n, so K(m).X(A) is nonzero iff m > n.



Mitchell's complexes

Put X(A) = (= 9Bases(C[A])+ A T(A))has(a)-
This is the Steinberg summand in Bases(C[A])/A.
Theorem (Mitchell): this has type n, so K(m).X(A) is nonzero iff m > n.

This was the first known example of a family of finite spectra of type n for all
n; an important ingredient of the chromatic theory.
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The Steinberg algebra

Put T(A) = T(A)/(simplices not containing0). This has a natural product and
compatible filtration, making the associated graded homology into a
graded-commutative DGA.

Put S5t.(A) = @p<, St(B); this is easily identified with the above DGA.

One can show that St.(A) has a generator x; € St1(A) for each L < A of order
p, subject to relations
X xm + Xmxn + xnuxg =0

whenever |L + M + N| < p*. The differential is given by d(x;) = —1 for all L.
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Theorem (Kuhn): K(n).L(x) is a finite, contractible DGA over K(n)..

Let E be Morava E-theory (with formal group G) and put
Ey' L(d) = moLk(n)(E A L(d)). It works out that Ey’ L(x) is a contractible DGA
over Ey.

Hopkins-Kuhn-Ravenel introduce the group © = (Z/p>)9, and a Galois
extension Ej of Q ® Eo, with Galois group Aut(©). For finite groups H, they
give a natural isomorphism

E; ®, E°BH = Map(Hom(©*, H)/H, Ej)
("generalised character theory").
Put ©[p] = {0 € © | pf = 0}.
Theorem: Ej ®g, By L(x) = E§ ®z St.(O[p]).

It is also possible to define G[p] and St.(G[p]), and to show that
EY L(+) = St.(Glp)).

This is closely related to old conjectures of Hopkins, about homological algebra
for the ring of E-theory power operations.



