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1 Introduction

In this paper we treat limit theorems for diffusions on the lattice Zd of the form
of those constituting the solution of the homogenization problem of diffusions.
For finite dimensional diffusion processes, various models of homogenization
(generalized in several directions) have been studied in detail (cf. eg. [F2],
[FNT], [FunU], [O], [PapV], [Par] and references therein). On the other hand,
for corresponding problems of infinite dimensional diffusions only few results
are known (cf. [FunU], [ABRY1,2,3]). In this paper we consider a homogeniza-
tion problem of infinite dimensional diffusion processes indexed by Zd having
periodic drift coefficients with the period 2π (cf. (10)), by applying an L2

type ergodic theorem for the corresponding quotient processes taking values
in [0, 2π)Z

d

(cf. Prop. 1). The ergodic theorem which is based on a (weak)
Poincaré inequality.

In [ABRY3] the same problem has been discussed by applying the uniform
ergodic theorem for the corresponding quotient process, that is available by
assuming that the Markov semi-group of the quotient process of the original
process satisfies a logarithmic Sobolev inequality. In the same paper it has also
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been shown that a homogenization property of the processes starting from an
almost every arbitrary point in the state space with respect to an invariant
measure of the quotient process holds (cf. also [ABRY1], [ABRY2]). In this
occasion, the main purpose of the present paper is the comparison between
the results derived under the assumption of logarithmic Sobolev inequality
and the corresponding results proven by assuming L2 ergodic theorem based
on (weak) Poincaré inequality, which is strictly weaker than the one for log-
arithmic Sobolev inequality (cf. [G], [AKR]). This paper is a series of works
on the considerations of several types of homogenization models for infinite
dimensional diffusion processes.

For an adequate understanding of crucial differences between homogeniza-
tion problems in finite and infinite dimensional situations, we first briefly
review a simple case of the homogenization problem for finite dimensional
diffusions.

On some complete probability space, suppose that we are given a one
dimensional standard Brownian motion process {Bt}t∈R+ and consider the
stochastic differential equation for each initial state x ∈ R and each scaling
parameter ε > 0 given by

Xε(t, x) = x+
1
ε

∫ t

0

b(
Xε(s, x)

ε
)ds +

√
2

∫ t

0

a(
Xε(s, x)

ε
)dBs,

t ∈ R+, (1)

where a ∈ C∞(R → R) is a periodic function with period 2π which satisfies

λ ≤ a(x) ≤ λ−1, ∀x ∈ R,

for some constant λ > 0 and b(x) ≡ d
dxa

2(x).
Let pε

t(x, y) be the transition density function corresponding to the diffu-
sion process defined through (1). Then by Nash’s inequality (cf. eg. [S]) we
have that there exist constants c1, c2 > 0 such that

pε
t(x, y) ≤ c1t

− 1
2 exp{−c2|x− y|2t−1}, ∀t > 0, ∀ε ∈ (0, 1]. (2)

Also, there exists a periodic function χ ∈ C2(R) with period 2π such that

a2(x)χ′′(x) + b(x)χ′(x) = b(x), x ∈ R, χ(0) = 0. (3)

Then by Itô’s formula and using (3) we see that

Xε(t, x) = x− εχ(
x

ε
) + εχ(

Xε(t, x)
ε

)

+
√

2
∫ t

0

(1− χ′(
Xε(s, x)

ε
))a(

Xε(s, x)
ε

)dBs, t ∈ R+. (4)

The (probabilistic) homogenization problem consists of proving weak conver-
gence of the process {{Xε(t, x)}t∈R+}ε>0. In this simple situation and also in
various generalized models of finite dimensional diffusions, it is shown that
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lim
ε↓0

EP ε
x [ϕ(·)] = EPx [ϕ(·)], (5)

∀x ∈ R, ∀ϕ ∈ Cb(C(R+ → R) → R),

where P ε
x is the probability law of the process {Xε(t, x)}t∈R+ , as a C(R+ →

R) valued random variable, Px is the probability law of the continuous Gaus-
sian process starting at x ∈ R with constant diffusion coefficient given by

σ ≡
{
2

∫ 2π

0

{(1− χ′(y))a(y)}2dy
} 1

2 , (6)

EP ε
x [·], EPx [·] are respectively the expectations with respect to the corre-

sponding probability measures, and Cb(·) is the space of bounded continuous
functions.

Here, our problem is a homogenization problem of a diffusion

{Xε
k(t,x)}k∈Zd

with index set Zd involving the periodic drift coefficients of perion 2π defined
by (10) in the next section. Since the constants in Nash’s inequality depend
on the dimensions, for our infinite dimensional diffusions we can not use the
uniform bound (2) for the Markovian transition density functions which are
based on Nash’s inequality. By Lemma 3 below for our infinite dimensional
diffusions we can define a family of functions χk, (k ∈ Zd) (cf. (19)) that is
an infinite dimensional version of χ defined by (3). But except for some trivial
cases, we can not expect the regularity χk ∈ C2. Thus the same strategy
developed for the consideration of finite dimensional problems can not be
applied directly in infinite dimension. These are the main difficulties which
appear in the alter situations.

But in Theorem 9 and Theorem 12, by using the L2 ergodic theorem (17),
which is a consequence of a weak Poincaré inequality for the corresponding
quotient process of {X1

k(t,x)}k∈Zd , instead we can show that in the infinite di-
mensional situation a homogenization holds, roughly speaking, in the following
weaker sense than (5): Let a Polish space W be a subspace of C(R+ → RZd

)
equipped with a topology which is sufficiently stronger than the product topol-
ogy on C(R+ → RZd

) (cf. (13)), Cb(W ) be the space of bounded continuous
functions on W , P0 be the probability law of an infinite dimensional diffusion
{Yt}t∈R+ with a constant covariance matrix defined through χk, (k ∈ Zd)
starting from the initial state 0 (cf. (22) and Definition 5), also let P̃ ε

x be the
probability law of the process

{Xε
k(t,x)− εχk(

Xε
k(t,x)
ε

) + εχk(
x
ε
)}k∈Zd ,

then it holds that

lim
ε↓0

EP̃ ε
νε [ϕ(·)] = EP0 [ϕ(·)], ∀ϕ ∈ Cb(W → R), (7)
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where for each ε ∈ [0, 1), the probability measure P̃ ε
νε

on (W,B(W )) is defined
by

P̃ ε
νε

(B) ≡
∫

[0,2π)Zd
P̃ ε

εy(B)ν(dy), ∀B ∈ B(W ), (8)

for a probability measure ν on ([0, 2π)Z
d

,B([0, 2π)Z
d

)) such that

‖dν
dµ
‖L∞([0,2π)Zd ) <∞, (9)

and µ is the unique invariant measure of the quotient diffusion process on the
infinite dimensional torus (identified with [0, 2π)Z

d

) of the original diffusion
{X1

k(t,x)}k∈Zd (cf. Proposition 1).

2 Fundamental notations

Let N and Z be the set of natural numbers and integers respectively. For
d ∈ N let Zd be the d-dimensional lattice. We consider the problem for the
diffusions taking values in RZd

. We use the following notions and notations:
By k we denote k = (k1, . . . , kd) ∈ Zd. For a subset Λ ⊆ Zd, we define
|Λ| ≡ cardΛ. For k ∈ Zd and Λ ⊆ Zd let

Λ+ k ≡ {l + k | l ∈ Λ}.

For any non-empty Λ ⊆ Zd, we assume that RΛ is the topological space
equipped with the direct product topology. For each non-empty Λ ⊆ Zd, by
xΛ we denote the image of the projection onto RΛ:

RZd

3 x 7−→ xΛ ∈ RΛ.

For each p ∈ N ∪ {0} ∪ {∞} we define the set of p-times continuously
differentiable functions with support Λ: Cp

Λ(RZd

) ≡ {ϕ(xΛ) |ϕ ∈ Cp(RΛ)},
where Cp(RΛ) is the set of real valued p-times continuously differentiable
functions on RΛ. For p = 0, we simply denote C0

Λ(RZd

) by CΛ(RZd

). Also we
set

Cp
0 (RZd

) ≡ {ϕ ∈ Cp
Λ(RZd

) | |Λ| <∞}.

B(RZd

) is the Borel σ-field of RZd

and BΛ(RZd

) is the sub σ-field of B(RZd

)
that is generated by the family CΛ(RZd

). For each k ∈ Zd, let ϑk be the shift
operator on RZd

such that

(ϑkx){j} ≡ x{k+j}, x ∈ RZd

, j ∈ Zd,

where x{k+j} is the k + j-th component of the vector x.
We shall define the infinite dimensional diffusions we are interested in

through a stochastic differential equation (SDE). On a complete probability
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space (Ω,F , P ;Ft) with an increasing family of sub σ-field {Ft}t∈R+ we are
given a family of independent 1-dimensional Ft-standard Brownian motion
processes {Bk(t)}t∈R+ , k ∈ Zd. For each ε ∈ (0, 1] and each x = {xk}k∈Zd ∈
RZd

, consider the following system of SDE’s :

Xε
k(t,x) = xk +

√
2Bk(t) +

1
ε

∫ t

0

bk(
Xε(s,x)

ε
)ds, t ∈ R+, k ∈ Zd, (10)

where we set

Xε(s,x) ≡ {Xε
k(s,x)}k∈Zd , and define bk(x) ≡

∑
Λ∈k

(− ∂

∂xk
JΛ(x)),

for a given family of potentials J ≡ {JΛ |Λ ⊂ Zd, |Λ| <∞} such that
J-1) (Periodicity) for each Λ ⊂ Zd such that |Λ| <∞,

JΛ ∈ C∞
Λ (RZd

),

and it is a periodic function with respect to each variable with the period 2π;
J-2) (Shift invariance)

JΛ+k = JΛ ◦ ϑk, ∀k ∈ Zd;

J-3) (Finite range) there exists an L <∞ and JΛ = 0 holds for any Λ
such that Λ 3 0 and Λ * [−L,+L]d.

By Lemma 1.2 of [HS] we have the following: Under the assumption J-1),
J-2) and J-3), for each ε > 0, SDE (10) has a strong unique solution. Also,
for any T < ∞ and ε > 0 there exists a constant Aε

T < ∞ and for any
x = {xk}k∈Zd , x′ = {x′k}k∈Zd one has that

E[
∑
k∈Zd

1
2|k|

sup
0≤t≤T

|Xε
k(t,x)− xk|2] ≤ Aε

T , (11)

E[
∑
k∈Zd

1
2|k|

sup
0≤t≤T

|Xε
k(t,x)−Xε

k(t,x′)|2] ≤ Aε
T (

∑
k∈Zd

1
2|k|

|xk − x′k|2). (12)

By (11) and (12) we can define a metric ρ on a linear subspace W of
C(R+ → RZd

), on which the trajectories of the diffusions Xε(·,x) exist if
their initial states satisfy x ∈ H. Namely, let

H ≡
{
x = {xk}k∈Zd ∈ RZd

|
∑
k∈Zd

1
2|k|

x2
k <∞

}
,

denoting x(·) ≡ {xk(·)}k∈Zd and define

W ≡
{
x(·) ∈ C(R+ → RZd

)
∣∣∣ ∑
k∈Zd

1
2|k|

sup
0≤t≤T

|xk(t)|2 <∞, ∀T <∞
}
.
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We define a metric ρ on W , and denote the Polish space equipped with this
metric by the same symbol W :

ρ(x(·),x′(·)) ≡
∑
n∈N

1
2n

{
{

∑
k∈Zd

1
2|k|

sup
0≤t≤n

|xk(t)− x′k(t)|2} 1
2 ∧ 1

}
, (13)

for x(·) ≡ {xk(·)}k∈Zd , x′(·) ≡ {x′k(·)}k∈Zd ∈W.

The metric ρ gives a stronger topology than the product topology and keeps
the Borel structure unchanged. We note that the metric ρ is also stronger
than the following metric (cf. [AKR])∑

n∈N

1
2n

{
sup

0≤t≤n
{

∑
k∈Zd

1
2|k|

|xk(t)− x′k(t)|2} 1
2

∧
1
}
.

Let B(W ) be the Borel σ-field of W and Bt(W ), t ∈ R+, be the sub σ-field
of B(W ) generated by the cylinder sets of (C([0, t] → R))Z

d

.
For each t ≥ 0, let ξt be the measurable map given by

ξt : W 3 x(·) 7−→ x(t) ∈ RZd

,

then Bt(W ) is the σ-field generated by ξs, s ∈ [0, t].
For each x ∈ H and ε > 0, let P ε

x be the probability measure on (W,B(W ))
which is the probability law of the process {Xε(t,x)}t∈R+ :

P ({ω |Xε(·,x) ∈ B}) = P ε
x(ξ· ∈ B), ∀B ∈ B(W ).

Let T = {y ∈ R2 : |y| = 1} be the unit circle equipped with the natural
Riemannian metric. Let TZd

be the product space of T endowed with the di-
rect product topology, so that TZd

is a Polish space. Let (WT ,B(WT );Bt(WT ))
be the measurable space of the Polish space WT ≡ C(R+ → TZd

), such that
B(WT ) is the Borel σ-field of WT and Bt(WT ), (t ∈ R+), is the sub σ-field of
B(WT ) generated by the cylinder sets of C([0, t] → TZd

).
Corresponding to the previously defined notations xΛ, resp. Cp

Λ(RZd

) and
Cp

0 (RZd

), we define the following: For each non-empty Λ ⊆ Zd, by yΛ we
denote the image of the projection onto TΛ:

TZd

3 y 7−→ yΛ ∈ TΛ.

Also, Cp
Λ(TZd

), Cp
0 (TZd

), and CΛ(TZd

) are defined correspondigly.
We use the notation y = {yk}k∈Zd to denote a point in TZd

.
In order to give a correspondence between the points in RZd

and the points
in TZd

, we introduce the function

Θ : TZd

3 {yk}k∈Zd 7−→ {θk}k∈Zd ∈ [0, 2π)Z
d
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where θk = θ(yk) and the function θ : T −→ [0, 2π) is defined by

y =
(

cos θ(y)
sin θ(y)

)
∈ T ⊂ R2.

Let Ĉ([0, 2π)Z
d

) be the linear subspace of C([0, 2π)Z
d

) such that

Ĉ([0, 2π)Z
d

) ≡
{
φ ∈ C([0, 2π)Z

d

)
∣∣ lim

θk↑2π
φ(θ) = φ(θ|θk=0),

∀θ ≡ {θl}l∈Zd ∈ [0, 2π)Z
d

, ∀k ∈ Zd
}
,

where θ|θk=0 is the vector defined by changing the k-th component θk of θ to
0. Then, each ϕ ∈ C(TZd

) has a corresponding element φ ∈ Ĉ([0, 2π)Z
d

) such
that

ϕ(y) = φ ◦Θ(y), ∀y ∈ TZd

By this, we will identify the elements of C(TZd

) with the corresponding ele-
ments in Ĉ([0, 2π)Z

d

).
In addition we define Φ(xk) = θk ∈ [0, 2π) ifxk = θkmod 2π. Then we can

define a surjection from RZd

to TZd

such that

Θ−1 ◦Φ : RZd

3 x = {xk}k∈Zd 7−→ {θ−1 ◦ Φ(xk)}k∈Zd ∈ TZd

. (14)

In the sequel, if there is no ambiguity, to denote such interpretation
ϕ(Θ−1 ◦ Φ(·)) ∈ C(RZd

) of ϕ(·) ∈ C(TZd

) we will use the same notation
ϕ, i.e., we will not always write the corresponding periodic function by
ϕ(Θ−1 ◦Φ(x)) but simply ϕ(x).

The following Proposition 1-i), ii) resp. and iii) are results of Theorem 2.23
of [HS] resp. and Proposition 1.2 of [S] (cf. also [BoRW]):

Proposition 1. (Quotient process of {X1(t,x)}t≥0)
Let J be a potential that satisfies the conditions J-1), J-2) and J-3).
i) For each t ≥ 0, let ηt be the measurable function defined by

ηt : WT 3 y(·) 7−→ y(t) ∈ TZd

.

Let y ∈ TZd

and take x ∈ H such that y = Θ−1 ◦Φ(x).
On (WT ,B(WT )) define the probability measure

Qy ≡ P 1
x ◦Θ−1 ◦Φ,

i.e.

Qy(B) ≡ P 1
x

(
{x(·) ∈W |Θ−1 ◦Φ(x(·)) ∈ B}

)
, ∀B ∈ B(WT ),
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where the probability measure P 1
x on (W,B(W )) is the probability law of the

process {X1(t,x)}t∈R+ . Then, Qy satisfies the following:

Qy(η0 = y) = 1 and
(
f(ηt)−

∫ t

0

(Lf)(ηs)ds, Bt(WT ), Qy

)
is a martingale for each f ∈ C∞

0 (TZd

), where

(Lf)(y) =
∑

k∈Zd

{
∂2f

∂y2
k

(y) + bk(Θ(y))
∂

∂yk
f(y)

}
.

Furthermore, Qy is the unique solution of the above martingale problem.
ii) Let p(t,y, ·) be the transition function associated with the diffusion
process (ηt, Qy : y ∈ TZd

). For N ∈ N, y ∈ TZd

, let p(N)(t,y, ·) be such that

p(N)(t,y, Γ ) = p(t,y, Γ̃ ) for Γ ∈ B(T [−N,+N ]d),

where Γ̃ = {y ∈ TZd |y(N) ≡ y[−N,N ]d ∈ Γ}. Then p(N)(t,y, dy(N)) has a
density p(N)(t,y,y(N)) with respect to Lebesgue measure on T [−N,+N ]d whose
partial derivatives in the variable y(N) of all order exist and are continuous
functions of (t,y,y(N)) in (0,∞)× TZd × T [−N,+N ]d .
iii) There exists at least one Gibbs probability measure µ on (TZd

,B(TZd

))
such that

〈EΛϕ, µ〉 = 〈ϕ, µ〉, ∀Λ ⊂ Zd s.t. |Λ| <∞, ∀ϕ ∈ C0(TZd

), (15)

where

[EΛϕ](y) =
1

ZΛ(yΛc)

∫
TZd

ϕ(y′Λ · yΛc)e−UΛ(Θ(y′Λ·yΛc ))dy′,

with
UΛ(x) ≡

∑
Λ′∩Λ6=∅

JΛ′(x), x ∈ RZd

,

ZΛ(yΛc) =
∫

TZd
e−UΛ(Θ(y′Λ·yΛc ))dy′.

Here we use the notation y′Λ · yΛc ≡ y′′ ∈ TZd

,
so that y′′Λ = y′Λ and y′′Λc = yΛc .

Remark 2. (Qy and Dirichlet forms)
Let µ be some Gibbs measure on (TZd

,B(TZd

)), and consider the Dirichlet
space (Eµ,D(Eµ)) on L2(µ) that is a quasi-regular Markovian extension of the
form
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k∈Zd

∫
TZd

∂ϕ

∂yk
· ∂ψ
∂yk

µ(dy), ϕ, ψ ∈ C∞
0 (TZd

), on L2(µ).

(closability holds according to [AKR].) Let M be the (strong) Markov pro-
cess properly associated with the Dirichlet space (Eµ,D(Eµ)), which ex-
ists by [MR]. Denote the corresponding Markovian transition function and
the probability law of the process M starting at y ∈ TZd

by pM(t,y, ·)
(t ∈ R+, y ∈ TZd

) and QM
y (·) on (WT ,B(WT )) respectively.

By the uniqueness statement given in Prop. 1 we see that the Markov
process ({ηt}t≥0, Qy : y ∈ TZd

) defined by Prop. 1 is equivalent to M above,
hence properly associated to the Dirichlet space (Eµ,D(Eµ)) (for precise ar-
guments cf. Remark 1.1 of [ABRY3], also cf. [F1], [MR]).

3 Theorems

In [ABRY3] we have considered the homogenization problem of the sequence of
the diffusions {{Xε(t,x)}t∈R+}ε>0 in the case where the the following uniform
ergodicity (16) holds for the quotient process ({ηt}t≥0, Qy : y ∈ TZd

). Here we
consider the same problem for {{Xε(t,x)}t∈R+}ε>0 in the case where the L2-
type ergodicity holds for (ηt, Qy : y ∈ TZd

), and compare the results available
under these two different assumptions of (16) and (17). Each comparison will
be given as a Remark following each Theorem resp. Lemma.

In the sequel we denote the uniform ergodicity (16) as (LS) and the L2-type
ergodicity (17) as (WP) respectively. We have to remark that if the potential
J , that satisfies J-1), J-2) and J-3), satisfies in addition Dobrushin-Shlosman
mixing condition, then (16) holds, more precisely in this case the logarithmic
Sobolev inequality (LS) holds for the Dirichlet form E(u(·), v(·)) defined in
Remark 2, then the stronger inequality such that the term (c + t)−α in (16)
is replaced by e−αt for some α > 0 holds (cf. [S]).

Correspondingly, if E(u(·), v(·)) satisfies the weak Poincaré (WP) inequal-
ity, then (17) holds. We remark that the logarithmic Sobolev inequality is
strictly stronger than the the weak Poincaré inequality (cf. [RWang]).

Precisely, we define the ergodicities (LS) and (WP) as follows:
(LS) For some Gibbs state µ, there exists a c = c(J ) > 0 and an α =
α(J ) > 1 which depend only on J , such that for each Λ ∈ Zd with |Λ| <∞
there exists K(Λ) ∈ (0,∞) and for ∀t > 0, ∀ϕ ∈ C∞

Λ (TZd

) the following holds

‖
∫

TZ

ϕ(yΛ)p(t, ·, dy)−〈ϕ, µ〉‖L∞ ≤ K(Λ)(c+ t)−α(‖∇ϕ‖L∞ +‖ϕ‖L∞), (16)

(WP) There exist c = c(J ) > 0, α = α(J ) > 1 and K > 0, that depends
only on J , and the following holds
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‖Ptϕ− < ϕ, µ > ‖L2(µ) ≤ K(c+ t)−α‖ϕ‖L2(µ), ∀t > 0, ∀ϕ ∈ C(TZd

). (17)

We also remark that (16) or (17) gives the uniqueness of the Gibbs state,
since by (16) or (17) we see that a Gibbs state µ that satisfies (16) or (17) is
the only invariant measure for p(t, ·, dy), but every Gibbs state is an invariant
measure. From now on we denote the unique Gibbs measure by µ (cf. [ABRY3]
and [AKR]).

Lemma 3. Assume that J-1), J-2), J-3) and the L2 ergodicity (WP) is sat-
isfied. Then, for any k ∈ Zd,

χk(y) ≡ EQy [
∫ ∞

0

{bk(Θ(ηs(·))}ds],

is well defined as a measurable function of y ∈ TZd

.
Let for u, v ∈ D(E)

E(u(·), v(·)) ≡
∑
j∈Zd

∫
TZd

(
∂

∂yj
u(y))(

∂

∂yj
v(y))µ(dy),

then for any k ∈ Zd

χk(·) ∈ D(E), χk is quasi-continuous (18)

E(χk, χk) ≤ 5
4
,

E(χk(·), v(·)) = −
∫

TZd
bk(Θ(y))v(y)µ(dy) ∀v ∈ C∞

0 (TZd

).

Remark 4. Under the assumption (LS), we have a stronger result than (18)
(cf. Lemma 2.1 of [ABRY3]):

χk(·) ∈ D(E) and χk(·) ∈ C(TZd

).

By Lemma 3 we define

χ′k,j(y) =
√

2
∂

∂yj
χk(y) if j 6= k

and
χ′k,j(y) =

√
2(1− ∂

∂yk
χk(y)) if j = k.

Let χ′ and A be the matrices whose components are functions such that
respectively
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χ′(y) ≡
(
χ′k,j(y)

)
k,j∈Zd

, (19)

A(y) ≡
(
ak,j(y)

)
k,j∈Zd

, with ak,l(y) ≡
∑
j∈Zd

χ′k,j(y) · χ′l,j(y). (20)

By (19), we can define a matrix Ā whose components are constants as follows:

Ā ≡
(
āk,j

)
k,j∈Zd

, with āk,l ≡
∑
j∈Zd

∫
TZd

χ′k,j(y) · χ′l,j(y)µ(dy). (21)

For each M ∈ N let Ā|M be the submatrix of Ā such that

Ā|M =
{
āk,l

}
|k|,|l|≤M

,

then by (19) and Fubini’s Lemma, for z = {zk}|k|≤M

0 ≤ z · Ā|M · tz

=
∫

TZd

∑
j∈Zd

( ∑
|k|≤M

(
χ′k,j(y)

)
zk

)2

µ(dy) < +∞.

Hence, by the martingale representation theorem by means of the Brown-
ian motion processes (cf. for e.g. Section II-6 of [IW]) the finite dimensional
quadratic variation matrix Ā|M determines uniquely an M ′ ≡ ]{k

∣∣ |k| ≤M}-
dimensional continuous Gaussian process on some adequate probability space.
Since the sequence of the probability laws of such M ′-dimensional processes,
that is a sequence of Borel probability measures on C(R+ → RM ′

), is con-
sistent, by the Kolmogorov’s extention theorem there exists a unique proba-
bility measure on

(
C(R+ → RZd

),B(C(R+ → RZd

))
)
, such that any of its

M ′-dimensional marginals is identical to the probability law of the continuous
Gaussian process characterized by Ā|M .

By this construction, we denote by {Yt}t∈R+ with Y0 = 0 as the unique
continuous Gaussian process taking values in RZd

(namely Y· is a C(R+ →
RZd

) valued random variable) with covariance matrix t · Ā (t ∈ R+) defined
on a complete probability space.

If x ≡ {xk}k∈Zd ∈ H, then by (19), (22) and above mentioned construction
of {Yt}t∈R+ with Y0 = 0 by means of Ā|M , by using the martingale inequality
we see that the trajectories of {Yt +x}t∈R+

stay in W with probability 1, and

B(C(R+ → RZd

))∩W = B(W ) is identical with (W,B(W )). We can then set
the following definition:

Definition 5. Let {Yt}t∈R+ with Y0 = 0 be the unique continuous Gaussian
process defined above, with a law which is a Borel probability measure on
(W,B(W )). For each x ∈ H, let Px be the probability measure on (W,B(W ))
that is the probability law of the process {x + Yt}t∈R+ .
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Heuristically, {Yt}t∈R+ can be expressed by

Yt =
∫ t

0

Ā
1
2 dBt, t ∈ R+,

where {Bt}t∈R+ ≡
{
{Bk,t}t∈R+

}
k∈Zd and {Bk,t}t∈R+ (k ∈ Zd) are some in-

dependent sequences of one-dimensional standard Brownian motion processes.

Lemma 6. Assume that J-1), J-2), J-3) and that the L2 ergodicity (WP) is
satisfied. Let χk(·) ∈ D(E) (k ∈ Zd) be the functions defined by Lemma 3,
denote χk(Θ−1 ◦Φ(x)) simply by χk(x). For each ε > 0 let

M ε,k
t (·) =

(
ξkt (·)− ξk

0 (·)
)
−

(
εχk(

ξt(·)
ε

)− εχk(
ξ0(·)
ε

)
)
. (22)

Set ỹ = Θ(y), for Θ the mapping from TZd

to [0, 2π)Z
d

defined in the previous
section. Then, for each ε > 0 and E-q.e. the processes {M ε,k

t }t∈R+ , k ∈ Zd, on
(W,B(W ), P ε

εỹ) are L2(P ε
εỹ), continuous Bt(W )-martingales whose quadratic

variations are given by

< M ε,k(·),M ε,l(·) >t=
∫ t

0

ak,l(
ξs(·)
ε

)ds, k, l ∈ Zd, (23)

where
ak,l(y) ≡

∑
j∈Zd

χ′k,j(y)χ′l,j(y),

with

χ′k,j(y) =


√

2
∂

∂yj
χk(y) j 6= k

√
2(1− ∂

∂yk
χk(y)) j = k.

Remark 7. If we assume (LS), then for each ε > 0 and each x ∈ H the pro-
cess {M ε,k

t }t∈R+ , k ∈ Zd, on (W,B(W ), P ε
x) is an L2(P ε

x) continuous Bt(W )-
martingale, with quadratic variations given by (24).

Let ν be a probability measure on (TZd

,B(TZd

)) such that

‖dν
dµ
‖L∞(TZd ) <∞. (24)

For each ε ∈ [0, 1), define a probability measure P ε
νε

on (W,B(W )) such that

P ε
νε

(B) ≡
∫

TZd
P ε

εỹ(B)ν(dy), ∀B ∈ B(W ), (25)

where as above (and in the sequel) ỹ = Θ(y).
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Remark 8. We remark that by Lemma 6, the processes {M ε,k
t }t∈R+ , k ∈ Zd,

on
(W,B(W ), P ε

νε
) are L2(P ε

νε
), continuous Bt(W )-martingales with quadratic

variations given by (24).

Theorem 9. Assume that J-1), J-2), J-3) and (WP) are satisfied. Then, for
each ε > 0 and each probability measure ν on (TZd

,B(TZd

)) satisfying (25),
it is possible to construct a probability space (W̄ ,B(W̄ ), P̄ ε

νε
;Bt(W̄ )), which is

a standard extension of (W,B(W ), P ε
νε

;Bt(W )), and a Bt(W )-adapted RZd

-
valued continuous process {ζε

t}t∈R+ (defined precisely in the next section) that
satisfies the following: ζε

· is a W valued random variable whose probability law
P̄ ε

νε
◦ζε

· forms a relatively compact set {P̄ ε
νε
◦ζε

·}ε>0 in the space of probability
measures on (W,B(W )) equipped with the weak topology, and for any ϕ ∈
Cb(W → R), the following holds:

lim
ε↓0

EP̄ ε
νε [ϕ(ζε

· (·))] = EP0 [ϕ(ξ̂·(·))], (26)

lim
ε↓0

EP̄ ε
νε [ρ(ξ̂·(·), ζ

ε
· (·))] = 0, (27)

where

ξ̂t(·) ≡ ξt(·)− εχ(
ξt(·)
ε

) + εχ(
ξ0(·)
ε

).

Remark 10. Under the assumption (LS), we can take the initial states as Dirac
point measures (cf. Theorem 2.1 of [ABRY3]):

lim
ε↓0

EP̄ ε
x [ϕ(ζε

· (·))] = EPx [ϕ(ξ·(·))]. ∀x ∈ H, (28)

One then also have :

lim
ε↓0

EP̄ ε
εx [ϕ(ζε

· (·))] = EP0 [ϕ(ξ·(·))], ∀x ∈ [0, 2π)Z
d

, (29)

where the approximation sequence
{
{ζε

t}t∈R+

}
ε>0

satisfies

lim
ε↓0

∫
TZd

EP̄ ε
εỹ [ρ(ξ·(·), ζ

ε
· (·))]µ(dy) = 0. (30)

Remark 11. In order to show that χk ∈ D(E) satisfies χk ∈ C(TZd → R) we
used crucially (LS) in [ABRY3]. Here, in Lemma 3 we assume (WP) and we
can show χk ∈ D(E) only, and we can not see in general that χk is bounded.
By this we are not able to assert that the term
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−εχ(
ξt(·)
ε

) + εχ(
ξ0(·)
ε

)

vanishes as ε ↓ 0, and we have to modify ξt(·) by ξ̂t(·) in Theorem 9 above
and 12 below (cf. Remarks 4 and 10).

Theorem 12. Let P0 be the probability law of the process {Yt}t∈R+ . Assume
that the assumptions of Theorem 9 are satisfied, then the following hold:

lim
ε↓0

EP ε
ν̃ε [ϕ(ξ̂·(·))] = EP0 [ϕ(ξ·(·))], ∀ϕ ∈ Cb(W → R). (31)

Remark 13. Under the assumptions J-1), J-2), J-3) and (LS), in [ABRY3] we
proved the following: For ỹ = Θ(y) with Θ : TZd → [0, 2π)Z

d

,

lim
ε↓0

∫
TZd

∣∣∣EP ε
εỹ [ϕ(ξ·(·))]− EP0 [ϕ(ξ·(·))]

∣∣∣µ(dy) = 0, ∀ϕ ∈ Cb(W → R).

(32)
Also there exists an N ∈ B(TZd

) such that µ(N ) = 0, and a subsequence{
εn}n∈N ⊂ {ε | ε ∈ (0, 1]

}
,

and the following holds (cf. [PapV] for the finite dimensional case):

lim
εn↓0

EP εn
εnx [ϕ(ξ·(·))] = EP0 [ϕ(ξ·(·))], ∀ϕ ∈ Cb(W → R) (33)

∀x ≡ {xk}k∈Zd ∈ RZd

such that Θ−1Φ(x) ∈ TZd

\ N , sup
k∈Zd

|xk| <∞.

Remark 14. For the present problem we use crucially the ergodicity of the
corresponding quotient process ({ηt}t≥0, Qy : y ∈ TZd

) whose existence de-
pends essentially on the periodicity of the coefficients of original process. If we
consider the homogenization problems based on the diffusions processes tak-
ing values in RZd

with the index set Zd which are defined through Dirichlet
forms with convex potential terms (cf. [AKR]), then there are no correspond-
ing quotient processes and the present formulation is impossible.
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4 Construction of
{
{ζε

t}t∈R+

}
ε>0

and an outline of the
proofs

In order to get the results on the homogenization problem for the infinite
dimensional diffusions {Xε(t,x)}t∈R+ (ε > 0), we firstly pass through the dis-
cussion of a sequence of approximating processes {ζε

t}t∈R+ (ε > 0) of the
original diffusions introduced in Theorem 9.

{
{ζε

t}t∈R+

}
ε>0

is composed in
order that the sequence of probability laws of

{
{ζε

t}t∈R+

}
ε>0

forms a rela-
tively compact set in the space of Borel probability measures on (W,B(W ))
equipped with the relative topology. For each ε > 0 the dimension of {ζε

t}t∈R+

is essentially finite, that is controlled by the parameter ε > 0 with a tricky way
composed by using the uniform ergodic theorem (LS) or L2 ergodic the-
orem (WP). In [ABRY3] under the assumption (LS) this subsidiary sequence
of processes

{
{ζε

t}t∈R+

}
ε>0

has been constructed in order that it satisfies the
pointwise homogenization property given by (29).

Here, we show how the approximating processes
{
{ζε

t}t∈R+

}
ε>0

that sat-
isfy the homogenization property given by (27) are constructed by using the
assumption (WP). Onece

{
{ζε

t}t∈R+

}
ε>0

is constructed, the proofs of Theo-
rems 9 and 12 of the present paper are very similar to the ones of Theorems
2.1 and 2.2 in [ABRY3], we do not repeat them here. Also, since Lemmas 3
and 6 in this paper are included in Lemmas 2.1 and 3.1 of [ABRY3], therefore
we also omit these proofs here.

For the (WP) case we construct
{
{ζε

t}t∈R+

}
ε>0

as follows. Let A(y) be
the matrix valued function defined by (21), and for each N ∈ N let

N ′ ≡ ]{k| |k| ≤ N},

and define an N ′ ×N ′ matrix that is a submatrix of A(y) such that

A(y)|N ≡
(
ak,j(y)

)
|k|,|j|≤N

, y ∈ TZd

.

Then by (19) and Fubini’s Lemma, for any real vector z = {zk}|k|≤N

0 ≤ z · A(y)|N · tz

=
∑
j∈Zd

( ∑
|k|≤N

(
χ′k,j(y)

)
zk

)2

< +∞, µ− a.s. y ∈ TZd

.

By this for each N ∈ N, there exists a matrix
(
σN
k,l(y)

)
|k|,|j|≤N

such that

ak,l(y) =
∑
|j|≤N

σN
k,j(y) · σN

l,j(y), |k|, |l| ≤ N, µ− a.s. y ∈ TZd

. (34)

By (19), (20) and (21) since for any k ∈ Zd
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ak,k(y)µ(dy) ≤ 5
2
,

we see that∑
|l|≤N

‖σN
k,l‖2L2(µ) ≤

5
2
, for any k such that |k| ≤ N. (35)

By this, for each N ∈ N, there exists a sequence of N ′ ×N ′ matrices{
σN,n
k,l (y)

}
|k|,|l|≤N

n = 1, 2, · · · ,

such that

σN,n
k,l ∈ C∞

ΛN,n
(TZd

→ R), for some bounded ΛN,n ⊂ Zd, n ∈ N,

lim
n→∞

‖σN,n
k,l (·)− σN

k,l(·)‖L2(µ) = 0, |k|, |l| ≤ N.

Next, define a natural number valued function n(·) as follows:

n(N) ≡ min
{
n ∈ N

∣∣∣ ∑
|l|≤N

‖σN,n
k,l − σN

k,l‖L2(µ) <
1
N
, ∀|k| ≤ N

}
, (36)

and then define

σ̃N
k,l(y) ≡ σ

N,n(N)
k,l (y), y ∈ TZd

, |k|, |l| ≤ N. (37)

By construction we see that

σ̃N
k,l ∈ C∞

ΛN
(TZd

→ R), where ΛN ≡
⋃

n≤n(N) ΛN,n.

Let
ãN
k,k(y) ≡

∑
|j|≤N σ̃N

k,j(y) · σ̃N
k,j(y) ≥ 0, y ∈ TZd

. (38)

Finally, by using the constants c(J ) > 0, α ≡ α(J ) > 1 and the constant
K > 0 which appeared in (WP) we define

KN = K
{

max
( 2
cα
, 1

)}
·
{

max
|k|≤N

‖ãN
k,k‖L2(µ)

}
, (39)

and then, for each ε > 0, we define

N(ε) ≡ max
{
N ∈ N

∣∣√εKNMN,k,l ≤ 1, ∀|k|,∀|l| ≤ N
}
, (40)

where (cf. (39))

MN,k,l ≡ sup
y∈T ΛN

(
ãN
k,k(y) · ãN

l,l(y)
) 1

2 . (41)

Now, we define the approximation sequence of the original process as fol-
lows. By Lemma 6, for each ε > 0 (hence for N(ε) defined by (41)), since the
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quadratic variation of the L2(P ε
νε

) continuous Bt(W )-martingale {M ε,k
t }t∈R+ ,

k ∈ Zd, on (W,B(W ), P ε
νε

) is given by

< M ε,k(·),M ε,l(·) >t=
∫ t

0

ak,l(
ξs(·)
ε

)ds, k, l ∈ Zd,

from the expression of ak,l(y) given by (35), by applying the martingale rep-
resentation theorem by means of the Brownian motion processes for the finite
dimensional continuous L2 martingales (cf., for e.g., section II-7 of [IW]),
we see that on a probability space (W̄ ,B(W̄ ), P̄ ε

νε
;Bt(W̄ )) there exists an

N ′(ε) ≡ ]{k| |k| ≤ N(ε)} dimensional standard Brownian motion process

{Bε
k(t)}t∈R+

, |k| ≤ N(ε),

and the following holds:

ξkt (·) = ξk0 (·)− εχk(
ξ0(·)
ε

) + εχk(
ξt(·)
ε

)

+
∑

|l|≤N(ε)

∫ t

0

σ
N(ε)
k,l (

ξs(·)
ε

)dBε
l (s), P̄

ε
νε
− a.s., |k| ≤ N(ε). (42)

Then, by using σ̃N(ε)
k,l defined by (38) and (41), we define the approximating

process {ζε
t}t∈R+ =

{
{ζε,k

t }t∈R+

}
k∈Zd on (W̄ ,B(W̄ ), P̄ ε

νε
;Bt(W̄ )) as follows:

ζε,k
t (·) = ξk0 (·) +

∑
|l|≤N(ε)

∫ t

0

σ̃
N(ε)
k,l (

ξs(·)
ε

)dBε
l (s), |k| ≤ N(ε); (43)

ζε,k
t (·) = ξk0 (·), |k| > N(ε), ∀t ∈ R+. (44)

Let us explain the key point of the proof of the tightness of
{
{ζε

t}t∈R+

}
ε>0

.
Let

ã
N(ε)
k,k = ‖ãN(ε)

k,k ‖L1(µ).

By (39) using

pu1

(
ã

N(ε)
k,k (·) · pu2−u1(ã

N(ε)
k,k (·))

)
(y)

≤
(
ã

N(ε)
k,k

)2 + ã
N(ε)
k,k |pu1

(
ã

N(ε)
k,k (·)

)
(y)− ã

N(ε)
k,k |

+‖ãN(ε)
k,k ‖L∞pu1

(
|pu2−u1

(
ã

N(ε)
k,k (·)

)
(y)− ã

N(ε)
k,k |

)
,

by (43), (44), Fubini’s Lemma and (WP) we see that
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EP̄ ε
νε [|ζε,k

t (·)− ζε,k
0 (·)|4]

= EP̄ ε
νε

∣∣ ∑
|l|≤N(ε)

∫ t

0

σ̃
N(ε)
k,l (

ξs(·)
ε

)dBε
l (s)

∣∣4
≤ ε4

∫
TZd

{∫ t
ε2

0

∫ t
ε2

u1

pu1

(
ã

N(ε)
k,k (·) · pu2−u1(ã

N(ε)
k,k (·))

)
(y)du1du2

}
ν(dy)

≤ 1
2
(ãN(ε)

k,k )2t2 + ε4ã
N(ε)
k,k ‖dν

dµ
‖L∞‖ãN(ε)

k,k ‖L2(µ)

∫ t
ε2

0

K(
t

ε2
− u1)(c+ u1)−αdu1

+ε4‖dν
dµ
‖L∞‖ãN(ε)

k,k ‖L2(µ)‖ã
N(ε)
k,k ‖L∞

∫ t
ε2

0

∫ t
ε2

u1

K(c+ (u2 − u1))−αdu1du2.(45)

But, for α > 1, using

ε2
∫ t

ε2

0

1
(c+ s)α

ds ≤ εmax(
2
cα
, 1)t

1
2 , ∀ε ∈ (0, 1],

togetherwith (40), (41), (42) and using the bounds (36) and (37) we see that
the RHS of (46) is dominated by

c′t2 + c′′t
3
2 ,

for some constants c′, c′′ > 0. Thus we have

EP̄ ε
νε [|ζε,k

t (·)− ζε,k
0 (·)|4] ≤ c′t2 + c′′t

3
2 , ∀t > 0, ∀k ∈ Zd, ∀ε > 0. (46)

From (47) through a similar discussion as for the proof of Theorem 2.1 of
[ABRY3] we can complete the proof of Theorem 9 in the present paper.

Remark 15. In [ABRY3] by using the ergodicity (LS), we constructed the cor-
responding approximation sequence

{
{ζε

t}t∈R+

}
ε>0

which satisfies

EP̄ ε
x [|ζε,k

t (·)− ζε,k
0 (·)|4] ≤ c′t2 + c′′t

3
2 ,

∀t > 0, ∀k ∈ Zd, ∀ε > 0, ∀x ∈ H. (47)
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