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Summary. The purpose of this paper is to construct the analog of Malliavin deriva-
tive D and Skorohod integral δ for some class of processes which include, in partic-
ular, processes with conditionally independent increments. We introduce the family
of orthogonal polynomials. By using these polynomials it is proved the chaos de-
composition theorem of L2(Ω). The definition of Malliavin derivative and Skorohod
integral for a certain class of stochastic processes is given and it is shown that they
are equal respectively to the annihilation and the creation operators on the Fock
space representation of L2(Ω). The analogue of Clark–Haussmann–Ocone formula
for processes with conditionally independent increments is also established.
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1 Introduction

It was shown by Karatzas and Ocone [14] how the stochastic calculus of vari-
ations developed by Malliavin [20] can be used in mathematical finance. This
discovery led to an increase in the interest in the Malliavin calculus.

In the Brownian setup the calculus of variations has a complete form (see
the elegant presentation of Nualart [22]). It is based on the operators D and
δ which are called Malliavin derivative and Skorohod integral, respectively.
There are two equivalent approaches to definition of the operator D: as a
variational derivative and through the chaos decomposition.

For discontinuous processes it is possible to develop the Malliavin-type
calculus by using some “generalized” or “weak” derivatives (see, e.g., [1, 4,
15] and references therein). Nevertheless, it was shown in [24] that in the
Poisson case small perturbations of the trajectories lead to a certain difference
operator. This idea was extended for Lévy processes in [26, 28, 31, 33].
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Alternatively, the operator D can be defined by its action on the chaos
representation of L2-functionals. The case of normal martingales with chaotic
representation property was considered in [19]. But, in general, a Lévy process
has no chaotic representation property in the sense that Brownian motion and
Poisson process do. There are two different chaotic expansions introduced in
[11] and [23]. By using these expansions two types of Malliavin operators for
some classes of Lévy processes have been studied in the papers [2, 7, 8, 16,
18, 25, 31]. The relationship between them has been shown in [2, 31]. The
connection of such derivative to the difference operator from [26, 28] was
studied in [18, 31, 33]. For random Lévy measures the Skorohod integral and
Malliavin derivative were considered in [5, 6].

The purpose of the paper is to construct the Malliavin calculus for some
class of processes which includes, in particular, the processes with condition-
ally independent increments. It is also proved the chaos representation theo-
rem for such type of processes.

In general the processes with conditionally independent increments can
be described in terms of their triplets of characteristics (B,µ, ν), where B
represents the “drift” part, µ is connected with continuous martingale part
(Gaussian part for Lévy processes) and ν is a compensator of measure asso-
ciated to the jumps of the original process. Since B is a bounded variation
process then for our purposes we can set B = 0 without loss of generality.
Therefore we start with two random measures µ and ν on certain measurable
spaces which describe, respectively, the continuous and discontinuous parts
of the process. In Section 2 we define the appropriate Hilbert space H con-
nected to these measures and stochastic process indexed by elements of H.
This construction allows us to consider aa rather general class of processes.
The system of generalized orthogonal polynomials defined in [33] is used in
the proof of the chaos decomposition of L2 functionals.

Section 3 deals with multiple integrals with respect to the L2-valued mea-
sure generated by the considering process. Their connection to generalized
orthogonal polynomials and chaos expansion is also proved.

In Sections 4 and 5 we define the operator D and its adjoint operator δ.
Then we show that they are generalizations of the Malliavin derivative and
Skorohod integral. It is also proved that their action on the Fock space repre-
sentation of L2-functionals coincides with annihilation and creation operators.
In the end of the last section we prove the analogue of Clark-Haussmann-
Ocone formula for processes with conditionally independent increments.

2 The chaos decomposition

Let (Ω,F ,P) be a complete probability space. Suppose that µ and ν are
random measures defined on the measurable spaces (T,A) and (T × X0,B)
respectively, such that the following conditions are satisfied:

1. µ(A, ·) and ν(B, ·) are F-measurable for all A ∈ A and B ∈ B,
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2. µ(·, ω) and ν(·, ω) are σ-finite measures without atoms for all ω ∈ Ω.

Consider ∆ 6∈ X0 and denote X = X0 ∪ {∆}, G = σ(A × {∆},B). Define a
new measure π(dtdx) = µ(dt)δ∆(dx) + ν(dtdx ∩ (T ×X0)) on the σ-algebra
G. Here δ∆(dx) is the measure which gives mass one to the point ∆. Let H
be a σ-algebra generated by measure π and the collection N of P-null events
of F , i.e.,

H = σ{π(A) : A ∈ G} ∨ N .

Define a new measure Mπ on σ-algebra G ⊗ F in the following way. For
any A ∈ G and B ∈ F we set Mπ(A × B) = E[1Bπ(A)]. Then extension
of it on the σ-algebra G ⊗ F can be done as usual (see e.g., [27, Ch. 4]).
Suppose that measure Mπ is σ-finite. Then there exists the sequence of the
sets Un ∈ G ⊗F such that

⋃∞
n=1 Un = T ×X ×Ω and Mπ(Un) <∞. We can

choose Un = An × Bn, where An ∈ G and Bn ∈ F . Indeed for any ε > 0 and
each Un we can find Ak

n ∈ G and Bk
n ∈ F such that Un ⊂

⋃∞
k=1A

k
n ×Bk

n and
Mπ(Un) ≤

∑∞
k=1Mπ(Ak

n×Bk
n) ≤Mπ(Un)+ ε. Hence Mπ(Ak

n×Bk
n) <∞ and

T ×X ×Ω =
⋃∞

k,n=1A
k
n ×Bk

n. Renumeration of the sets Ak
n ×Bk

n yields the
desired result.

If we consider the restriction of the measure Mπ on the σ-algebra G ⊗ H
then it is possible to show that it will be σ-finite. Indeed, let Un = An ×Bn,
An ∈ G and Bn ∈ F be as above then

⋃∞
n=1An = T ×X and

⋃∞
n=1Bn = Ω.

Denote by Cm
n the following sets: Cm

n = {ω ∈ Ω : π(An) ≤ m}, m = 1, 2, . . . .
Then Cm

n ∈ H and
⋃∞

m=1 C
m
n = {π(An) <∞} ⊃ (Bn\Nn), where P(Nn) = 0.

Hence
⋃∞

n,m=1An×(Cm
n ∪Nn) = T ×X×Ω and Mπ(An×(Cm

n ∪Nn)) ≤ m <

∞. In fact we have a stronger property: π(An, ω) <∞ for all ω ∈
⋃∞

m=1 C
m
n .

This property implies the sigma-finiteness of the π in the sense [27, Ch. 4,
Def. 21].

Consider the Hilbert space H = L2(T ×X × Ω,G ⊗ H,Mπ) and assume
that it is separable. Denote by π(f) the integral of f with respect to measure
π:

π(f) =
∫

T×X

f(t, x)π(dtdx).

It was shown in [27, Ch. 4] that if E[π(|f |)] < ∞ then π(f) is H-measurable
or F -measurable whenever f is G ⊗ H-measurable or G ⊗ F -measurable
respectively. The scalar product and the norm in H will be denoted by 〈·; ·〉H
and ||·||H respectively, i.e. for any f, g ∈ H

〈f ; g〉H = E(π(hg)) = E

∫
T×X

h(t, x)g(t, x)π(dtdx), ||f ||2H = E(π(h2)).

Definition 1. We say that a stochastic process L = {L(h), h ∈ H} is a con-
ditional additive process on H if the following conditions are satisfied.

1. For all h, g ∈ H and α, β ∈ L∞(Ω,H,P) we have P-a.s.

L(αh+ βg) = αL(h) + βL(g),
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2. For all z ∈ R and h ∈ H

E[eizL(h)|H] = exp
(
−1

2
z2

∫
T

h2(t,∆)µ(dt)

+
∫

T×X0

(
eizh(t,x) − 1− izh(t, x)

)
ν(dtdx)

)
. (1)

Remark 2. 1. In this definition we suppose that the process L(h) can be
defined on the original probability space (Ω,F ,P). If it is not the case
then it is possible to define µ, ν, and L(h) verifying the above conditions
on some extension (Ω′,F ′,P′) of the original probability space. So we can
always assume that original probability space (Ω,F ,P) is rich enough for
defining all necessary objects.

2. The definition 1 shows that the random variable L(h) has a conditionally
infinitely divisible distribution.

3. If measure ν is zero and measure µ is deterministic then L is an isonormal
Gaussian process (see, e.g., [22, Def. 1.1.1, p. 4]).

4. If measures µ and ν are deterministic then L is an isonormal Lévy process
(see, e.g., [33]).

Example 3. Let Lt, t ≥ 0 be a càdlàg real-valued process with H-conditionally
independent increments on complete probability space (Ω,F ,P), where H ⊂
F . Suppose that Lt is a quasi-left-continuous semimartingale with respect to
filtration Ft, t ≥ 0 generated by the natural filtration and σ-algebra H, i.e.
Ft =

⋂
s>t(F0

t ∨ H), where F0
t = σ{Ls : s ≤ t}. In this case there exists a

version of the characteristics (B,µ, ν) of Lt (see, e.g., [12, 17]) such that:

1. Bt, t ≥ 0 is a continuous process of locally bounded variation with B0 = 0;
2. µt, t ≥ 0 is a continuous nondecreasing process with µ0 = 0;
3. ν(dtdx, ω) is a predictable random measure defined on the Borel σ-algebra

of R+ × R0, where R0 = R \ {0} such that ν({t} × R0) = 0,
∫ t

0

∫
R0

(|x|2 ∧
1)ν(dsdx) <∞ for all t ≥ 0 P a.s.

Moreover, B, µ and ν are H-measurable and we have for all z ∈ R and s ≤ t

E[exp(iz(Lt − Ls))|H]

= exp
[
iz(Bt −Bs)−

1
2
z2(µt − µs) +

∫ t

s

∫
R0

(eizx − 1− izx1|x|≤1)ν(dtdx)
]
.

Here µt = 〈Lc;Lc〉t is a quadratic variation of the continuous parts of L, ν is
a compensator of the random measure N(dtdx) associated to the jumps of L.
Hence the following canonical representation holds:

Lt = L0+Lc
t+
∫ t

0

∫
|x|≤1

x(N(dsdx)−ν(dsdx))+
∫ t

0

∫
|x|>1

xN(dsdx)+Bt. (2)
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We can define L2-valued measure L(dtdx) with conditionally independent
values on the disjoint sets by

L(A) =
∫

A(0)

dLc
t +

∫∫
A\A(0)

(N(dtdx)− ν(dtdx)),

where A ∈ G, Mπ(A) <∞, A(0) = A ∩ (T × {0}).
Suppose that T = R+, X0 = R0, ∆ = 0. Let A and B be the Borel σ-

algebras of T and T×X0 respectively. Let µ(dt) be the measure onA generated
by process µt. Suppose that σ-algebra H is generated by the measures µ and
ν. Construct measure π and Hilbert space H = L2(R+ × R×Ω,G ⊗ H,Mπ)
as above. Then it is easy to show that for any h ∈ H the random variable

L(h) =
∫ ∞

0

h(s, 0)dLc
s +

∫ ∞

0

∫
R0

h(s, x)(N(dsdx)− ν(dsdx))

=
∫∫

R+×R
h(t, x)L(dtds) (3)

is well defined and L(h) is a conditional additive process on H.
On the other hand if we have a conditional additive process L(h) onH then

the L2-valued measure L(dtdx) which is given by L(A) = L(1A) for all A ∈ G
with Mπ(A) <∞ has conditionally independent values on the disjoint sets. In
order to express the process Lt in terms of process L(h) we can not write Lt =
L(ht), where ht(s, x) = 1[0;t](s)1{0}(x)+x1[0;t](s) because, in general, ht /∈ H.
Therefore we define for any n ≥ 1 the random variable τn = inf{t > 0 : µt ≤
n}. Obviously τn is an increasing sequence and ht∧τn1{x=0} ∈ H for all t ≥ 0
and n ≥ 1. Moreover, the process L(ht∧τn1{x=0}), t ≥ 0 has a version with
continuous sample paths and L(ht∧τn1{x=0}) = L(ht∧τm1{x=0}) if t ≤ τn and
n < m. Therefore Lc(t) = limn→∞ L(ht∧τn1{x=0}) well defined continuous
process. Furthermore for any set A ∈ B such that Mπ(A) = E[ν(A)] <∞ the
random variable N(A) = L(1A) + ν(A) is an integer valued random measure
with compensator measure ν. And we can define

L̄t = Lc(t) +
∫ t

0

∫
|x|≤1

x(N(dsdx)− ν(dsdx)) +
∫ t

0

∫
|x|>1

xN(dsdx). (4)

Comparing equalities (2) and (4) we deduce that the only characteristics which
cannot be determined from L(h) is the drift process B and initial value L(0).

Denote by K the following subset of H:

K = {h ∈ H : h1X0 ∈ L∞(T×X×Ω,G⊗H,Mπ), π(h2) ∈ L∞(Ω,H,P)} (5)

The elements of K satisfy the following properties.

Lemma 4. Suppose that h ∈ K then
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1. |h| ∈ K and zh ∈ K for all z ∈ R.
2. E[exp(π(h2)/2)] < ∞, E[π(|h|k1X0)] < ∞ and E[π(h2)k] < ∞ for all
k ≥ 2.

3. E
[
exp

(
1
2

∫
T
h2(t,∆)µ(dt) +

∫
T×X0

(
eh(t,x) − 1− h(t, x)

)
ν(dtdx)

)]
<∞.

Proof. The first two properties are evident. The proof of the last statement
is based on the boundedness of h1X0 and inequality |ex − 1 − x| ≤ e|x|x2/2,
which can be proved by using Taylor’s formula. We omit the details.

Lemma 5. The set K is dense in H.

Proof. Choose a h ∈ H. Then π(h2) < ∞ a.s. Consider two sequences of
sets Bm = {π(h2) ≤ m} ∈ H and Ck = {(t, x, ω) : |h(t, x, ω)| ≤ k} ∈ G ⊗ H.
Denote hk,m = h1Ck

1Bm It is evident that hk,m ∈ K for all integers k, m ≥ 1.
By dominated convergence theorem we have ||hk,m − h1Bm ||H → 0 as k →∞
and ||h1Bm − h||H = E[π(h2)1Ω\Bm

] → 0 as m → ∞ which completes the
proof of the lemma.

The following lemma describes some properties of L(h).

Lemma 6.

1. If h ∈ H then L(h) ∈ L2(Ω,F ,P). Furthermore E[L(h)|H] = 0 and
E[L(h)L(g)|H] = π(hg).

2. Let hn ∈ H be a sequence such that ||hn − h||H → 0 as n → ∞ for some
h ∈ H. Then E[(L(hn)− L(h))2|H] → 0 as n→∞ in L1(Ω,F ,P).

3. If h ∈ K then L(h) ∈ Lp(Ω,F ,P) for all p ≥ 1, E[exp(c|L(h)|)] < ∞ for
all c ∈ R, and

E[exp(L(h))|H] =

exp
(

1
2

∫
T

h2(t,∆)µ(dt) +
∫

T×X0

(
eh(t,x) − 1− h(t, x)

)
ν(dtdx)

)
.

4. Let h1, . . . hn ∈ K be such that hihj = 0 Mπ-a.s. if i 6= j. Then for any
integers p1, . . . , pn ≥ 1 we have

E[L(h1)p1 · · ·L(hn)pn |H] = E[L(h1)p1 |H] · · ·E[L(hn)pn |H].

Proof. 1. Choose a B ∈ H, P(B) > 0. Denote by fB(z) the characteristic
function of the random variable L(h) with respect to restriction of probability
on the set B, i.e., fB(z) = E[1Be

izL(h)]. Equality (1) implies that fB(z) can
be written in the following form:

fB(z) = E

[
1B exp

(
−z

2

2

∫
T

h2(t,∆)µ(dt)

+
∫

T×X0

(
eizh(t,x) − 1− izh(t, x)

)
ν(dtdx)

)]
.
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By using this equality it is easy to show that fB(z) two times differentiable
function. Hence L(h) ∈ L2(Ω,F ,P). Taking the first and second derivatives
at z = 0 in both sides of the equality above yields E[L(h)1B ] = 0 and
E[L(h)21B ] = E[π(h2)1B ]. Then E[L(h)|H] = 0, E[L(h)2|H] = π(h2) and
E[L(h)L(g)|H] = E[L(h+ g)2 − L(h− g)2|H]/4 = π(hg) which completes the
proof of the first statement of the lemma.

2. Suppose that hn → h as n→∞ in H. It means that E(π((hn−h)2)) →
0 as n → ∞. Then from the first part of the lemma we have E[(L(hn) −
L(h))2|H] = π((hn − h)2) which implies the proof of second statement of the
lemma.

3. Denote by u(z) the following expression:

u(z) = E

[
exp

(
z2

2

∫
T

h2(t,∆)µ(dt)

+
∫

T×X0

(
ezh(t,x) − 1− zh(t, x)

)
ν(dtdx)

)]
.

Since h ∈ K then Lemma 4 implies that u(z) is finite for all z ∈ R. The right
hand side in the equality above is meaningful even z is complex. Indeed if
z = a+ ib then Re (ezh − 1− zh) = eah cos(bh)− 1− ah = (eah − 1− ah) +
eah(cos(bh)− 1) ≤ (eah − 1− ah). Hence from Lemma 4 we have∣∣∣∣E [exp

(
z2

2

∫
T

h2(t,∆)µ(dt) +
∫

T×X0

(
ezh(t,x) − 1− zh(t, x)

)
ν(dtdx)

)]∣∣∣∣
≤ E

[
exp

(
a2

2

∫
T

h2(t,∆)µ(dt)

+
∫

T×X0

(
eah(t,x) − 1− ah(t, x)

)
ν(dtdx)

)]
<∞.

The function u(z) is analytic function for all z ∈ C. If z = it, t ∈ R then
u(z) = f(t) = E[eitL(h)] coincides with characteristic function of L(h). Hence
characteristic function f(t) infinitely differentiable for all t ∈ R and L(h) has
finite moments of all orders, i.e. L(h) ∈ Lp(Ω,F ,P) for all p ≥ 1. Moreover

u(z) =
∞∑

k=0

1
k!
zkE[L(h)k],

where the radius of convergence of the series being infinite. It follows that

E[exp(c|L(h)|)] =
∞∑

k=0

ck

k!
E[|L(h)|k] <∞

for all c ∈ R. Hence f(z) = E[exp(zL(h))] is analytic for all complex z. The
uniqueness theorem yields u(z) = f(z) which implies the third statement of
the lemma.
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4. From the previous parts of the lemma we have L(hk) ∈ Lp(Ω,F ,P) for
all p ≥ 1 and conditional characteristic function of random variables L(hk) is
infinitely differentiable if h1, . . . hn ∈ K. Since hihj = 0 Mπ-a.s. if i 6= j then
we have the following equality:

E

[
exp

(
i

n∑
k=1

zkL(hk)

)∣∣∣∣∣H
]

= exp

(
1
2

n∑
k=1

z2
k

∫
T

h2
k(t,∆)µ(dt)

+
n∑

k=1

∫
T×X0

(
eizkhk(t,x) − 1− izkhk(t, x)

)
ν(dtdx)

)
=

E [exp (iz1L(h1))|H] · · · E [exp (iznL(hn))|H] .

Taking the (p1 + p2 + · · ·+ pn)th partial derivative ∂p1+p2+···+pn

∂z
p1
1 ···∂zpn

n
at z1 = z2 =

· · · = 0 in both sides of the above equality yields

E[L(h1)p1 · · ·L(hn)pn |H] = E[L(h1)p1 |H] · · ·E[L(hn)pn |H].

Lemma 7. Let N be a collection of P-null events of F . Then

H ⊂ FL = σ{L(h) : h ∈ H} ∨ N .

Proof. It is suffice to show that π(C) is FL-measurable for all C ∈ G.
Since the measure Mπ is σ-finite then there exists a sequence of pairwise-

disjoint sets An×Bn, An ∈ G andBn ∈ H such that
⋃∞

n=1An×Bn = T×X×Ω
and Mπ(An×Bn) <∞. Then we have Mπ(C×Ω) =

∑∞
n=1Mπ((C∩An)×Bn)

and Mπ((C ∩ An) × Bn) < ∞. Therefore π(C ∩ An)1Bn < ∞ P-a.s. for all
n = 1, 2, . . . and

∑n
k=1 π(C ∩ Ak)1Bk

→ π(C) P-a.s. as n → ∞. Hence it is
suffice to show that π(C ∩Ak)1Bk

is FL-measurable.
Denote by Cm

k the following sets Cm
k = {π(C ∩Ak) ≤ m}. Then Cm

k ∈ H,
π(C ∩ Ak)1Cm

k
1Bk

≤ m and π(C ∩ Ak)1Cm
k
1Bk

→ π(C ∩ Ak)1Bk
P-a.s. as

m → ∞. Therefore the proof will be complete if we show that π(U)1D is
FL-measurable for all U ∈ G and D ∈ H such that π(U)1D is bounded.

Let U ∈ G and D ∈ H be arbitrary sets such that π(U)1D ≤ Q a.s. For
any ω ∈ D define measure π⊗2(dt1dx1dt2dx2, ω) = π(dt1dx1, ω)π(dt2dx2, ω)
on G⊗2. Since measures µ and ν without atoms then the measure π has no
atoms and π⊗2(∆U

2 , ω) = 0, where ∆U
2 = {(u, u) : u ∈ U}. Therefore if we

define measureM2
π(dzdω) = π⊗2(dz, ω)P(dω) on G⊗2⊗H thenM2

π(∆U
2 ×D) =

E(π⊗2(∆U
2 )1D) = 0. Hence for any m = 1, 2, . . . there exists a system of sets

Um
k ∈ G and Dm

k ∈ H, k = 1, 2, . . . such that
⋃∞

k=1 U
m
k ×Um

k ×Dm
k ⊃ ∆U

2 ×D,⋃∞
k=1 U

m
k = U ,

⋃∞
k=1D

m
k = D and

∑∞
k=1 E(π(Um

k )21Dm
k

) ≤ 1/m.
For any n ≥ 1 we can find a system of pairwise-disjoint sets {V n

1 , . . . , V
n
pn
}

⊂ G and {En
1 , . . . , E

n
qn
} ⊂ H, such that each Um

k and Dm
k k = 1, . . . , n can be

expressed as a disjoint union of some V n
j or En

j respectively. Then we have

1Sn
k=1 Um

k ×Um
k ×Dm

k
=

qn∑
k=1

pn∑
j1,j2=1

εnj1,j2,k1V n
j1
×V n

j2
×En

k
, (6)
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where εnj1,j2
is equal to 0 or 1. Set

1Zn =
qn∑

k=1

pn∑
j=1

εnj,j,k1V n
j ×En

k
.

It is evident that Zn ⊂ U × D. Furthermore 1Zn(s, ω) → 1U×D(s, ω) as
n→∞. Indeed, if s ∈ U and ω ∈ D then (s, s, ω) ∈ ∆U

2 ×D and there exists
n0 ≥ 1 such that (s, s, ω) ∈

⋃n
k=1 U

m
k ×Um

k ×Dm
k for all n ≥ n0. Hence one can

find jn and kn for all n ≥ n0 such that εnjn,jn,kn
= 1. Therefore Zn(s, ω) = 1

for all n ≥ n0.
It follows from dominated convergence theorem that

E

 qn∑
k=1

pn∑
j=1

εnj,j,kπ(V n
j )1En

k
− π(U)1D

2

= Mπ(Zn)−Mπ(U ×D) → 0. (7)

Set V n
0j = V n

j ∩ (T ×X0) and let as calculate the following expectation:

Sn = E

 qn∑
k=1

pn∑
j=1

εnj,j,k(L(1V n
j
1En

k
)2 − L(1V n

0j
1En

k
)− π(V n

j ))1En
k

2

.

Since π(V n
0j)1En

k
≤ π(V n

j )1En
k
≤ π(U)1D ≤ Q then 1V n

j
1En

k
∈ K and from

Lemma 6 we get

Sn =
qn∑

k=1

pn∑
i,j=1

εnj,j,kε
n
i,i,kE

(
(L(1V n

i
1En

k
)2 − L(1V n

0i
1En

k
)− π(V n

i ))

×(L(1V n
j
1En

k
)2 − L(1V n

0j
1En

k
)− π(V n

j ))1En
k

)
=

qn∑
k=1

∑
i 6=j

εnj,j,kε
n
i,i,kE

(
(π(V n

i )π(V n
j )− π(V n

i )π(V n
j )− π(V n

i )π(V n
j )

+π(V n
i )π(V n

j ))1En
k

)
+

qn∑
k=1

pn∑
j=1

εnj,j,kE
(
(L(1V n

j
1En

k
)4 + L(1V n

0j
1En

k
)2 + π(V n

j )2

−2L(1V n
j
1En

k
)2L(1V n

0j
1En

k
)− 2L(1V n

j
1En

k
)2π(V n

j ))1En
k

)
.

Taking respective derivatives at zero of conditional characteristic function of
L given by formula (1) yields E[L(1V n

j
1En

k
)4|H] = (3π(V n

j )2+π(V n
0j))1En

k
and

E[L(1V n
j
1En

k
)2L(1V n

0j
1En

k
)|H] = π(V n

0j)1En
k
. Therefore we have

Sn =
qn∑

k=1

pn∑
j=1

εnj,j,kE
(
(3π(V n

j )2 + π(V n
0j) + π(V n

0j) + π(V n
j )2

−2π(V n
0j)− 2π(V n

j )2)1En
k

)
= 2E

 qn∑
k=1

pn∑
j=1

εnj,j,kπ(V n
j )21En

k

 .
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The last equality and formula (6) imply

Sn ≤ 2E

 qn∑
k=1

pn∑
i,j=1

εni,j,kπ(V n
i )π(V n

j )1En
k

 ≤ 2
∞∑

k=1

E(π(Um
k )21Dm

k
) ≤ 2/m.

(8)
Therefore from expressions (7) and (8) we deduce that

qn∑
k=1

pn∑
j=1

εnj,j,k(L(1V n
j
1En

k
)2 − L(1V n

0j
1En

k
))1En

k
→ π(U)1D

as n, m → ∞. Hence π(U)1D is FL measurable, which completes the proof
of the lemma.

In what follows we will always assume that F is a completion of FL =
σ{L(h), h ∈ H}.

Now we will introduce the generalized orthogonal polynomials Pn (see, e.g.
[33]). Denote by x = (x1, x2, . . . , xn, . . . ) a sequence of real numbers.

Define a function F (z, x) by

F (z, x) = exp

( ∞∑
k=1

(−1)k+1 z
k

k
xk

)
. (9)

If R(x) = (lim sup |xk|1/k)−1 > 0 then the series in (9) converges for all
|z| < R(x). So the function F (z, x) is analytic for |z| < R(x).

Consider an expansion in powers of z of the function F (z, x)

F (z, x) =
∞∑

n=0

znPn(x).

Using this development, one can easily show the following equalities:

(n+ 1)Pn+1(x) =
n∑

k=0

(−1)kxk+1Pn−k(x), n ≥ 0, (10)

∂

∂xl
Pn(x) =

{
0, if l > n,
(−1)l+1 1

l Pn−l(x), if l ≤ n.
(11)

Indeed, (10) and (11) follow from ∂F
∂z =

∑∞
k=0(−1)kzkxk+1F , respectively,

and ∂F
∂xl

= (−1)l+1 F
l z

l. From (11) it follows that Pn depends only on finite
number of variables, namely x1, x2, . . . , xn. Since P0 ≡ 1, then (10) implies
that Pn(x1, x2, . . . , xn) is a polynomial with the highest order term xn

1
n! . The

first polynomials are P1(x1) = x1 and P2(x1, x2) = 1
2 (x2

1 − x2).
Using the equality F (z, x+ y) = F (z, x)F (z, y), where y = (y1, y2, . . . , yn,

. . .) and x+ y = (x1 + y1, x2 + y2, . . . , xn + yn, . . . ) it is easy to show that
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Pn(x+ y) =
n∑

k=0

Pk(x)Pn−k(y). (12)

If u(y) = (y, y2, y3, . . . , yn, . . . ) then F (z, u(y)) = 1 + zy for |zy| < 1.
Hence P1(u(y)) = y and Pn(u(y)) = 0 for all n ≥ 2. Furthermore, equation
(12) implies that

Pn(x+ u(y))− Pn(x) = yPn−1(x). (13)

It is possible to find the explicit formula for polynomials Pn. Indeed, Pn

can be written in the following form:

Pn(x1, x2, . . . xn) =
∑

i1+i2+···+in≤n

ai1,i2,...inx
i1
1 x

i2
2 · · ·xin

n .

It is easy to see that

∂i1+i2+···+inPn

∂xi1
1 ∂x

i2
2 · · · ∂x

in
n

(0, . . . , 0) = i1!i2! · · · in!ai1,i2,...in
.

It follows from the equality (11) that

∂i1+i2+···+inPn

∂xi1
1 ∂x

i2
2 · · · ∂x

in
n

(0, . . . , 0) =

{
0, if i1 + 2i2 + 3i3 · · ·+ nin 6= n,
(−1)n+i1+i2+···+in2−i23−i3 · · ·n−in , if i1 + 2i2 + 3i3 · · ·+ nin = n.

Hence

Pn(x1, x2, . . . xn) =∑
i1+2i2+3i3···+nin=n

(−1)n+i1+i2+···+in
xi1

1 x
i2
2 · · ·xin

n

i1!i2! · · · in!2i23i3 · · ·nin
. (14)

For h ∈ K let x(h) = (x1(h), x2(h), . . . xn(h), . . . ) denote the sequence
of the random variables, such that x1(h) = L(h), x2(h) = L(h21X0) +∫

T×X
hk(t, x)π(dtdx) = L(h21X0) + π(h2), xk(h) = L(hk1X0)+∫

T×X0
hk(t, x)ν(dtdx) = L(hk1X0) + π(hk1X0), k = 3, 4, . . . .

The relationship between generalized orthogonal polynomials and condi-
tional additive processes on H is given by the following result.

Lemma 8. Let h and g ∈ K. Then for all n,m ≥ 0 we have Pn(x(h)) and
Pm(x(g)) ∈ L2(Ω), and

E[Pn(x(h))Pm(x(g))|H] =
{

0, if n 6= m,
1
n! (E[L(h)L(g)|H])n

, if n = m.
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Proof. Since h, g ∈ K and Pn, Pm are the polynomials, then by Lemma 6 we
have Pn(x(h)) and Pm(x(g)) ∈ L2(Ω,F ,P).

Denote by φ(z, x) the power of the exponent in the formula (9):

φ(z, x) =
∞∑

k=1

(−1)k+1 z
k

k
xk.

Since

1
R

= lim sup
k→∞

||xk(h)||1/k
L2(Ω) = lim

k→∞

[
E(L(hk1X0)

2) + E(π(hk1X0)
2)
]1/2k

≤ lim
k→∞

(
||h1X0 ||

2k−2
L∞ E(π(h21X0)) + ||h1X0 ||

2k−4
L∞ E(π(h21X0)

2)
)1/2k

≤ ||h1X0 ||L∞ .

Then the series
∞∑

k=1

|z|k

k
||xk(h)||L2(Ω)

converges if |z| < 1/ ||h1X0 ||L∞ ≤ R, which implies that φ(z, x(h)) ∈ L2(Ω)
for all |z| < 1/ ||h1X0 ||L∞ .

Let’s note that for all |z| < 1/ ||h1X0 ||L∞ we have ln(1 + zh1X0) ∈ H.
Indeed, by using Taylor’s formula, we get

(ln(1 + zh1X0))
2 ≤ z2h21X0

(1− |z| ||h1X0 ||L∞)2
.

In the same way one can obtain the following inequality

| ln(1 + zh1X0)− zh1X0 | ≤
z2h21X0

2(1− |z| ||h1X0 ||L∞)2
,

which implies that ln(1+ zh(t, x)1X0)− zh(t, x)1X0 is integrable with respect
to measure Mπ for all |z| < 1/ ||h1X0 ||L∞ .

So by using the linearity and the continuity of the mapping h→ L(h) we
have for all |z| < 1/ ||h1X0 ||L∞

φ(z, x(h)) =
∞∑

k=2

(−1)k+1 z
k

k

(
L(hk1X0) + π(hk1X0)

)
+ zL(h)− z2

2
π(h1∆)

= L (ln(1 + zh1X0) + zh1∆)

+
∫

T×X0

(ln(1 + zh(t, x))− zh(t, x))ν(dtdx)− z2

2
π(h1∆). (15)

We claim that w = ln(1 + zh1X0) + zh1∆ ∈ K for all |z| < 1/ ||h1X0 ||L∞ .
Indeed
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|w1X0 | = | ln(1 + zh1X0)| ≤
|z| ||h1X0 ||L∞

|1− |z| ||h1X0 ||L∞ |
and since h ∈ K then we have for some constant C1 > 0

π(w2) = z2π(h21∆) + π(ln2(1 + zh1X0))

≤ z2π(h21∆) +
z2π(h21X0)

(1− |z| ||h1X0 ||L∞)2
≤ C1.

Hence from inequality ln(1 + x) ≤ x, equality (15) and Lemma 6 we have
for all |z| < 1/ ||h1X0 ||L∞

E(F (z, x(h))2) = E[exp(2φ(z, x(h)))]
≤ E[exp(2L (ln(1 + zh1X0) + zh1∆))] <∞.

So F (z, x(h)) ∈ L2(Ω) if |z| < 1/ ||h1X0 ||L∞ .
Consequently for |z| < 1/ ||h1X0 ||L∞ and |y| < 1/ ||g1X0 ||L∞ we get from

(15)

E[F (z, x(h))F (y, x(g))|H] = E[exp(φ(z, x(h)) + φ(y, x(g)))|H]

= E[exp(L(ln[(1 + zh1X0)(1 + yg1X0)])

+
∫

T×X0

(ln[(1 + zh(t, x))(1 + yg(t, x))]− zh(t, x)− yg(t, x))ν(dtdx)

+L(zh1∆ + yg1∆)− 1
2

∫
T

(z2h2(t,∆) + y2g2(t,∆))µ(dt))|H]

= exp(
∫

T×X0

(eln[(1+zh(t,x))(1+yg(t,x))]−1−ln[(1+zh(t, x))(1+yg(t, x))])ν(dtdx)

+
∫

T×X0

(ln[(1 + zh(t, x))(1 + yg(t, x))]− zh(t, x)− yg(t, x))ν(dtdx)

+
1
2

∫
T

((zh(t,∆) + yg(t,∆))2 − z2h2(t,∆)− y2g2(t,∆))µ(dt))

= exp(zy
∫

T×X

h(t, x)g(t, x)π(dtdx)) = exp(zyE[L(h)L(g)|H]),

where we have used Lemma 6 to calculate the conditional expectation.
Taking the (n+m)-th partial derivative ∂n+m

∂zn∂ym at z = y = 0 in both sides
of the above equality yields

E[n!m!Pn(x(h))Pm(x(g))|H] =
{

0, if n 6= m,
n! (E[L(h)L(g)|H])n

, if n = m.

Lemma 9. The random variables {eL(h), h ∈ K} form a total subset of
L2(Ω,F , P ).
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Proof. It follows from Lemma 6 that eL(h) ∈ L2(Ω) if h ∈ K.
Let ξ ∈ L2(Ω) be such that E(ξeL(h)) = 0 for all h ∈ K. The linearity of

the mapping h→ L(h) implies

E

(
ξ exp

n∑
k=1

zkL(hk)

)
= 0 (16)

for any z1, . . . , zn ∈ R, h1, . . . , hn ∈ K, n ≥ 1. Suppose that n ≥ 1 and
h1, . . . , hn ∈ K are fixed. Then (16) says that Laplace transform of the signed
measure

τ(B) = E(ξ1B(L(h1), . . . , L(hn))),

where B is a Borel subset of Rn, is identically zero on Rn. Consequently,
this measure is zero, which implies E(ξ1G) = 0 for any G ∈ F . So ξ = 0,
completing the proof of the lemma.

For each n ≥ 0 we will denote by Pn the closed linear subspace of
L2(Ω,F , P ) generated by the random variables {ξPn(x(h)) : h ∈ K, ξ ∈
L∞(Ω,H,P)}. P0 will be the set L2(Ω,H, P ) of H-measurable square inte-
grable random variables. For n = 1, P1 coincides with the set of random
variables {L(h) : h ∈ H}. From Lemma 8 we obtain that Pn and Pm are
orthogonal whenever n 6= m. We will call the space Pn chaos of order n.

Theorem 10. The space L2(Ω,F , P ) can be decomposed into the infinite or-
thogonal sum of the subspaces Pn:

L2(Ω,F , P ) =
∞⊕

n=0

Pn.

Proof. Let ξ ∈ L2(Ω,F , P ) such that ξ is orthogonal to all Pn, n ≥ 0.
We have to show that ξ = 0. For all h ∈ K and η ∈ L∞(Ω,H, P ) we
get E(ξηPn(x(h))) = 0. Hence E[ξPn(x(h))|H] = 0. Since from the proof
of Lemma 8 we have that F (z, x(h)) ∈ L2(Ω) for all z < 1/ ||h1X0 ||L∞ , then
E[ξF (z, x(h))|H] = 0 for z < 1/ ||h1X0 ||L∞ . Using equality (15) we obtain

0 = E[ξF (z, x(h))|H] = E[ξeφ(z,x(h))|H] = E[ξ exp(L(ln(1 + zh1X0))

+
∫

T×X0

(ln(1 + zh(t, x))− zh(t, x))ν(dtdx) + L(zh1∆)

− 1
2

∫
T

z2h2(t,∆)µ(dt))|H].

Thus for any z < 1/ ||h1X0 ||L∞

E[ξ exp(L(ln(1 + zh1X0)) + L(zh1∆))] = 0. (17)

We claim that if h ∈ K such that h ≥ ε − 1 Mπ-a.e. for some 1 ≥
ε > 0 then equality (17) holds for z = 1. Indeed the right-hand side of the
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expression (17) meaningful in this case for all z ∈ [0; 1]. The extension to the
complex numbers Re z ∈ [0; 1] is evident. Denote this function by Φ(z). Since
|h1X0/(1 + zh1X0)| ≤ ||h1X0 ||L∞ /ε and π(h21X0/(1 + zh1X0)

2) ≤ π(h2)/ε2

then h1X0/(1 + zh1X0) ∈ K and the straightforward calculation shows that
Φ(z) is differentiable and

Φ′(z) = E[ξL(h1X0/(1 + zh1X0) + h1∆) exp(L(ln(1 + zh1X0)) + L(zh1∆))].

Hence Φ(z) is an analytical function for Rez ∈ [0; 1]. Consequently the unique-
ness theorem yields the desired statement.

For any g ∈ K we have (eg−1) ∈ K and (eg−1)1X0 > −1+ ε Mπ-a.e. for
some 1 ≥ ε > 0. Putting in (17) h = (eg − 1)1X0 + g1∆ and z = 1 we deduce
that E(ξeL(g)) = 0 for all g ∈ K. By Lemma 9 we get ξ = 0, which completes
the proof of the theorem.

3 Multiple integrals

The purpose of the section is to define multiple stochastic integrals with re-
spect to L and to show that the nth chaos Pn is generated by these multi-
ple stochastic integrals. The construction of multiple stochastic integrals for
processes with independent increments provided by Itô in [11]. For its gener-
alization to other classes of processes the reader referred to [9, 13, 21, 32].

Recall that random measure π(dtdx, ω) has no atoms for all ω ∈ Ω. It
means that neither measure µ nor measure ν has no atoms for all ω ∈ Ω. Since
a separable Hilbert spaceH has the formH = L2(T×X×Ω,G⊗H,Mπ), where
Mπ(dtdxdω) = π(dtdx, ω)P (dω) is a σ-finite measure, then the process L is
characterized by the family of random variables {L(A), A ∈ G ⊗H,Mπ(A) <
∞}, where L(A) = L(1A). We can consider L(A) as a L2(Ω,F , P )-valued
measure on the parametric space (T×X×Ω,G⊗H), which takes conditionally
independent values on any family of disjoint subsets of T ×X ×Ω.

Fix m ≥ 1. Denote by Mm
π the following measure

Mm
π (dt1dx1 · · · dtmdxmdω) = π(dt1dx1, ω) · · ·π(dtmdxm, ω)P(dω),

defined on the σ-algebra G⊗m ⊗ F . In this section will consider only the
restriction of this measure on the σ-algebra G⊗m ⊗H. Since the measure Mπ

is σ-finite then Mm
π will be σ-finite. Indeed if the sequence of pairwise-disjoint

sets An × Bn, An ∈ G and Bn ∈ H such that
⋃∞

n=1An × Bn = T × X × Ω
and Mπ(An × Bn) < ∞, then setting Bk

n = {k − 1 ≤ π(An × Bn) < k}
we have

⋃∞
k=1An × Bk

n = An × Bn. Denote Bk1k2...km
n1n2...nm

=
⋂m

j=1B
kj
nj then

Mm
π (An1×An2×· · ·Anm

×Bk1k2...km
n1n2...nm

) ≤ k1k2 · · · km <∞ and (T×X)m×Ω =⋃∞
n1,n2,...,nm=1

⋃∞
k1,k2,...,km=1An1 ×An2 × · · ·Anm ×Bk1k2...km

n1n2...nm
.

For any ω ∈ Ω we can define measure π⊗m(dt1dx1 · · · dtmdxm, ω) on the σ-
algebra G⊗m as a m-th power of the measure π. Since measure π is σ-finite and
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without atoms then measure π⊗m is σ-finite and without atoms. Moreover,
π⊗m(∆m, ω) = 0 for all ω ∈ Ω, where ∆m = {(t1, . . . , tm) : ∃ti = tj , i 6= j} is
a ‘diagonal’ set. Indeed, for fixed ω ∈ Ω σ-finiteness of π implies that T ×X =⋃∞

i=1 Ti, where T1, T2, . . . are pairwise-disjoint sets in G and π(Ti) <∞. Then
(T ×X)m =

⋃∞
i1,...,im=1 Ti1 ×· · ·×Tim and π⊗m(Ti1 ×· · ·×Tim) <∞. Define

Ci1,...,im
= (Ti1 ×· · ·×Tim

)
⋂
∆m. Then ∆m =

⋃∞
i1,...,im=1 Ci1,...,im

. It is easy
to see that Ci1,...,im = ∅ if all the indices i1, . . . , im are different. Hence it
is enough to prove that π⊗m(Ci1,...,im) = 0 if some of indices i1, . . . , im are
equal. Suppose that i1 = i2. Using the nonexistence of atoms for the mea-
sure π for any n ∈ N we can determine a system of pairwise-disjoints sets
{V1, . . . , Vn} ⊂ G, such that

⋃n
i=1 Vi = Ti1 and π(Vi) = π(Ti1)/n for every i =

1, . . . , n. Then Ci1,...,im ⊂
⋃n

i=1 Vi×Vi×Ti3×· · ·×Tim . Hence π⊗m(Ci1,...,im) ≤∑n
i=1 π(Vi)2π(Ti3) · · ·π(Tim) = π(Ti1)

2π(Ti2)π(Ti3) · · ·π(Tim)/n. Letting n
tend to ∞ we obtain the desired result.

Precisely speaking the set∆m may not be an element of the σ-algebra G⊗m

but the calculations above show that ∆m belongs to completion G⊗m
ω

of G⊗m

with respect to the measure π⊗m(·, ω) for all ω ∈ Ω. Since π⊗m(·, ω) can be
extended to the σ-algebra G⊗m =

⋂
ω∈Ω G⊗m

ω
and ∆m ∈ G⊗m then measure

Mm
π can be extended on the σ-algebra G⊗m⊗H and Mm

π (∆m×Ω) = 0. This
fact is very important for definition of the multiple stochastic integral.

Set G0 = {A ∈ G ⊗ H : 1A ∈ K}. We will define the multiple stochastic
integral Im(f) of a function f ∈ L2((T ×X)m × Ω,G⊗m ⊗ H,Mm

π ). Denote
by Em the set of elementary functions of the form

f(t1, x1, . . . , tm, xm, ω) =
n∑

i1,...,im=1

ai1,...,im(ω)1Ai1
(t1, x1, ω) · · ·1Aim

(tm, xm, ω), (18)

whereA1, . . . , An are pairwise-disjoint sets in G0, and the coefficients ai1,...,im ∈
L∞(Ω,H,P) are zero if any two of indices i1, . . . , im are equal.

For a function of the form (18) we define the multiple integral of the m-th
order

Im(f) =
n∑

i1,...,im=1

ai1,...,im
L(Ai1) · · ·L(Aim

).

The definition does not depend on particular representation of f , and the
following properties hold:

(i) Im(αf + βg) = αIm(f) + βIm(g) for all α and β ∈ L∞(Ω,H,P), f and g
in Em.

(ii) Im(f) = Im(f̃), where f̃ denotes the symmetrization of f with respect to
pairs of nonrandom variables, which is defined by

f̃(t1, x1, . . . , tm, xm, ω) =
1
m!

∑
σ

f(tσ(1), xσ(1), . . . , tσ(m), xσ(m), ω),
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σ running over all permutations of {1, . . . ,m}.
(iii)

E[Im(f)Ip(g)|H] =
{

0, if p 6= m,

m!π(f̃ g̃), if p = m.

The properties can be proved using Lemma 6 and exactly the same arguments
as those used, for example, in [22, p. 8-9].

In order to extend the multiple stochastic integral to the space L2(Mm
π )

we have to prove the following lemma.

Lemma 11. The space Em is dense in L2((T ×X)m ×Ω,G⊗m ⊗H,Mm
π ).

Proof. In order to show that Em is dense in L2(Mm
π ) it is suffices to show

that the indicator function of any set A × B = A1 × A2 × · · · × Am × B,
where A1, . . . , Am ∈ G, B ∈ H and Mm

π (A × B) < ∞ can be approximated
by elementary functions in Em.

Denote by B′k the following set

B′k = {ω ∈ Ω : π(A1, ω)π(A2, ω) · · ·π(Am, ω) ≤ k}

. Since Mm
π (A × B) < ∞ then 1A1×···×Am×Bk

→ 1A×B as k → ∞. Hence it
is possible to assume that π(A1, ω)π(A2, ω) · · ·π(Am, ω)1B ≤ C a.s. for some
positive constant C. This implies that Ai×B ∈ G0, i = 1, . . . ,m. Furthermore,
it is possible to suppose that any sets Ai and Aj either equal or disjoint.
Indeed, there exists a finite system of pairwise disjoint sets {A′1, . . . , A′n} ⊂ G
such that each Ai can be expressed as a disjoint union of some of A′j . Then
the indicator function of the set A × B can be represent as a finite sum of
the indicator functions of the sets A′i1 × A′i2 × · · · × A′im

× B. If all indices
i1, . . . , im are different then it is an element of Em. For other indices some of
the sets A′ik

are equal.
Since Mm

π (∆m ×Ω) = 0 then Mm
π ((A×B)

⋂
(∆m ×Ω)) = 0 and for any

ε > 0 there exists a system of sets U ε
k = Ak

1 × · · ·Ak
m × Bk, k = 1, 2, . . . such

that
⋃∞

k=1 U
ε
k ⊃ ((A × B)

⋂
(∆m × Ω)),

∑∞
k=1M

m
π (U ε

k) < ε,
⋃∞

k=1A
k
i = Ai,

i = 1, . . . ,m and
⋃∞

k=1Bk = B. Therefore Ak
i × Bk ∈ G0, i = 1, . . . ,m,

k = 1, 2, . . . and
⋃∞

k=1 U
ε
k ⊂ A×B.

For any n ≥ 1 we can find a system of pairwise disjoint sets
{Cn

1 , C
n
2 , . . . , C

n
pn
} ⊂ G and {Bn

1 , B
n
2 , . . . , B

n
qn
} ⊂ G, such that each Ak

i and
Bk, i = 1, . . . ,m, k = 1, . . . , n can be expressed as a disjoint union of some
of Cn

j or Bn
j respectively. Notice that Cn

j × Bn
i ∈ G0 for all j = 1, . . . , pn,

i = 1, . . . , qn. We have

1Sn
k=1 Uε

k
=

qn∑
k=1

pn∑
j1,...,jm=1

εnj1,...,jm,k1Cn
j1
×Cn

j2
×···Cn

jm
×Bn

k
,

where εnj1,...,jm,k is 0 or 1. Let Jn be the set of m-tuples (j1, . . . , jm), ji ∈
{1, 2, . . . , pn}, i = 1, . . . ,m, where all the indices are different. We set
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1V ε
n

=
qn∑

k=1

∑
(j1,...,jm)∈Jn

(1− εnj1,...,jm,k)1Cn
j1
×Cn

j2
×···Cn

jm
×Bn

k
.

Then 1V ε
n

belongs to Em and for Mm
π -a.e. (t, ω) ∈ (A \ ∆m) × B we have

1V ε
n
(t, ω) = 1 for all ε ≥ ε0 and n ≥ n0. Hence 1V ε

n
→ 1(A\∆m)×B Mm

π -a.e.
and in L2(Mm

π ) as n → ∞ and ε → 0. Finally the fact Mm
π (∆m × Ω) = 0

implies the proof of the lemma.

Letting f = g in property (iii) obtains

E(In(f)2) = m!||f̃ ||2L2(Mm
π ) ≤ m! ||f ||2L2(Mm

π ) .

Therefore, the operator Im can be extended to a linear and continuous op-
erator from L2(Mm

π ) to L2(Ω,F ,P), which satisfies properties (i), (ii) and
(iii).

If f ∈ L2(Mp
π) is symmetric function and g ∈ K the contraction of one

index of f and g is denoted by f ⊗1 g and is defined by

(f ⊗1 g)(t1, x1, . . . , tp−1, xp−1, ω)

=
∫

T×X

f(t1, x1, . . . , tp−1, xp−1, s, z, ω)g(s, z, ω)π(dsdz, ω).

The tensor product f ⊗ g will be understood as tensor product with respect
to nonrandom variables, i.e.

(f ⊗ g)(t1, x1, . . . , tp+1, xp+1, ω) = f(t1, x1, . . . , tp, xp, ω)g(tp+1, xp+1, ω).

Notice that f ⊗1 g ∈ L2(Mp−1
π ) and f ⊗ g ∈ L2(Mp+1

π ) if g ∈ K.
The tensor product f ⊗ g and the contractions f ⊗1 g are not necessarily

symmetric. We will denote their symmetrization by f⊗̃g and f⊗̃1g respec-
tively.

The following, so called product formula, will be useful in the sequel. It
was initially derived by Itô [10] for Gaussian case and by Kabanov [13] for
Poisson case, then extended by Russo and Vallois [29] to products of two
multiple stochastic integrals with respect to a normal martingale.

Proposition 12. Let f ∈ L2(Mp
π) be a symmetric function and let g ∈ K.

Then
Ip(f)I1(g) = Ip+1(f ⊗ g) + pIp−1(f ⊗1 g) + pIp(fg1X0). (19)

Proof. Since g ∈ K then fg1X0 ∈ L2(Mp
π) and the right-hand side is correctly

defined.
By the density of elementary functions in L2(Mp

π) and by properties
(i) and (ii) we can assume that f is the symmetrization of the function
1A1(t1, x1, ω)1A2(t2, x2, ω) · · ·1Ap

(tp, xp, ω), where theAi are pairwise-disjoint
sets of G0, and g = 1A1 or 1A0 , where A0 ∈ G0 is disjoint with A1, . . . , Ap.
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The case g = 1A0 is immediate because f ⊗1 g = fg = 0 and f ⊗ g ∈ Ep+1.
So, we assume g = 1A1 . Since Ai ∈ G0 then π(A1)π(A2) · · ·π(Ap) ≤ C for
some real constant C > 0. Given ε > 0, according to Lemma 11 we can find
the function v′ε ∈ E2 such that ||v′ε − 1A1 ⊗ 1A1 ||L2(M2

π) ≤ ε. It is possible to
write v′ε in the following form

v′ε(t1, x1, t2, x2, ω) =
kε∑

i,j=1

aε
ij(ω)1Ci(t1, x1, ω)1Cj (t2, x2, ω), (20)

where C1, . . . , Ckε
are pairwise disjoint subsets of A1 in G0, aε

ij ∈ L∞(Ω,H,P)
and aε

ii = 0, i, j = 1, . . . , kε. Set A0
1 = A1 ∩ (T ×X0 ×Ω) and

vε(t1, x1, . . . , tp+1, xp+1, ω)
= v′ε(t1, x1, t2, x2, ω)1A2(t3, x3, ω) · · ·1Ap(tp+1, xp+1, ω).

Then vε is an elementary function and we have

Ip(f)I1(g) = L(A1)2L(A2) · · ·L(Ap)

= Ip+1(vε) + π(A1)L(A2) · · ·L(Ap) + L(A0
1)L(A2) · · ·L(Ap)

+[(L(A1)2 − π(A1)− L(A0
1))L(A2) · · ·L(Ap)− Ip+1(vε)]

= Ip+1(vε) + pIp−1(f ⊗1 g) + pIp(fg1X0) +Rε. (21)

Indeed
f ⊗1 g =

1
p
π(A1) symm(1A2 ⊗ · · · ⊗ 1Ap

),

and
fg1X0 =

1
p
1A0

1
⊗ symm(1A2 ⊗ · · · ⊗ 1Ap),

where symm(·) denotes the symmetrization with respect to the pairs of non-
random variables of the function in parentheses. We have∣∣∣∣ṽε − f⊗̃g

∣∣∣∣2
L2(Mp+1

π )
=∣∣∣∣ṽε − symm(1A1 ⊗ 1A1 ⊗ 1A2 ⊗ · · · ⊗ 1Ap)

∣∣∣∣2
L2(Mp+1

π )

≤
∣∣∣∣vε − 1A1 ⊗ 1A1 ⊗ 1A2 ⊗ · · · ⊗ 1Ap

∣∣∣∣2
L2(Mp+1

π )

= E

[
π(A2) · · ·π(Ap)

∫
(T×X)2

(v′ε(t1, x1, t2, x2)

−1A1(t1, x1)1A1(t2, x2))
2
π(dt1dx1)π(dt2dx2)

]
≤ C ||v′ε − 1A1 ⊗ 1A1 ||

2
L2(M2

π) ≤ Cε2, (22)

and
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E(R2
ε ) = E

(
[L(A1)2 − π(A1)− L(A0

1)− I2(v′ε)]
2L(A2)2L(A3)2 · · ·L(Ap)2

)
.

Lemma 6 and properties of multiple integral imply

E(R2
ε ) = E

([
L(A1)4 + π(A1)2 + π(A0

1) + 2π⊗2(ṽ′
2

ε)

−2π(A1)2 − 2L(A1)2L(A0
1)− 2L(A1)2I2(v′ε)

]
π(A2) · · ·π(Ap)

)
. (23)

Taking fourth derivative at z = 0 of conditional characteristic function of L
given by formula (1) yields

E[L(A1)4|H] = 3π(A1)2 + π(A0
1). (24)

By using the same arguments since A1 = A0
1 ∪ (A1 \A0

1) we get

E[L(A1)2L(A0
1)|H] =

E[L(A0
1)

3 + 2L(A1 \A0
1)L(A0

1)
2 + L(A1 \A0

1)
2L(A0

1)|H] = π(A0
1). (25)

It follows from equality (20) and Lemma 6 that

E[L(A1)2I2(v′ε)|H] =
kε∑

i,j=1

aε
ijE[L(A1)2L(Ci)L(Cj)|H]

=
kε∑

i,j=1

aε
ijE[2L(Ci)2L(Cj)2|H] = 2

kε∑
i,j=1

aε
ijπ(Ci)π(Cj) =

2
∫

(T×X)2
ṽ′εdπ

⊗2 = 2π⊗2(ṽ′ε). (26)

Substituting expressions (24), (25) and (26) into (23) we have

E(R2
ε ) = E[(2π(A1)2 + 2π⊗2(ṽ′

2

ε)− 4π⊗2(ṽ′ε))π(A2) · · ·π(Ap)]

= 2E[π⊗2((ṽ′ε − 1A1 ⊗ 1A1)
2)π(A2) · · ·π(Ap)]

≤ 2C ||v′ε − 1A1 ⊗ 1A1 ||
2
L2(M2

π) ≤ 2Cε2. (27)

From formulae (21), (22) and (27) we obtain the desired result.

The next result gives the relationship between generalized orthogonal poly-
nomials and multiple stochastic integrals.

Theorem 13. Let Pn be the nth generalized orthogonal polynomial, and
x(h) = (xk(h))∞k=1, where x1(h) = L(h), x2(h) = L(h21X0) + ||h||2H ,
xk(h) = L(hk1X0) +

∫
T×X0

hk(t, x)ν(dtdx), k = 3, 4, . . . and h ∈ K. Then it
holds that

n!Pn(x(h)) = In(h⊗n), (28)

where h⊗n(t1, x1, . . . , tn, xn, ω) = h(t1, x1, ω) · · ·h(tn, xn, ω).
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Proof. We will prove the theorem by induction on n. For n = 1 it is immediate.
Assume it holds for 1, 2, . . . , n. Using the product formula (19) and recursive
relation for generalized orthogonal polynomials (10), we have

In+1(h⊗(n+1)) =

In(h⊗n)I1(h)− nIn−1

(
h⊗(n−1)π(h2)

)
− nIn(h⊗(n−1) ⊗ (h21X0))

= n!Pn(x(h))L(h)− n!π(h2)Pn−1(x(h))− nIn−1(h⊗(n−1))I1(h21X0)

+ n(n− 1)In−2(h⊗(n−2))π(h31X0) + n(n− 1)In−1(h⊗(n−2) ⊗ (h31X0))

= n!
1∑

k=0

(−1)k+1xk+1(h)Pn−k(x(h)) + n!Pn−2(x(h))π(h31X0)

+ n(n− 1)In−1(h⊗(n−2) ⊗ (h31X0)) = . . .

= n!
n−1∑
k=0

(−1)k+1xk+1(h)Pn−k(x(h)) + n!(−1)nP0(x(h))π(hn+11X0)

+ n!(−1)nI1(hn+1) = n!
n∑

k=0

(−1)k+1xk+1(h)Pn−k(x(h))

= (n+ 1)!Pn+1(x(h)),

which completes the proof of the theorem.

From this theorem and Theorem 10 we deduce the following result.

Corollary 14. Any square integrable random variable ξ ∈ L2(Ω,F ,P) can be
expanded into a series of multiple stochastic integrals:

ξ =
∞∑

k=0

Ik(fk).

Here f0 = E[ξ|H], and I0 is the identity mapping on the L2(Ω,H,P). Fur-
thermore, this representation is unique provided the functions fk ∈ L2(Mk

π )
are symmetric with respect to the pairs of nonrandom variables.

Proof. The proof uses the same arguments as those used, for example, in [22,
Th. 1.1.2], so we omit it.

The following technical lemma will be needed in the sequel.

Lemma 15. Let fk ∈ L2((T×X)k×Ω,G⊗k⊗H,Mk
π ) and gm ∈ L2((T×X)m×

Ω,G⊗m⊗H,Mm
π ) be a symmetric with respect to pairs of nonrandom variables

functions and p ≤ k∧m. Then there exist G⊗p⊗F measurable versions of the
processes Ik−p(fk(·, t1, x1, . . . , tp, xp)) and Im−p(gm(·, t1, x1, . . . , tp, xp)) which
belong to L2((T ×X)p ×Ω,G⊗p ⊗F ,Mp

π) and the following equality holds
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E

[∫
(T×X)p

Ik−p(fk(·, t1, x1, . . . , tp, xp))

Im−p(gm(·, t1, x1, . . . , tp, xp))π(dt1dx1) · · ·π(dtpdxp)]

=


0, if m 6= k,,

(m− p)!E
[∫

(T×X)m(gmfm)(t1, x1, . . . , tm, xm)

π(dt1dx1) · · ·π(dtmdxm)] , if m = k.

Proof. It is easy to verify that statement of the lemma is valid for elementary
functions from Ek and Em. The general case will follow by the limit argument.

Now let T = R+, X0 = R0, ∆ = 0 and L(dtdx) be as in Example 3. Denote
by Σn the ‘increasing simplex’ of (R+ × R)n:

Σn = {(t1, x1, . . . , tn, xn) ∈ (R+ × R)n : 0 < t1 < · · · < tn},

and we extend a function fn defined on Σn×Ω by making fn symmetric with
respect to pairs of nonrandom variables. If the function fn square integrable
with respect to measure Mn

π then we have

In(fn) = n!
∫

Σn

fn(t1, x1, . . . , tn, xn)L(dt1dx1) · · ·L(dtndxn).

Indeed, this equality is clear if fn is an elementary function of the form (18),
and in the the general case equality will follow by the density argument,
taking in account that iterated integral verifies the same properties as the
multiple integral. In particular Lemma 15 holds for iterated integral. Note
that the domain Σn and its symmetrization do not cover (R+ × R)n: we are
ignoring the ‘diagonal set’. Since in the beginning of this section was proved
that the ‘diagonal set’ has Mn

π measure zero and we consider the functions as
an elements of L2 which are the the equivalence classes, then we will always
choose the representative that vanishes on the ‘diagonal set’.

4 The derivative operator

In this section we introduce the operator D. Then we will show that it is
equal to the Malliavin derivatives in the Gaussian case (see, e.g., [22]) and to
the difference operator defined in [24, 26] in the Poisson case. We will also
proof that the derivatives operators defined via the chaos decomposition in
[2, 3, 18, 19, 25, 28, 31] for certain Lévy processes coincide with the operator
D.

We denote by C∞b (Rn) the set of all infinitely continuously differentiable
functions f : Rn → R such that f and all of its partial derivatives are bounded.

Let S denote the class of smooth random variables such that a random
variable ξ ∈ S has the form



The Malliavin calculus for processes 23

ξ = f(L(h1), . . . , L(hn)), (29)

where f belongs to C∞b (Rn), h1, . . . , hn are in K, and n ≥ 1.

Lemma 16. 1. The set S is dense in Lp(Ω,F ,P), for any p ≥ 1.
2. The set {ξh : ξ ∈ S, h ∈ K} is dense in L2(T ×X ×Ω,G ⊗ F ,Mπ).
3. The set {ueL(v) : u, v ∈ K} is a total set of L2(T ×X ×Ω,G ⊗ F ,Mπ).

Proof. 1. Let {hk}∞k=1 ⊂ K be a dense subset of H. Define Fn = σ(L(h1), . . . ,
L(hn)). Then Fn ⊂ Fn+1 and F is the smallest σ-algebra containing all the
Fn’s. Choose a g ∈ Lp(Ω). Then

g = E(g|F) = lim
n→∞

E(g|Fn).

By the Doob-Dynkin Lemma we have that for each n, there exist a Borel
measurable function gn : Rn → R such that

E(g|Fn) = gn(L(h1), . . . , L(hn)).

Each such gn can be approximated by functions f (n)
m where f (n)

m ∈ C∞b (Rn)
such that ||f (n)

m (L(h1), . . . , L(hn))− gn(L(h1), . . . , L(hn))||Lp(Ω) converges to
zero as m→∞. Since f (n)

m (L(h1), . . . , L(hn)) ∈ S we have the first statement
of the lemma.

2. It is enough to show that indicator function 1A×B , where A ∈ G, B ∈ F
and Mπ(A × B) < ∞ can be approximated by the processes of the form ξh,
where ξ ∈ S and h ∈ K. It follows from the previous part of the lemma that
there exists the sequence ξn in S such that ξn → 1B as n → ∞ in L2(Ω).
Set Cm = {π(A) ≤ m}. Then Cm ∈ H and

⋃
m≥1 Cm = {π(A) < ∞} ⊃ B

a.s. The processes 1A×Cmξn have required form and letting m→∞ and then
n→∞ we obtain the desired result.

3. Lemma 9 implies that finite linear combinations of the random variables
eL(v), v ∈ K are dense in L2(Ω). The same arguments as in previous part of the
lemma yield the density of the set of the linear combinations of the processes
ueL(v), u, v ∈ K, which completes the proof of the lemma.

Definition 17. The stochastic derivative of a smooth random variable ξ of
the form (29) is the stochastic process Dξ = {Dt,xξ, (t, x) ∈ T ×X} indexed
by the parameter space T ×X given by

Dt,xξ =
n∑

k=1

∂f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1∆(x)

+
(
f(L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))− f(L(h1), . . . , L(hn))

)
1X0(x).

(30)

Remark 18. 1. If the measure ν is zero and the measure µ is deterministic
then Dξ coincides with the Malliavin derivative (see, for example, [22,
Def. 1.2.1, p. 24]).
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2. If the measure µ is zero and the measure ν is deterministic then D coin-
cides with the difference operator defined in [26].

3. If T = R+, the measure µ is the Lebesgue measure and X is a metric
space, and the measure ν is the product of the Lebesgue measure times
the measure β satisfying

∫
M

(|x|2 ∧ 1)β(dx), then D is the operator ∇−

from [28].
4. If measures µ and ν are both deterministic then D coincides with operator

defined in [33], see also [31].

Lemma 19. Suppose that ξ is smooth functional of the form (29) and h ∈ H.
Then

E

[∫
T×X

Dt,xξh(t, x)π(dtdx)
∣∣∣∣H] = E[ξL(h)|H]. (31)

Proof. The proof will be done in three steps.
Step 1. Suppose first that

ξ = eiz1L(h1) · · · eiznL(hn).

Then Reξ ∈ S and Imξ ∈ S and

E[ξL(h)|H] =
1
i

d

dz

(
E

[
exp

(
i

n∑
k=1

zkL(hk) + izL(h)

)∣∣∣∣∣H
])∣∣∣∣∣

z=0

=
1
i

d

dz
exp

−1
2

∫
T

(
n∑

k=1

zkhk(t,∆) + zh(t,∆)

)2

µ(dt)

+
∫

T×X0

(
exp(i

n∑
k=1

zkhk(t, x) + izh(t, x))− 1

−i

(
n∑

k=1

zkhk(t, x) + zh(t, x)

))
ν(dtdx)

)∣∣∣∣∣
z=0

=

(∫
T×X0

h(t, x)

(
exp(i

n∑
k=1

zkhk(t, x))− 1

)
ν(dtdx)

+i
∫

T

h(t,∆)
n∑

k=1

zkhk(t,∆)µ(dt)

)
exp

−1
2

∫
T

(
n∑

k=1

zkhk(t,∆)

)2

µ(dt)

+
∫

T×X0

(
exp(i

n∑
k=1

zkhk(t, x))− 1− i

n∑
k=1

zkhk(t, x)

)
ν(dtdx)

)

= E[ξ|H]

(∫
T×X0

h(t, x)

(
exp(i

n∑
k=1

zkhk(t, x))− 1

)
ν(dtdx)
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+i
∫

T

h(t,∆)
n∑

k=1

zkhk(t,∆)µ(dt)

)
.

On the other hand

E

[∫
T×X

Dt,xξh(t, x)π(dtdx)
∣∣∣∣H]

= E

[∫
T×X0

(
exp(i

n∑
k=1

zk(L(hk) + hk(t, x)))− exp(i
n∑

k=1

zkL(hk))

)

h(t, x)ν(dtdx)

∣∣∣∣∣H
]

+ E

∫
T

i

n∑
j=1

zj exp(i
n∑

k=1

zkL(hk))hj(t,∆)µ(dt)

∣∣∣∣∣∣H


= E[ξ|H]

(∫
T×X0

h(t, x)

(
exp(i

n∑
k=1

zkhk(t, x))− 1

)
ν(dtdx)

+i
∫

T

h(t,∆)
n∑

k=1

zkhk(t,∆)µ(dt)

)
.

Hence we have (31). By linearity we deduce that (31) also holds for smooth
variables of the form (29), where the function f is a trigonometric polynomial.

Step 2. Assume that ξ of the form (29) such that f ∈ C∞b (Rn) is periodic on
every variable function. Then there is a sequence of trigonometric polynomials
gm such that gm → f and ∂gm/∂xk → ∂f/∂xk for every k = 1, . . . n uniformly
on Rn as m→∞. Denote ηm = gm(L(h1), . . . , L(hn)). Then ηm ∈ S, and by
Step 1 we get

E[ηmL(h)|H] = E

[∫
T×X

Dt,xηmh(t, x)π(dtdx)
∣∣∣∣H] . (32)

Since ηm → ξ in L2(Ω) and Dηm → Dξ in L2(T × X × Ω,G ⊗ F ,Mπ)
then letting m→∞ in (32) we obtain (31).

Step 3. Assume that ξ of the form (29). Consider the sequence {χm,m =
1, 2, . . . } of functions, such that χm ∈ C∞(Rn), 0 ≤ χm ≤ 1, χm(x) = 1 if
|x| ≤ m, χ(x) = 0, if |x| > m+ 1 and |∇χm| ≤ 2. Define gm as a periodic ex-
tension on all variables of the function fχm. Then ζm = gm(L(h1), . . . , L(hn))
is smooth variable such that |ζm| ≤ ||f ||L∞ and |Dζm| ≤ ||∇f ||L∞

∑n
i=1 |hi|.

Hence by the dominated convergence theorem ζm → ξ in L2(Ω) and Dζm →
Dξ in L2(T ×X ×Ω,G ⊗F ,Mπ) as m→∞. Since by Step 2 formula (31) is
true for ζm, then letting m→∞ completes the proof of the lemma.

Applying this lemma to the product of two smooth functionals we obtain
the “integration by parts” formula.

Lemma 20. Suppose ξ and η are the smooth functionals and h ∈ H, then
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E[ξηL(h)|H] =

E

[∫
T×X

(ξDt,xη + ηDt,xξ + 1X0Dt,xξDt,xη)h(t, x)π(dtdx)
∣∣∣∣H] . (33)

As a consequence of the above lemma it can be shown in the same way as
in [33] that the expression of the derivative Dξ given in (30) does not depend
on the particular representation of ξ in (29).

For p ≥ 1 define a norm for G ⊗ F measurable function by the following
expression

||u||2,p =

(
E

[(∫
T×X

u(t, x)2π(dtdx)
)p/2

])1/p

.

Let L2,p(Mπ) = L2,p(T × X × Ω,G ⊗ F ,Mπ) be the set of all (equivalent
classes of) functions u(t, x, ω) on T ×X ×Ω such that ||u||2,p <∞.

Lemma 21. The operator D is closable as an operator from Lp(Ω,F ,P) to
L2,p(Mπ), for any p ≥ 1.

Proof. Let {ξn, n ≥ 1} be a sequence of smooth random variables such that
E|ξn|p → 0 and Dξn converges to ζ in L2,p(Mπ). Then from Lemma 20 it
follows that for any h ∈ K and η ∈ S we have

E(ξnηL(h)) = 〈Dη; ξnh〉L2(Mπ) + 〈Dξn; ηh〉L2(Mπ) + 〈Dξn;1X0hDη〉L2(Mπ).

Taking the limit as n→∞, since η, Dη are bounded, and h ∈ K we obtain

〈ζ; ηh〉L2(Mπ) + 〈ζ;1X0hDη〉L2(Mπ) = 0. (34)

If h(t, x) = 0 for x 6= ∆, then (34) implies, that

〈ζ; ηh〉L2(Mπ) = 0.

Thus from Lemma 16 we deduce ζt,∆ = 0 for Mπ-almost all (t,∆, ω) ∈
T × {∆} ×Ω. Substituting this expression into (34) we have for any h ∈ H

〈ζ;hDη〉L2(Mπ) = 0. (35)

Let φn ∈ C∞b (R) such that 0 ≤ φn(x) ≤ ex and φn(x) → ex for all x ∈ R.
Putting in (35) η = φn(L(g)) and h(t, x) = u(t, x)e−g(t,x), where u, g ∈ K
and then letting n→∞ we get

〈ζ;ueL(g)〉L2(Mπ) = 0.

It follows from Lemma 16 that ζt,x = 0 for Mπ-a.a. (t, x, ω) ∈ T ×X ×Ω
completing the proof of the lemma.
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We will denote the closure of D again D and its domain in Lp(Ω) by D1,p.
Now we will state the chain rule.

Proposition 22. Suppose p ≥ 1 is fixed and ξ = (ξ1, . . . , ξm) is a random
vector whose components belong to the space D1,p. Let φ ∈ C1(Rm) be a
function with bounded partial derivatives. Then φ(ξ) ∈ D1,p and

Dt,xφ(ξ) =
{∑m

k=1
∂φ
∂xk

(ξ)Dt,∆ξ
k, if x = ∆,

φ(ξ1 +Dt,xξ
1, . . . , ξm +Dt,xξ

m)− φ(ξ1, . . . , ξm), if x 6= ∆.
(36)

Proof. The proof can be easily obtain by approximation ξ by smooth random
variables and the function φ by smooth functions with compact support.

Applying the above proposition we obtain, that L(h) ∈ D1,2 for all h ∈ H
and Dt,xL(h) = h(t, x).

Lemma 23. It holds that Pn(x(h)) ∈ D1,p for all p ≥ 1, h ∈ K, n = 1, 2, . . .
and

Dt,xPn(x(h)) = Pn−1(x(h))h(t, x). (37)

Proof. As in the proof of Proposition 22 one can obtain that Pn(x(h)) ∈ D1,p

for all p ≥ 1, h ∈ K, n = 1, 2, . . . and (36) holds. Then the definition of x(h)
and equality (11) imply

Dt,∆Pn(x(h)) =
∂Pn

∂x1
(x(h))h(t,∆) = Pn−1(x(h))h(t,∆).

It follows from the relationships (36) and (13) that for x 6= ∆ we have

Dt,xPn(x(h)) = Pn(x(h) + u(h(t, x)))− Pn(x(h)) = h(t, x)Pn−1(x(h)),

where u(y) = (y, y2, . . . , yk, . . . ). The proof is complete.

The product rule can be proved in the same manner.

Proposition 24. Let ξ ∈ D1,p, p ≥ 1 and η is a smooth variable from S.
Then ξη ∈ D1,p and

D(ξη) = ξDη + ηDξ +DξDη1X0 . (38)

Proof. The equation (38) holds if ξ and η are smooth variables. Then, the
general case follows by a limit argument, using the fact that D is closed.

The following proposition is more or less evident.

Proposition 25. Let ξ be H-measurable random variable such that ξ ∈
Lp(Ω,H,P) for some p ≥ 1. Then ξ ∈ D1,p and Dξ = 0 Mπ-a.e.
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Proof. By the density arguments we can assume that ξ = 1U , where U ∈ H.
Then for any h ∈ K as in the proof of Lemma 7 we have ξ1{L(h) 6=0} =
L(ξh)2/L(h)21{L(h) 6=0}. Since h ∈ K it easy to show that ηε(h) = L(ξh)2/
(L(h)2 + ε) = ξL(h)2/(L(h)2 + ε) → ξ1{L(h) 6=0} as ε → 0 in Lp(Ω). If we
will show that ηε(h) ∈ D1,p and Dηε(h) → 0 in L2,p(Mπ) for any h ∈ K then
ξ1{L(h) 6=0} will be in D1,p and D(ξ1{L(h) 6=0}) = 0 for any h ∈ K implying as
in the proof of Lemma 7 that ξ ∈ D1,p and Dξ = 0.

Let us show that ηε(h) ∈ D1,p and Dηε(h) → 0. Set f(x, y) = x2/(y2 + ε).
Then f(x, y)e−(x2+y2)/n = fn(x, y) ∈ C∞b (R2) and by dominated convergence
theorem we have fn(L(ξh), L(h)) → f(L(ξh), L(h)) = ηε(h) as n → ∞ in
Lp(Ω). In the same way we obtain that the derivative Dfn(L(ξh), L(h)) con-
verges in L2,p(Mπ) which implies ηε(h) ∈ D1,p and the limit D(ηε(h)) is given
by

D(ηε(h)) =
(

2L(ξh)ξh
L(h)2 + ε

− 2L(h)L(ξh)2h
(L(h)2 + ε)2

)
1∆+(

(L(ξh) + ξh)2

(L(h) + h)2 + ε
− L(ξh)2

L(h)2 + ε

)
1X0

=
(

2ξ2L(h)h
(L(h)2 + ε)2

1∆ + ξ2
(L(h) + h)2 − L(h)2

((L(h) + h)2 + ε)(L(h)2 + ε)
1X0

)
ε.

Letting ε→ 0 in the equality above we obtain the desired result.

The following lemma shows the action of the operator D via the chaos
decomposition.

Proposition 26. Let ξ ∈ L2(Ω) with a development

ξ =
∞∑

k=0

Ik(fk), (39)

where fk ∈ L2(Mk
π ) are symmetric with respect to pairs of nonrandom vari-

ables. Then ξ ∈ D1,2 if and only if
∞∑

k=1

kk! ||fk||2L2(Mk
π ) <∞ (40)

and in this case we have

Dt,xξ =
∞∑

k=1

kIk−1(fk(·, t, x)). (41)

Moreover

E

[∫
T×X

(Dt,xξ)2π(dtdx)
∣∣∣∣H] =

∞∑
k=1

kk!
∫

(T×X)k

fk(t1, x1, . . . , tk, xk)2π(dt1dx1) · · ·π(dtkdxk).
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Proof. The proof will be done in three steps.
Step 1. Suppose first that k ≥ 1 and

ξ = Pk(x(h)) =
1
k!
Ik(h⊗k) = Ik(fk), (42)

with h ∈ K. Then by Lemma 23 ξ ∈ D1,2 and by equality (37) we get

Dt,xPk(x(h)) = Pk−1(x(h))h(t, x).

Hence
Dt,xξ = kIk−1(fk(·, t, x)). (43)

¿From Proposition 25 and formula (38) we deduce that equality (43) holds
for any linear combination of random variables of the form ηPk(x(h)), where
η is H-measurable bounded random variable. Since formula (43) implies that
||Dξ||2L2(Mπ) = kEξ2 then it follows that Pk, k ≥ 1 is included in D1,2.

If k = 0 then Proposition 25 implies that P0 = L2(Ω,H,P) ⊂ D1,2.
Step 2. Let ξ ∈ L2(Ω) has an expansion (39). Suppose that (40) holds.

Define

ξn =
n∑

k=0

Ik(fk).

Then the sequence ξn converges to ξ in L2(Ω), and by Step 1 we have ξn ∈ D1,2

and Dt,xξ =
∑n

k=1 kIk−1(fk(·, t, x)). It follows from Lemma 15 and equality
(40) that Dt,xξn converges in L2(Mπ) to the right-hand side of (41). Therefore
ξ ∈ D1,2 and (41) holds.

Step 3. Suppose ξ ∈ D1,2. Note that formula (33) holds for ξ ∈ D1,2 and
η ∈ D1,p for some p > 2 if h ∈ K. Since by Proposition 23 η = Pm(x(g)) ∈ D1,p

for all p ≥ 1 and g ∈ K, then we have

lim
n→∞

(〈Dξn; ηh〉L2(Mπ) + 〈Dξn;Dηh1X0〉L2(Mπ))

= lim
n→∞

(E(ξnηL(h))− 〈Dη; ξnh〉L2(Mπ))

= E(ξηL(h))− 〈Dη; ξh〉L2(Mπ) = 〈Dξ; ηh〉L2(Mπ) + 〈Dξ;Dηh1X0〉L2(Mπ).

It follows from equation (23) that

η + 1X0Dη = Pm(x(g)) + 1X0gPm−1(x(g)).

Then for all m = 1, 2, . . . we obtain

lim
n→∞

(〈Dξn;Pm(x(g))h〉L2(Mπ) + 〈Dξn;Pm−1(x(g))gh1X0〉L2(Mπ))

= 〈Dξ;Pm(x(g))h〉L2(Mπ) + 〈Dξ;Pm−1(x(g))gh1X0〉L2(Mπ).

Since P0 = 1 and limn→∞〈Dξn;P0(x(g))h〉L2(Mπ) = 〈Dξ;P0(x(g))h〉L2(Mπ)

for all h ∈ L2(Mπ), then we deduce by induction that
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lim
n→∞

〈Dξn;Pm(x(g))h〉L2(Mπ) = 〈Dξ;Pm(x(g))h〉L2(Mπ).

From Lemma 15 we deduce that for n > m the expression

〈Dξn;Pm(x(g))h〉L2(Mπ)

is equal to

E

(∫
T×X

(m+ 1)Im (fm+1(·, t, x))h(t, x)π(dtdx)Pm(x(g))
)
.

Hence the projection of
∫

T×X
Dt,xξh(t, x)π(dtdx) on the m-th chaos is equal

to ∫
T×X

(m+ 1)Im (fm+1(·, t, x))h(t, x)π(dtdx).

Thus for any ζ ∈ L2(Ω,F ,P) we have

〈Dξ;hζ〉L2(Mπ) = E

(∫
T×X

Dt,xξh(t, x)π(dtdx)ζ
)

= E

( ∞∑
m=0

∫
T×X

(m+ 1)Im (fm+1(·, t, x))h(t, x)π(dtdx)ζ

)

= 〈
∞∑

m=0

(m+ 1)Im (fm+1(·, t, x)) ;hζ〉L2(Mπ).

Since the set {hζ : h ∈ K, ζ ∈ L2(Ω,F ,P)} is dense in L2(T × X × Ω,G ⊗
F ,Mπ) then

Dt,xξ =
∞∑

m=0

(m+ 1)Im (fm+1(·, t, x)) ,

which completes the proof of the proposition.

Remark 27. This proposition implies that the operator D is an annihilation
operator on the Fock space on Hilbert space H.

The equations (41) can be considered as a definition of the operator D.
This approach was developed for pure jump Lévy process, the particular case
of Poisson processes, the case of general Lévy process with no drift and the
case of certain class of martingales in [2, 3, 18, 19, 25, 28].

Let A ∈ G ⊗ H. We will denote by F0
A the σ-algebra generated by the

random variables {L(B), B ⊂ A,B ∈ G0}. Set FA = F0
A ∨ H. The following

results are modification of Proposition 1.2.5 from [22, p. 32] and it shows
how to compute the derivative of a conditional expectation with respect to a
σ-algebra generated by stochastic process.



The Malliavin calculus for processes 31

Lemma 28. Suppose that ξ ∈ L2(Ω,F ,P) with the expansion (39). Let A ∈
G ⊗H. Then

E[ξ|FA] =
∞∑

k=0

Ik(fk1⊗k
A ). (44)

Proof. By the density of elementary functions in L2(Mk
π ) and by linearity we

can assume that ξ = Ik(fk), where fk = η1A1⊗· · ·⊗1Ak
with pairwise-disjoint

sets A1, . . . , Ak ∈ G0 and η ∈ L∞(Ω,H,P). Then we have

E[ξ|FA] = E[ηL(A1) · · ·L(Ak)|FA]

= ηE

[
k∏

i=1

(L(Ai ∩A) + L(Ai \A))

∣∣∣∣∣FA

]
= ηE[L(A1∩A) · · ·L(Am∩A)|FA] =

= Ik(η1A1∩A ⊗ · · · ⊗ 1Ak∩A) = Ik(fk1⊗k
A ).

Proposition 29. Suppose that ξ ∈ D1,2, and A ∈ G⊗H. Then E(ξ|FA) ∈ D1,2

and we have
Dt,x(E(ξ|FA)) = E(Dt,xξ|FA)1A(t, x)

Mπ-a.e. in T ×X ×Ω.

Proof. By Lemma 28 and Proposition 26 we obtain

E(Dt,xξ|FA)1A(t, x) =
∞∑

k=1

kIk−1(fk(·, t, x)1⊗(k−1)
A )1A(t, x) = Dt,x(E(ξ|FA)).

Remark 30. In particular, if ξ is FA-measurable and belongs to D1,2, then
Dt,xξ = 0 Mπ-a.e. in Ac.

5 The Skorohod integral

In this section we consider the adjoint of the operator D, and we will show
that it coincides with the Skorohod integral [30] in the Gaussian case and with
the extended stochastic integral introduced by Kabanov [13] in the pure jump
Lévy case. See also [2, 3, 18, 28]. So it can be considered as a generalization
of the stochastic integral. We will call it Skorohod integral and will establish
the expression of it in terms of the chaos expansion as well as prove some of
its properties.

We recall that the derivative operator D is a closed and unbounded op-
erator defined on the dense subset D1,2 of L2(Ω) with values in L2(T ×X ×
Ω,G ⊗ F ,Mπ).

Definition 31. We denote by δ the adjoint of the operator D and will call it
Skorohod integral.
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The operator δ is closed unbounded operator on L2(T ×X×Ω,G⊗F ,Mπ)
with values in L2(Ω) defined on Dom δ, where Dom δ is the set of processes
u ∈ L2(Mπ) such that∣∣∣∣E ∫

T×X

Dt,xξu(t, x)π(dtdx)
∣∣∣∣ ≤ c ||ξ||L2(Ω)

for all ξ ∈ D1,2, where c is some constant depending on u.
If u ∈ Dom δ, then δ(u) is the element of L2(Ω) such that

E(ξδ(u)) = E

∫
T×X

Dt,xξu(t, x)π(dtdx) (45)

for any ξ ∈ D1,2.
The following proposition shows the behavior of δ in terms of the chaos

expansion.

Proposition 32. Let u ∈ L2(T ×X ×Ω,G ⊗ F ,Mπ) with the expansion

u(t, x) =
∞∑

k=0

Ik(fk(·, t, x)). (46)

Then u ∈ Dom δ if and only if the series

δ(u) =
∞∑

k=0

Ik+1(f̃k) (47)

converges in L2(Ω).

Recall that f̃k is a symmetrization of fk in all its pairs of nonrandom
variables is given by

f̃k(t1, x1, . . . , tk, xk, t, x, ω) =
1

k + 1
(fk(t1, x1, . . . , tk, xk, t, x, ω)

+
k∑

i=1

fk(t1, x1, . . . , ti−1, xi−1, t, x, ti+1, xi+1, . . . , ti, xi, ω)).

Proof. The proof is the same as in the Gaussian case (see, e.g., [22, Prop.
1.3.1, p. 36]).

Remark 33. It follows from Proposition 32 that the operator δ coincides with
Skorohod integral in the Gaussian case and with extended stochastic integral
introduced by Kabanov for pure jump Lévy processes (see, e.g., [30, 13, 22, 2,
3, 18, 28]).
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It follows from proposition above that Dom δ is the subspace of L2(Mπ)
formed by the processes that satisfy the following condition:

∞∑
k=1

(k + 1)!||f̃k||2L2(Mk+1
π )

<∞. (48)

If u ∈ Dom δ, then the sum of the series (48) is equal to Eδ(u)2.
Note that the Skorohod integral is a linear operator and has zero mean,

e.g., E(δ(u)) = 0 if u ∈ Dom δ. The following statements prove some properties
of δ.

Proposition 34. Let u, v ∈ Dom δ be arbitrary stochastic process. Then for
all α and β in L∞(Ω,H,P) we have αu+ βv ∈ Dom δ and

δ(αu+ βv) = αδ(u) + βδ(v).

Moreover E[δ(u)|H] = 0.

Proof. The proof follows from the properties (i) and (iii) of the multiple inte-
gral.

Proposition 35. Suppose that u is a Skorohod integrable process. Let ξ ∈ D1,2

such that E(
∫

T×X
(ξ2 + (Dt,xξ)21X0)u(t, x)

2π(dtdx)) <∞. Then it holds that

δ((ξ + 1X0Dξ)u) = ξδ(u)−
∫

T×X

(Dt,xξ)u(t, x)π(dtdx), (49)

provided that one of the two sides of the equality (49) exists.

Proof. Let η ∈ S be a smooth random variables. Then by the product rule
(38) and by the duality relation (45), we get

E(
∫

T×X

(Dt,xη)(ξ + 1X0(x)Dt,xξ)u(t, x)π(dtdx))

=
∫

T×X

E(u(t, x)(Dt,x(ξη)− ηDt,xξ))π(dtdx)

= E

(
η(ξδ(u)−

∫
T×X

(Dt,xξ)u(t, x)π(dtdx))
)
,

and the result follows.

As in the Gaussian case or in the case of processes with independent in-
crements in order to prove some other properties of Skorohod integral we will
define a class of processes contained in Dom δ (see [22], [33]).

Definition 36. Let L1,2 denote the class of processes u ∈ L2(T ×X ×Ω,G ⊗
F ,Mπ) such that u(t, x) ∈ D1,2 for all (t, x) /∈ R, where R ⊂ T × X and
Mπ(R×Ω) = 0, and there exists a measurable version of the multiparametri-
cal process Dt,xu(s, y) satisfying E

∫
T×X

∫
T×X

(Dt,xu(s, y))2π(dtdx)π(dsdy) <
∞.
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If the process u has the expansion (46), then u ∈ L1,2 if and only if the
series

∫
T×X

∫
T×X

E

( ∞∑
k=1

kIk−1(fk(·, t, x, s, y))

)2

π(dtdx)π(dsdy)

=
∞∑

k=1

kk! ||fk||2L2(Mk+1
π )

converges.
Since ||f̃k||L2(Mk+1

π ) ≤ ||fk||L2(Mk+1
π ) then from (48) we deduce that L1,2 ⊂

Dom δ.
The proofs of the following propositions use the chaos expansion therefore

they can be done as in the Gaussian case (see, for instance [22, pp. 38 - 40]).

Proposition 37. Suppose that u ∈ L1,2 and for all (t, x) /∈ R, where
R ⊂ T×X and Mπ(R×Ω) = 0 the two-parameter process {Dt,xu(s, y), (s, y) ∈
T × X} is Skorohod integrable, and there exists a version of the process
{δ(Dt,xu(·, ·)), (t, x) ∈ T × X} which belongs to L2(Mπ). Then δ(u) ∈ D1,2

and we have
Dt,xδ(u) = u(t, x) + δ(Dt,xu(·, ·)). (50)

Proposition 38. Suppose that u ∈ L1,2 and v ∈ L1,2. Then we have

E[δ(u)δ(v)|H] = E

[∫
T×X

u(t, x)v(t, x)π(dtdx)
∣∣∣∣H]

+E

[∫
T×X

∫
T×X

Ds,yu(t, x)Dt,xv(s, y)π(dtdx)π(dsdy)
∣∣∣∣H] . (51)

Now we will show that the operator δ is an extension of the Itô integral.
Let Lt, t ∈ [0; 1] be a processes with H-conditionally independent increments.
Assume that the canonical triplet of its characteristics (B,µ, ν) such that
B = 0. Then as in Example 3 we have random measure N(dtdx) associated
to jumps of L with compensator measure ν, the measure µ connected with
continuous part of L and conditional additive process L(h) on H. We denote
by L2

p the subset of L2(Mπ) formed by Ft-predictable processes.
Te following technical will be needed.

Lemma 39. Let A ∈ G ⊗ H be a set with finite Mπ measure, and let ξ be
a square integrable random variable that is measurable with respect to the σ-
algebra FAc . Then the process ξ1A is Skorohod integrable and

δ(ξ1A) = ξL(A).

Proof. Suppose first that ξ ∈ D1,2 and 1A ∈ K. By using Proposition 35 and
Remark 30 we have
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δ(ξ1A) = δ((ξ+1X0Dξ)1A) = ξδ(1A)−
∫

T×X

(Dt,xξ)1A(t, x)π(dtdx) = ξL(A).

The general case follows by a limit argument, using the facts that D1,2 and
K are dense and δ is closed.

Proposition 40. L2
p ⊂ Dom δ, and the restriction of the operator δ to the

space L2
p coincides with the usual stochastic integral, that is

δ(u) =
∫ 1

0

u(t, 0)dLc(t) +
∫ 1

0

∫
R0

u(t, x)(N(dtdx)− ν(dtdx)).

Proof. Suppose that u is an elementary adapted processes of the form

ut,x =
n∑

i=1

ξi1Ai1(ti;ti+1](t)1Bi(x),

where 0 ≤ t1 < · · · < tn+1 ≤ 1, Bi is a borel set of R, Ai ∈ H such that
1(ti;ti+1]×Bi×Ai

(t, x) ∈ K and ξi is square integrable and Fti measurable ran-
dom variable. Then from the Lemma 39 we obtain u ∈ Dom δ and

δ(u) =
∞∑

i=1

ξi((Lti+1 − Lti
)1Bi

(0) +
∫ ti+1

ti

∫
Bi

(N(dtdx)− ν(dtdx)).

The general case follows by monotone class argument since δ is closed.

The predictable projection of a stochastic process indexed by t ≥ 0 and x ∈
R can be defined similarly as in a one parametrical case (see, i.g, [12, 17, 31]).
Let Y = {Y (t, x), t ≥ 0, x ∈ R} be an measurable integrable process. There
exists a predictable process Z = {Z(t, x), t ≥ 0, x ∈ R} such that for every
predictable stopping time τ

Z(τ, x)1{τ<∞} = E[Y (τ, x)1{τ<∞}|Fτ−].

The following result is so-called Clark-Haussmann-Ocone formula.

Proposition 41. Let ξ ∈ D1,2, and suppose that a process with conditionally
independent increments Lt, t ∈ [0; 1] has the form

Lt = Lc
t +

∫ t

0

∫
|x|≤1

x(N(dsdx)− ν(dsdx)) +
∫ t

0

∫
|x|>1

xN(dsdx).

Then

ξ = E[ξ|H] +
∫ 1

0

p(Dt,0ξ)dLc
t +

∫ 1

0

∫
R0

p(Dt,xξ)(N(dtdx)− ν(dtdx)). (52)
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Proof. Let ξ ∈ D1,2 have an expansion ξ =
∑∞

n=0 In(fn). Using (41) and (44)
we have

E[Dt,xξ|Ft] =
∞∑

n=1

nE[In−1(fn(·, t, x))|Ft] =
∞∑

n=1

nIn−1(fn(·, t, x)1⊗(n−1)
[0;t] ).

It follows from the arguments in the beginning of the Section 3, that

fn(·, t, x)1⊗(n−1)
[0;t] = fn(·, t, x)1⊗(n−1)

[0;t)

as elements of L2(Mn−1
π ). Thus

E[Dt,xξ|Ft] =
∞∑

n=1

nIn−1(fn(·, t, x)1⊗(n−1)
[0;t] ) =

∞∑
n=1

nIn−1(fn(·, t, x)1⊗(n−1)
[0;t) ).

Since In−1(fn(·, t, x)1⊗(n−1)
[0;t) ) is predictable then it is easy to show that

p
(
In−1(fn(·, t, x))

)
= In−1(fn(·, t, x)1⊗(n−1)

[0;t) ). Hence

p(Dt,xξ) =
∞∑

n=1

n p(In−1(fn(·, t, x))) =
∞∑

n=1

nIn−1(fn(·, t, x)1⊗(n−1)
[0;t) ).

Therefore p(Dt,xξ) = E[Dt,xξ|Ft] as an L2(Mπ) processes.
Set φ(t, x) = E[Dt,x|Ft] and ψ(t, x) = p(Dt,xξ). Then from equality (47)

we deduce

δ(ψ) = δ(φ) =
∞∑

n=1

In(fn) = ξ − E[ξ|H],

which shows the desired result because Proposition 40 implies that

δ(ψ) =
∫ 1

0

p(Dt,0ξ)dLc
t +

∫ 1

0

∫
R0

p(Dt,xξ)(N(dtdx)− ν(dtdx)).
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