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1 Introduction.

Since the Wiener space was established by N. Wiener as a mathematical model
of Brownian motion in 1923, a rigorous theory of integrations on a function
space started. In these almost eighty years, it has been providing us with
important methods in stochastic analysis and its applications.

Around 1942, R. Feynman ([F 1],[F 2]) had an epoch making idea of rep-
resenting the propagators for Schrödinger equations by a path integral over
trajectories of quantum mechanical particles. M. Kac noticed that its coun-
terpart could be discussed rigorously on Wiener space and thus found the
Feynman-Kac formula. He also applied probabilistic representations of heat
kernels by Wiener functional expectations to study asymptotics of spectra of
Schrödinger operators ([Ka 1],[Ka 2],[Ka 3]). This study was further developed
in a fundamental paper by McKean and Singer [MS], which may be regarded
as an origin of the heat equation methods in the analysis of manifold.

The approach by McKean and Singer is based on PDE theory, the method
of parametrix for heat kernels, in particular. If we would give a similar prob-
abilitistic approach as Kac in the problems of McKean and Singer, we have
several difficulties to overcome. In the case of Kac, the second order term
of the Schrödinger operator is Laplacian in Euclidean space so that a use of
Wiener process and pinned Wiener process is sufficient, which could be easily
set up on a Wiener space. In the case of McKean and Singer, however, we
need a Brownian motion on a curved Riemannian manifold; also the analysis
of pinned Brownian motion requires some fine properties of heat kernels.

As we review in this expository article, a Brownian motion on a Rieman-
nian manifold can be well set up on a Wiener space by appealing to the Itô
calculus, and the pinned Brownian motion can be well handled by appealing
to the Malliavin calulus on the Wiener space. We would study the conditional
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expectations of a class of Wiener functionals as integrations on a ’submanifold’
embedded in the Wiener space so that we can develop a ’smooth’ desintegra-
tion theory on Wiener space. In this study, an important role is played by the
notion of generalized Wiener functionals, a notion similar to that of Schwartz
distributions on Wiener space.

2 Wiener space, Wiener functionals and Wiener maps.

Let (W0(Rd), PW ) be the d-dimensional classical Wiener space: W0(Rd) is a
path space W0(Rd) := { w; [0, T ] 3 t 7→ w(t) ∈ Rd, continuous, w(0) = 0 },
which is a Banach space with the usual maximum norm, and PW is the d-
dimensional Wiener measure on it. Here T is a positive constant; sometimes,
the time interval is taken to be [0,∞) and then W0(Rd) is a Fréchet space
with a family of maximum (semi)norms on subintervals. Let H ⊂ W0(Rd) be
the Cameron-Martin subspace, which is a real Hilbert space given by

H =
{

h ∈ W0(Rd) | h(t) =
∫ t

0

ḣ(s)ds, ḣ ∈ L2
(
[0, T ] → Rd

) }
,

||h||H = ||ḣ||L2 .

As we know well, the triple (W0(Rd),H, PW ) is a typical example of more
general notion of abstract Wiener space; that is, we may think of the Wiener
space as a realization of standard Gaussian measure on H.

A PW -measurable function F : w ∈ W0(Rd) 7→ F (w) ∈ S, where
S is a topological space endowed with the Borel σ-field B(S), is called
an S-valuedWiener functional (or a Wiener map if we would regard F
as a mapping). As usual, we identify two S-valued Wiener functionals F
and F ′ if PW {w;F (w) 6= F ′(w)} = 0. Let B be any separable Banach
space. Then Lp(B) := Lp(W0(Rd) → B), 1 ≤ p ≤ ∞, is the usual Lp-
space formed of B-valued Wiener functionals F : W0(Rd) → B such that

||F ||p :=
{∫

W0(Rd)
||F (w)||pBPW (dw)

}1/p

< ∞. Lp(R) is denoted simply by

Lp. As usual, we denote the integral
∫

W0(Rd)
F (w)PW (dw) for F ∈ L1 by

E(F ) and call it the expectation of F .
If F ∈ L1, then the conditional expectation ET,x

0,0 (F ) = E(F |w(T ) = x) is
defined, as usual, by a Radon-Nikodym density, so that, as a function of x,
it is determined almost everywhere with an ambiguity of a set of Lebesgue
measure 0. However, the Brownian bridge measure PT,x

0,0 on WT,x
0,0 (Rd) :=

{ w; [0, T ] 3 t 7→ w(t) ∈ Rd, continuous, w(0) = 0, w(T ) = x }, is well-
defined for each x as the image measure of PW under the map w ∈ W0(Rd) 7→
ŵ ∈ WT,x

0,0 (Rd) defined by ŵ(t) = w(t) + t
T (x − w(T )), 0 ≤ t ≤ T , and the

conditional expectation ET,x
0,0 (F ) is defined without ambiguity if F is a Borel
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function on WT,x
0,0 (Rd) which is PT,x

0,0 -integrable. The expectation ET,x
0,0 (F ) may

be symbolically written as E[δx(w(T ))F (w)]/p(T, x), where δx(·) = δ0(· − x)
is the Dirac delta function and

p(t, x) = (2πt)−d/2 exp
{
−|x|

2

2t

}
, t > 0, x ∈ Rd. (1)

This kind of formal expressions will be rigorously and more generally defined
in Section 3 below.

In the following, as a typical and important application of Wiener func-
tional expectations, we would review probabilistic expressions of solution
u = (u(t, x)) for initial value problem (IVP) of heat equations

∂u

∂t
= Lu, u|t=0 = f. (2)

where L is a second-order semi-elliptic differential operator. In this section, we
deal with the case of heat equations on Rd in which the principal second-order
term of L is the half Laplacian: 1

2∆. We introduce a usual notation u = etLf
or u(t, x) = (etLf)(x) for the solution u of (2).

Solutions of IVP (2) by Wiener functional expectations. I

(1) The case L = 1
2∆. Then u = etLf is given by

u(t, x) = E[f(x + w(t))]. (3)

(2) (Feynman-Kac formula) The case of a Schrödinger operator L = 1
2∆−V

where the potential V (x) is a Borel function bounded from below. Then
u = etLf is given by

u(t, x) = E

[
exp

{
−

∫ t

0

V (x + w(s))ds

}
f(x + w(t))

]
. (4)

(3) The case of operator L = 1
2∆ +

∑d
i=1 bi ∂

∂xi − V where the drift co-
efficients bi(x), i = 1, . . . , d, are bounded Borel functions and the po-
tential V (x) is a Borel function bounded from below. Then, setting
w(t) = (w1(t), · · · , wd(t)), u = etLf is given by

u(t, x) = E

[
exp

{
d∑

i=1

∫ t

0

bi(x + w(s))dwi(s)− 1
2

d∑
i=1

∫ t

0

bi(x + w(s))2ds

−
∫ t

0

V (x + w(s))ds

}
f(x + w(t))

]
. (5)

Here, the Wiener functionals
∫ t

0
bi(x + w(s))dwi(s) are defined by Itô’s

stochastic integrals. Thus, we have encountered now a case of Wiener
functional expectations in which a use of the Itô calculus is indispensable.
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Now we can see that the solution of (2) has, in each case, the Lebesgue
integral representation by the heat kernel:

u(t, x) =
∫
Rd

〈x|etL|y〉f(y)dy.

and the heat kernel 〈x|etL|y〉 is given as follows:
In the case (1), 〈x|etL|y〉 = p(t, y − x), where p(t, x) is the Gauss kernel

given by (1).
In the case (2),

〈x|etL|y〉 = Et,y−x
0,0

[
exp

{
−

∫ t

0

V (x + w(s))ds

}]
p(t, y − x)

= E

[
exp

{
−

∫ t

0

V (x + w(s))ds

}
δy(x + w(t))

]
.

In the case (3),

〈x|etL|y〉 = Et,y−x
0,0

[
exp

{
d∑

i=1

∫ t

0

bi(x + w(s))dwi(s)

− 1
2

d∑
i=1

∫ t

0

bi(x + w(s))2ds

−
∫ t

0

V (x + w(s))ds

}]
p(t, y − x)

= E

[
exp

{
d∑

i=1

∫ t

0

bi(x + w(s))dwi(s)− 1
2

d∑
i=1

∫ t

0

bi(x + w(s))2ds

−
∫ t

0

V (x + w(s))ds

}
δy(x + w(t))

]
.

Strictly speaking, it is by no means obvious in this case that the Wiener func-
tional under the expectation Et,y−x

0,0 is P t,y−x
0,0 -measurable. Such a difficulty

will be completely resolved by a general theory of desintegrations and quasi
sure analysis in the Malliavin calculus, as we review in Section 3.

3 Itô calculus on Wiener space, Itô functionals and Itô
maps.

We would continue the same problem of probabilistic solutions of IVP (2) in
which the second order differential operator L is of variable coefficients. If it is
elliptic, then it is essentially the case of differential operators on a Riemannian
manifold M in which the principal second order term is the half Laplacian
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1
2∆M . Hence we need a Brownian motion, i.e., the diffusion on M with the
infinitesimal generator 1

2∆M . As we would review now, this can be realized
on a Wiener space by an application of the Itô calculus.

Let (W0(Rd), PW ) be the d-dimensional Wiener space. Then, the coor-
dinate w(t) = (w1(t), · · · , wd(t)) of w ∈ W0(Rd) is a realization of the d-
dimensional Wiener process.

Let M be a smooth manifold of dimension n and let A0, A1, . . . , Ad be
a smooth and complete vector fields on M . Consider the following stochastic
differential equation (SDE) on M in which ◦ denotes the stochastic differential
in the Stratonovich sense:

dX(t) =
d∑

i=1

Ai(X(t)) ◦ dwi(t) + A0(X(t))dt, X(0) = x (6)

and we obtain the pathwise unique solution X(t) = (X(t, x;w)). In this note,
we assume for simplicity that solutions exist globally; otherwise, we must
consider solutions which may tend to the point at infinity of M in a finite
time and many of definitions given below need some modifications. For the
global existence, it is sufficient to assume that M is compact, or assume that
M is embedded into a higher dimensional Euclidean space and, in the global
Euclidean coordinates, the coefficients of vector fields have all the derivatives
of order ≥ 1 bounded, cf. e.g. [IW] for details.

Let C([0, T ] → M) be the space of continuous paths ξ : [0, T ] 3 t 7→
ξ(t) ∈ M endowed with the topology of uniform convergence and, for x ∈ M ,
Cx([0, T ] → M) be its subspace consisting of paths ξ such that ξ(0) = x. Then
the solution defines the following Wiener map (called also an Itô map); for
each x ∈ M ,

Xx : w ∈ W0(Rd) → Xx(w) := [t 7→ X(t, x;w)] ∈ Cx([0, T ] → M).

If Px is the image measure on Cx([0, T ] → M) of PW under the Itô map
Xx, then the system {Px;x ∈ M} defines a diffusion process on M with the
infinitesimal generator A = 1

2

∑r
i=1(Ai)2 +A0. Thus, the Itô map provides us

with the A-diffusion process. It actually provides us with something more; if
we regard the solution as

w ∈ W0(Rd) → X(w) := [t 7→ [x 7→ X(t, x;w)]] ,

then [x 7→ X(t, x;w)] ∈ Diff(M → M), i.e. a diffeomorphism of M , so that
we have a stochastic flow of diffeomorphisms (cf. [Ku]).

Wiener functionals which are defined by using the Itô calculus, particu-
larly such functionals as are associated with an Itô map, are often called Itô
functionals.

In order to discuss the Brownian motion on a Riemannian manifold, the
following Itô map, called a stochastic moving frame, is very important and
useful.
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Stochastic moving frames
Let M be a Riemannian manifold of dimension d and x ∈ M. By a frame

at x, we mean an orthonormal base (ONB) e = [e1, . . . , ed] of the tangent
space TxM at x. A frame at x is denoted by r = (x, e). We denote the
totality of frames at all points of M by O(M). It is given a natural structure
of manifold and the projection π : O(M) → M is defined by π(r) = x if
r = (x, e). The d-dimensional orthogonal group O(d) acts on O(M) from the
right: rg = (x, eg = [(eg)1, . . . , (eg)d]),
g = (gi

j) ∈ O(d), where (eg)k = gi
kei (by the usual convention for summation),

so that O(M) forms a principal fibre bundle over M with the structure group
O(d), which we call the bundle of orthonormal frames.

We can identify r ∈ O(M) with an isometric isomorphism r̃ : Rd → TxM ,

x = π(r), defined by sending each of the canonical base δi, δi := (0, · · · , 0,
i−th
1

, 0 · · · 0), to ei, i = 1, . . . , d, where r = (x, e), e = [e1, . . . , ed]. This isomor-
phism r̃ is called the canonical isomorphism associated with the frame r. It
holds that r̃g = r̃ ◦ g, g = (gi

j) ∈ O(d); here g is identified with the orthogonal
transformation g : x = (xi) ∈ Rd 7→ gx = (gi

jx
j) ∈ Rd.

Before giving a formal definition of the stochastic moving frame in general,
we explain the idea in a simple case of M being a two dimensional sphere S2.
We take a plane R2 and consider a Brownian motion w(t) on it canonically
realized on the two dimensional Wiener space. We assign at each point w(t) ∈
R2 the canonical bases δ1 = (1, 0) and δ2 = (0, 1) so that δ = [δ1, δ2] forms
an ONB in the tangent space Tw(t)R2 ∼= R2. Then these bases at different
points of the curve are parallel to each other. Given a sphere S2, choose a
point x on it and an ONB e = [e1, e2] in the tangent space TxS2. We put
the sphere on the plane so that x touches at the origin of the plane and the
ONB e coincides with the ONB δ. Now we roll the sphere on the plane along
the Brownian curve w(t) without slipping. Suppose that the Brownian curve
is traced in ink. Then the trace of w(t) together with the ONB δ at w(t)
is transferred into a curve X(t) on S2 with an ONB e(t) = [e1(t), e1(t)] in
TX(t)S2. Thus, a random curve r(t) = (X(t), e(t)) on the orthonormal frame
bundle O(S2) is obtained and this is precisely the stochastic moving frame we
want. We can see that the random curve X(t) thus obtained is a Brownian
motion on the sphere.

Now we give a formal definition. There is a notion of the system of canoni-
cal horizontal vector fields A1, . . . , Ad on O(M): For each i = 1, · · · , d, Ai(r) is
a smooth vector field on O(M) uniquely determined by the property that the
integral curve, i.e. the solution, of the following ordinary differential equation
(ODE)

dr(t)
dt

= Ai(r(t)), r(0) = r, r = (x, e), e = [e1, . . . , ed]

coincides with the curve r(t) = (x(t), e(t)), e(t) = [e1(t), . . . , ed(t)], where x(t)
is the geodesic with x(0) = x and dx

dt |t=0 = ei, and e(t) = [e1(t), . . . , ed(t)] is
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the parallel translate, in the sense of Lévi-Civita, of e = [e1, . . . , ed] along the
curve x(t).

Let (W0(Rd), PW ) be the d-dimensional Wiener space. The stochastic
moving frames on M starting at a frame r is, by definition, the solution

r(t) = (r(t, r;w)), r(t, r;w) = (X(t, r;w), e(t, r;w)) (7)

of the following SDE on O(M):

dr(t) = Ak(r(t)) ◦ dwk(t), r(0) = r. (8)

The assumption that solutions exist globally is equivalent to that the manifold
is stochastically complete. We have the following important property of the
stochastic moving frame under the right action of the structure group O(d);
for each g ∈ O(d),

r(t, r;w)g = r(t, rg; g−1w), t ≥ 0, r ∈ O(M),

where g−1w ∈ W0(Rd) is defined by
(
g−1w

)
(t) = g−1[w(t)]. This implies, in

particular, that

X(t, r;w) = X(t, rg; g−1w), t ≥ 0, r ∈ O(M), g ∈ O(d).

By the rotation invariance of Wiener process, we have g−1w
d= w, and hence

{X(t, rg;w); t ≥ 0} d= {X(t, r;w); t ≥ 0}, r ∈ O(M), g ∈ O(d).

In other words, the law Pr on Cx([0, T ] → M), x = π(r), of [t 7→ X(t, r;w)]
satisfies Prg = Pr for all g ∈ O(d). This implies that Pr depends only on
x = π(r) and we may write Pr = Px. Then the family {Px} defines a diffusion
process on M . If we note the identity:

∑d
k=1 A2

kf̃ = ∆̃Mf , which holds for any
smooth function f on M and f̃ := f ◦π, we can see that its generator coincides
with 1

2∆M so that it is a Brownian motion on M . In this way, the Brownian
motion on a Riemannian manifold can be obtained as the projection on the
base manifold of the stochastic moving frame, cf. [IW] for details.

Solutions of IVP (2) by Wiener functional expectations. II
We consider the case of heat equations on a Riemannian manifold M of

dimension d and we set up on d-dimensional Wiener space the stochastic
moving frame {r(t, r;w) = (X(t, r;w), e(t, r;w))} as above.

(4) We consider the case L = 1
2∆M . Then u = etLf is given by

u(t, x) = E[f(X(t, r;w))], x = π(r). (9)

As we explained above, the right-hand side (RHS) depends only on x =
π(r).
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(5) (Feynman-Kac formula) We consider the case of a Schrödinger operator
L = 1

2∆M − V where the potential V (x) is a real Borel function bounded
from below. Then u = etLf is given by

u(t, x) = E

[
exp

{
−

∫ t

0

V (X(s, r;w))ds

}
f(X(t, r;w))

]
, x = π(r).

(10)
(6) (Schrödinger operators with magnetic fields) We consider the case of

operator

Lu =
1
2

[
∆Mu + 2

√
−1(du, θ)− (

√
−1d∗θ + ||θ||2 + 2V )u

]
:= H(θ, V ),

where θ is a real one-form (called a vector potential) and V is a real
function (called a scalar potential). (∗, ∗∗) and || ∗ || are the Riemannian
inner product and norm on the cotangent space T ∗

· (M), respectively. d∗

is the adjoint of exterior differentiation d so that d∗θ is a real function.
Then u = etLf is given by

u(t, x) = E

[
exp

{√
−1

∫ t

0

θ̄i(X(s, r;w)) ◦ dwi(s)

−
∫ t

0

V (X(s, r;w))ds

}
f(X(t, r;w))

]
, x = π(r). (11)

Here, θ̄i(r) = ek
i θk(x) if r = (x, e), e = [e1, . . . , ed] and θ(x) = θi(x)dxi,

ei = ek
i

∂
∂xk in a local coordinate x = (x1, · · · , xd). Obviously, θ̄ is defined

independently of a particular choice of local coordinates.
(7) (Heat equations on vector bundles) We consider the case of the exterior

product
∧

T ∗M of cotangent bundle T ∗M , so that its section is a differ-
ential form on M , and the case of L = 1

2�, where � := −(d∗d + dd∗) is
the de Rham-Hodge-Kodaira Laplacian acting on differential forms. We
assume that M is compact and orientable.
The canonical isomorphism r̃ : Rd → TxM associated with a frame r =
(x, e) ∈ O(M) naturally induces an isomorphism r̃ : Rd → T ∗

x M and an
isomorphim r̃ :

∧
Rd →

∧
T ∗

x M , by sending bases δi and δi1 ∧ · · · ∧ δip

to f i and f i1 ∧ · · · ∧ f ip , for i = 1, · · · , d and 1 ≤ i1 < · · · < ip ≤ d,
respectively, where f = [f1, · · · , fd] is the ONB in T ∗

x M dual to the ONB
e = [e1, . . . , ed] in TxM . Here, we recall that the exterior product

∧
Rd =∑d

p=0⊕
∧p Rd is a 2d-dimensional Euclidean space with the canonical

base δi1 ∧ · · · ∧ δip , forming an algebra under the exterior product ∧.
Let End(

∧
Rd) be the algebra of linear tranformations on

∧
Rd and let

a∗i ∈ End(
∧

Rd) be defined by

a∗i (λ) = δi ∧ λ, λ ∈
∧

Rd, i = 1, . . . , d.

Let ai be the dual of a∗i . Then the system ai1ai2 · · · aipa∗j1a
∗
j2
· · · a∗jq

, where
1 ≤ i1 < · · · < ip ≤ d, 1 ≤ j1 < · · · < jq ≤ d, p, q = 0, 1, . . . , d,
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forms a basis in End(
∧

Rd). Let J ijkl(r) be the scalarization (equivari-
ant representation) of the Riemann curvature tensor; in a local coordi-
nate, J ijkl(r) = Rαβγδ(x)eα

i eβ
j eγ

keδ
l , r = (x, e). Let D2[J ](r) ∈ End(

∧
Rd)

be defined by D2[J ](r) = J ijkl(r)a∗i aja
∗
kal. We define an End(

∧
Rd)-

valued process t → M(t, r;w) by the solution to the following ODE on
End(

∧
Rd):

dM(t)
dt

=
1
2
D2[J ](r(t, r;w)) ·M(t), M(0) = I.

Then, u = etLf , f ∈
∧

(M), is given by

u(t, x) = E

[
r̃M(t, r;w) ˜r(t, r;w)

−1

f(X(t, r;w)
]

, r = (x, e). (12)

Note that r̃ :
∧

Rd →
∧

T ∗
x M , ˜r(t, r;w)

−1

:
∧

T ∗
X(t,r;w)M →

∧
Rd,

and f(X(t, r;w)) ∈
∧

T ∗
X(t,r;w)M , so that the Itô functional under the

expectation takes values in
∧

T ∗
x M . Hence the expectation is well-defined

and takes its value in
∧

T ∗
x M . Also, it does not depend on a particular

choice of r ∈ O(M) over the point x and so, we may write it as u(t, x).
Cf. [IW], for details.

The solutions u = etLf obtained by Wiener functional expectations as
above can also possess heat kernel representations in the form

u(t, x) =
∫

M

〈x|etL|y〉f(y)dy

where dy is the Riemannian volume of M . The heat kernel 〈x|etL|y〉 is usually
constructed by the method of parametrix in PDE theory. Here, we would
apply our probabilistic approach by Wiener functional expectations also to
this problem; this is indeed possible by appealing to the Malliavin calculus on
Wiener space.

4 Malliavin calculus on Wiener space

The Malliavin calculus is a differential and integral calculus on an infinite
dimensional vector space endowed with a Gaussian measure. Here, we restrict
ourselves to the case of the r-dimensional Wiener space (W0(Rr), PW ); the
Malliavin calculus in this case is well suited to the analysis of Itô fuctionals as
we shall see. We would develop the Malliavin calculus as a Sobolev differential
calculus on Wiener space by introducing a family of Sobolev spaces of Wiener
functionals.

For a real separable Hilbert space E, we denote by Lp(E), 1 ≤ p < ∞,
the usual Lp-space of E-valued Wiener functionals. It is convenient to intro-
duce the Fréchet space L∞−(E) := ∩1<p<∞Lp(E) and its dual L1+(E) :=
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∪1<p<∞Lp(E), (the dual E∗ being always identified with E by the Riesz the-
orem). When E = R, Lp(E), (L∞−(E), L1+(E)) is denoted simply by Lp,
(resp. L∞−, L1+).

Typical differential operators are, the Gross-Malliavin-Shigekawa gradi-
ent operator D which sends an E-valued Wiener functional to an H ⊗ E-
valued Wiener functional, its dual operator or Skorohod operator D∗ and the
Ornstein-Uhrenbeck operator L = −D∗D. D is defined formally, for a Wiener
functional F = (F (w)), by

〈DF (w), h⊗ e〉H⊗E =
〈

lim
ε→0

(F (w + εh)− F (w))/ε, e
〉

E
h ∈ H, e ∈ E.

These operators are defined, first, for polynomial functionals and also, the
fractional power (I − L)α, α ∈ R, is defined for polynomial functionals by
using the Wiener chaos expansion; a polynomial functional F is a finite sum
F = ⊕

∑
n Fn where Fn is a polynomial functional in the chaos subspace of

order n, and then, (I −L)αF is defined to be ⊕
∑

n(1 + n)αFn, which is also
a polynomial functional. Let P(E) be the real vector space of all E-valued
polynomial functionals. Noting that P(E) ⊂ L∞−(E), we define the norm
|| ∗ ||p,α on P(E), 1 < p < ∞, α ∈ R, by ||F ||p,α = ||(I − L)α/2F ||p. Let
P(E)∗ is the algebraic dual of P(E), which is a real vector space formed of
all R-linear mappings T : F ∈ P(E) 7→ T (F ) ∈ R. For G ∈ L2(E), we
define TG ∈ P(E)∗ by TG(F ) = E(〈G, F 〉E), and identify G with TG. Then,
L2(E) ⊂ P(E)∗ and hence, P(E) ⊂ L2(E) ⊂ P(E)∗. Define the norm on
P(E)∗ by setting

||T ||p,α = sup {T (F );F ∈ P(E), ||F ||q,−α ≤ 1} ,

1 < p < ∞, α ∈ R,
1
p

+
1
q

= 1.

This definition is compatible with the norm defined already on P(E), which
is a subspace of P(E)∗ as we saw above. We now define the family of Sobolev
spaces:

Dα
p (E) = { T ∈ P(E)∗; ||T ||p,α < ∞ } , 1 < p < ∞, α ∈ R.

Then Dα
p (E), endowed with the norm || ∗ ||p,α, is a real separable Banach

space in which the space P(E) of E-valued polynomial functionals is densely
included. Our definition given here is of course equivalent to the usual one
given by the completion of P(E) with respect to the norm || ∗ ||p,α (cf. e.g.
[IW]); this elegant idea of avoiding the use of an abstract notion like comple-
tion is due to Itô [It].

We have D0
p(E) = Lp(E), Dα

p (E) ⊂ Dα′

p′ (E) if p′ ≤ p, α′ ≤ α, and
Dα

p (E)∗ = D−α
q (E) if p−1 + q−1 = 1. Again, Dα

p (E) in the case of E = R is
denoted simply by Dα

p .
We set D∞

p (E) =
⋂

α>0 Dα
p (E), D−∞

p (E) =
⋃

α>0 D−α
p (E). We also

denote D∞
∞−(E) =

⋂
1<p<∞D∞

p (E) and D−∞
1+ (E) =

⋃
1<p<∞D−∞

p (E).
Again, we omit E in these notations when E = R.
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Now, the differential operators D and L can be extended uniquely to act
on the space D−∞

1+ (E) and D∗ on D−∞
1+ (H ⊗ E), so that D : Dα+1

p (E) →
Dα

p (H ⊗E), D∗ : Dα+1
p (H ⊗E) → Dα

p (E) and L : Dα+2
p (E) → Dα

p (E) are
continuous for every 1 < p < ∞ and α ∈ R.

An element F in the space D∞
p (E) may be called smooth because it is

infinitely differentiable. Typical examples of smooth functionals are give by
Itô functionals; if F (w) = f(X(t, x;w)), t > 0, x ∈ M , where X = (X(t, x;w))
is the solution of SDE (2.1) and f is a smooth function on M with a suitable
growth condition at the point at infinity of M , then F ∈ D∞

∞−. It should be
remarked, however, that smooth functionals are not continuous, in general.
A typical example is Lévy’s stochastic area S(t, w) = 1

2

∫ t

0
w1(s)dw2(s) −

w2(s)dw1(s) on the two-dimensional Wiener space, which is an element in
D∞
∞− for each t > 0. However, there is no continuous function on the Wiener

space which coincides with S(t, w), PW -a.e.; in fact, Sugita ([S 2]) showed
more strongly that, on any separable Banach space continuously included
in W0(R2) which has nonetheless PW -measure 1, there exists no continuous
function which coincides with S(t, w), PW -a.e. Thus, we see that Sobolev’s
embedding theorem no longer holds in our Sobolev differential calculus on
Wiener space.

When α > 0, some elements in D−α
p (E) are no more Wiener functionals

in the sense of PW -measurable functions; they are something like Schwartz
distributions on Wiener space. We call them generalized Wiener functionals.
The natural coupling between F ∈ Dα

p and G ∈ (Dα
p )∗ = D−α

q is denoted
by E(FG); this notation is compatible with the usual one when α = 0. In
particular, the natural coupling of F ∈ D−∞

1+ with 1 ∈ D∞
∞−, 1 being the

Wiener fuctional identically equal to 1, is denoted by E(F ) and is called the
generalized expectation of F .

Typical examples of generalized Wiener functionals are obtained by the
composite of Schwartz distributions on Rn (or on a manifold M) with a
smooth Rn-valued (resp. M -valued) Wiener functional which is nondegener-
ate in the sense given below. We mainly discuss the case of Rn; the case of
manifold can be discussed similarly and, indeed, can be reduced to the case
of Rn by choosing a suitable local coordinate.

Let F = (F i(w)) ∈ D∞
∞−(Rn) and define the Malliavin covariance σF =

(σij
F (w)) of F by

σij
F (w) = 〈DF i(w), DF j(w)〉H , i, j = 1. · · · , n.

It is nonnegative definite so that det σF ≥ 0, PW -a.s.. We set (det σF )−1 =
+∞ if det σF = 0. For a domain U in Rn, we say that F is nondegenerate
in U if 1U (F ) · (detσF )−1 ∈ L∞− = ∩1<p<∞Lp. Then, for every Schwartz
distribution T on Rn with support contained in U , a generalized Wiener
functional T ◦F = T (F (w)) can be defined uniquely as an element in D−∞

∞− :=⋂
1<p<∞D−∞

p so that this notion has the following two properties: (i) if T
is given by a smooth function f(x) on Rn with support contained in U , then
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T ◦F = f(F (w)), (ii) if Tν → T in the sense of a Sobolev norm with negative
differentiability index, then Tν ◦ F → T ◦ F in

⋂
1<p<∞D−α

p for some α > 0.
T ◦ F is called the composite of the Schwartz distribution T on Rn and the
Wiener functional F , or the pull-back of the Schwartz distribution T on Rn

by the Wiener map F : W0(Rd) → Rn.
In particular, for Dirac δ-functions δx, x ∈ U , δx(F ) is defined as an

element in D−∞
∞−. By the continuity property (ii), we can deduce that x ∈

U 7→ δx(F ) ∈ D−α
∞− is C∞ and hence, x ∈ U 7→ E[Φ · δx(F )] is a C∞-function

for Φ ∈ D∞
1+ =:

⋃
1<p<∞D∞

p . We can easily deduce that pF (x) := E(δx(F )),
x ∈ U , is density in U , with respect to the Lebesgue measure, of the law of F
and E[Φ · δx(F )] = pF (x)E[Φ|F = x], so that the conditional expectation of Φ
given F = x can be defined smoothly and pointwise on a set { x ∈ U | pF (x) >
0 }.

Let r(t, r;w) = (X(t, r;w), e(t, r, w)) be the stochastic moving frame on
a Riemannian manifold M as introduced in Section 2. Let δx, x ∈ M , be
the Dirac delta function on M with pole at x defined with respect to the
Riemannian volume dx. For each t > 0 and r ∈ O(M), M -valued Wiener
functional X(t, r;w) is smooth and nondegenerate, so that the composite
δy(X(t, r;w)) is defined as an element in D−∞

∞− for each y ∈ M . Using this
notion, we can now give a probabilistic expression for heat kernels 〈x|etL|y〉
for heat equations studied in Section 2: here, heat kernels are defined with
respect to the Riemannian volume dy on M , so that u = etLf is given by
u(t, x) =

∫
M
〈x|etL|y〉f(y)dy.

In the case (4), i.e., L = 1
2∆M ,

〈x|etL|y〉 = E[δy(X(t, r;w))], x = π(r).

By considering the right action of O(d), we deduce as above that the expec-
tation in the RHS does not depend on a particular choice of r ∈ O(M) such
that x = π(r).

In the case of (5), i.e., L = 1
2∆M − V ,

〈x|etL|y〉 = E

[
exp

{
−

∫ t

0

V (X(s, r;w))ds

}
· δy(X(t, r;w))

]
, x = π(r).

In the case of (6), i.e,, L = H(θ, V ),

〈x|etL|y〉 = E

[
exp

{√
−1

∫ t

0

θ̄i(X(s, r;w)) ◦ dwi(s)

−
∫ t

0

V (X(s, r;w))ds

}
· δy(X(t, r;w))

]
, x = π(r).

In the case of (7), i.e., L = 1
2� acting on

∧
(M), we need a more careful

consideration; the heat kernel 〈x|etL|y〉 takes its value in the vector space
Hom(

∧
T ∗

y M,T ∗
x M) formed of all linear mappings from

∧
T ∗

y M to
∧

T ∗
x M ,

and it should be given formally by
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〈x|etL|y〉 = E

[
r̃M(t, r;w) ˜r(t, r;w)

−1

· δy(X(t, r;w))
]

, r = (x, e).

However, the meaning of the generalized expectation in the RHS is not clear

because the Wiener functional r̃M(t, r;w) ˜r(t, r;w)
−1

takes its value in the
vector space Hom(

∧
T ∗

X(t,r;w)M,
∧

T ∗
x M), which is not a fixed vector space

when w varies. We can overcome this difficulty by appealing to the quasi-sure
analysis in the Malliavin calculus (cf. e.g., Malliavin [M], Lescot [Le], Itô [It]).

As we remarked above, a smooth Wiener functional cannot have a contin-
uous modification, in general. It can possess however a modification, called
quasi-continuous modification or redefinition of it. If F ∈ D∞

∞−(Rn) is non-
degenerate in U ⊂ Rn, then, as was shown by Airault- Malliavin ([AM]) and
Sugita ([S 1]), there exists a finite Borel measure µx on the Wiener space
W0(Rd) associated uniquely with x ∈ U such that, for every Φ ∈ D∞

1+, its
quasi-continuous modification Φ̃ is µx-integrable and the following identity
holds: ∫

W0(Rd)

Φ̃(w)µx(dw) = E[Φ · δx(F )].

The measure µx has its full measure on the set Sx := { w ∈ W0(Rd) | F̃ (w) =
x }. We may think of the measure µx as having the formal density δx(F ), or
we may think of it as the ’surface measure’ on a ’hypersurface’ Sx embedded
in the Wiener space.

A similar theory can be developed in the case of O(M) and we have a
measure µt,r

y associated with δy(X(t, r;w)), y ∈ M . If X̃(t, r;w) is a quasi-
continous modification of X(t, r;w), then µt,r

y ({ w | X̃(t, r;w) 6= y }) = 0.

Then, a quasi-continuous modification
[
r̃M(t, r;w) ˜r(t, r;w)

−1
]∼

of

r̃M(t, r;w) ˜r(t, r;w)
−1

takes values in Hom(
∧

T ∗
y M,T ∗

x M) quasi-surely and
hence µt,r

y -almost surely, so that it can be integrated by the measure µt,r
y to

get an element in Hom(
∧

T ∗
y M,T ∗

x M). Now we have

〈x|etL|y〉 =
∫

W0(Rd)

[
r̃M(t, r;w) ˜r(t, r;w)

−1
]∼

µt,r
y (dw), r = (x, e).

5 Concluding remarks.

Probabilistic representations of heat kernels given above can be applied to
study various properties of heat kernels; regularities, estimates, short time
asymptotic expansions and so on. There are a huge amount of literatures
and it is beyond the scope of this work to review of them. We would only
refer to two survey articles [Ik] and [W] in which we can see several effective
applications of our heat kernel representation by generalized Wiener functional
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expectations to the problems of McKean and Singer. Here we would content
ourselves with giving a remark on quasi-sure analysis discussed above.

Quasi-sure analysis and the theory of rough paths by T. Lyons

We saw in Section 3 an example of heat kernel representations in which
some refinement of generalized expectations is necessary and we did it by
appealing to the quasi-sure analysis on Wiener space. We would remark that
another approach is possible to such a refinement by using the theory of rough
paths due to T. Lyons. We first recall this theory: (cf. [Ly])

Let W0(Rd) := { w; [0, T ] 3 t 7→ w(t) ∈ Rd, continuous, w(0) = 0 }
be the d-dimensional path space as above and H be its Cameron-Martin
subspace. Let

Hd

(
∼= Rd(d+1)/2 ∼= Rd × so(d)

)
:=

{
x = (xi, x(i,j)) | 1 ≤ i < j ≤ d

}
endowed with the group multiplication x · y, x, y ∈ Hd, defined by x · y :=
z = (zi, z(i,j)) where zi = xi + yi, z(i,j) = x(i,j) + y(i,j) + 1

2 (xiyj − xjyi). Hd

is called the free nilpotent Lie group with step 2 and d generators.
Let 4T = { (s, t) | 0 ≤ s ≤ t ≤ T }(⊂ [0, T ]2) and set

Ω(Rd) = { ω = (ω(s, t)) : 4T 3 (s, t) 7→ ω(s, t) ∈ Hd, continuous,
ω(s, u) = ω(s, t) · ω(t, u) for every 0 ≤ s ≤ t ≤ u ≤ T }.

Let 2 < p < 3 and define a metric dp on Ω(Rd) by

dp(ω, θ) = sup
0≤s<t≤T

{
|ω(1)(s, t)− θ(1)(s, t)|

(t− s)1/p
+
|ω(2)(s, t)− θ(2)(s, t)|

(t− s)2/p

}
where we denote x(1) = (xi) ∈ Rd and x(2) = (x(i,j)) ∈ Rd(d−1)/2 for x =
(xi, x(i,j)) ∈ Hd.

Define a subspace Ωsmooth(Rd) of Ω(Rd) by setting Ωsmooth(Rd) =
{ ω(h) | h ∈ H }, where ω(h) ∈ Ω(Rd) is defined by

ω(h)(s, t)i = hi(t)− hi(s),

ω(h)(s, t)(i,j) =
1
2

∫ ∫
s≤t1≤t2≤t

(ḣi(t1)ḣj(t2)− ḣj(t1)ḣi(t2))dt1dt2.

Finally, we set
GΩp(Rd) = Ωsmooth(Rd))

dp

and call it the space of geometric rouph paths. It is a separable and complete
metric space (i.e. a Polish space) under the metric dp.

We can define a Wiener map ρ : W0(Rd) 3 w 7→ ρ[w] ∈ GΩp(Rd), by
setting
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ρ[w](s, t)i = wi(t)− wi(s),

ρ[w](s, t)(i,j) =
1
2

∫ ∫
s≤t1≤t2≤t

(
dwi(t1)dwj(t2)− dwj(t1)dwi(t2)

)
=

1
2

∫ t

s

(
[wi(τ)− wi(s)]dwj(τ)− [wj(τ)− wj(s)]dwi(τ)

)
,

the integral being in the sense of Itô’s stochastic integrals. The image mea-
sure ρ∗(PW ) on GΩp(Rd) is denoted by P̄p or simply by P̄ when p is well
understood.

Define the projection π : GΩp(Rd) 3 ω 7→ π[ω] ∈ W0(Rd) by setting
π[ω](t)i = ω(0, t)i, t ∈ [0, T ], i = 1, . . . , d. Then, π : GΩp(Rd) → W0(Rd) is P̄ -
measurable and the image measure π∗(P̄ ) coincides with the Wiener measure
PW on W0(Rd). Then every Wiener functional (i.e. PW -measurable function)
F on W0(Rd) can be lifted to a P̄ -measurable function F̄ on GΩp(Rd) by
setting F̄ = F ◦ π(:= π∗(F )). We call F̄ the lift of F on GΩp(Rd). We
have ρ ◦ π = id|GΩp(Rd), P̄ -a.s., and π ◦ ρ = id|W0(Rd), PW -a.s., so that
the lifting is obviously an isomorphism between PW -measurable functions
and P̄ -measurable functions, (strictly speaking, an isomorphism between the
equivalence classes of functions coinciding each other almost surely.) F can
be recovered from F̄ as F = F̄ ◦ ρ(:= ρ∗(F̄ )), PW -a.s.

By this isomorphism, every notion concerning Wiener functionals can be
lifted to that concerning P̄ -measurable functions on GΩp(Rd); for example,
differential operators D, D∗, L are lifted to D̄ := π∗Dρ∗, D̄∗ := π∗D

∗ρ∗,
L̄ := π∗Lρ∗, and so on. So the lifting gives isomorphisms between Sobolev
spaces Dα

p (E) on the the Wiener space and Sobolev spaces D̄α
p (E) on the

space of geometric rough paths.
We consider a SDE like (2.1) on Rn, which is set up on the Wiener space

W0(Rd):

dX(t) =
d∑

i=1

Ai(X(t)) ◦ dwi(t) + A0(X(t))dt, X(0) = x (13)

and denote the solution by X = (X(t, x;w)). We assume that all coefficients
of SDE are smooth with bounded derivatives of all orders. By the skeleton of
X, we mean the solution Ξ = (ξ(t, x;h)) of ODE for given h ∈ H:

dξ

dt
(t) =

d∑
i=1

Ai(ξ(t)) · ḣi(t) + A0(ξ(t)), ξ(0) = x. (14)

Note that ξ(t, x;h) is, for fixed t > 0 and x ∈ Rn, a smooth functional of
h ∈ H and also the map Rn ×H 3 (x, h) 7→ [t 7→ ξ(t, x;h)] ∈ C([0, T ] → Rn)
is continuous. A skeleton is something like a restriction of X on H; since
PW (H) = 0, however, the restriction is usually meaningless.

Now, one of the fundamental theorems of T. Lyons can be stated as follows:
There exists a continuous map
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φ : (x, ω) ∈ Rn ×GΩp(Rd) 7→ φ(x, ω) := [t 7→ φ(x, ω)(t)] ∈ C([0, T ] 7→ Rn),

and hence a continuous map φ(x,t) : ω ∈ GΩp(Rd) 7→ φ(x,t)(ω) := φ(x, ω)(t) ∈
Rn, for each fixed x and t, such that the following hold:

(i) ξ(t, x;h) = φ(x, ω[h])(t), for all h ∈ H, t ∈ [0, T ] and x ∈ Rn,
(ii) If X̄ =

(
X̄(t, x;ω)

)
is the lift of X = (X(t, x;w)) on GΩp(Rd), then it

holds that φ(x, ω)(t) = X̄(t, x;ω), P̄ -a.s.

Hence, X̄ =
(
X̄(t, x;ω)

)
has a modification which is continuous in ω. This

continuous modification can be used in place of a quasi-continuous modifi-
cation in quasi-sure analysis. (We should note that the original result of T.
Lyons is much stonger than what we stated above: He introduced the notion
of a differential equation driven by rough paths and constructed its solution
which is given as rough paths in Rn. The function φ above is obtained from
the first component of the solution. This theory of Lyons, indeed, is a pure
real analysis.)

Consider the stochastic moving frame r = (r(t, r;w)) realized on the
Wiener space as above. Then its lift r̄ = (r̄(t, r;ω)) has a continuous modi-
fication on GΩp(Rd) which we denote by the same notation r̄. The measure
µt,r

y (dw) on W0(Rd) is now lifted to a measure µ̄t,r
y (dω) on GΩp(Rd) and it is

supported on the closed set { ω | r̄(t, r;ω) = y }. Now, returning to the heat
kernel 〈x|etL|y〉 in the case of de Rham-Hodge-Kodaira Laplacian 1

2�, it is

easy to see that the lift r̃M̄(t, r;ω) ˜r̄(t, r;ω)
−1

is continuous in ω which takes
values in Hom(

∧
T ∗

y M,T ∗
x M) on the set { ω | r̄(t, r;ω) = y }, where x = π(r).

Then we have

〈x|etL|y〉 =
∫
{ω|r̄(t,r;ω)=y}

[
r̃M̄(t, r;ω) ˜r̄(t, r;ω)

−1
]

µ̄t,r
y (dω), r = (x, e).
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