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1 Introduction

This paper takes one step in the problem of utility maximization under model
uncertainty. At a very general level, the latter could be formulated as

find sup
π

inf
Q

U(π,Q), (1)

where π runs through a set of strategies (portfolios, investment decisions, . . . )
and Q ∈ Q through a set of models (measures, scenarios, . . . ). In the simplest
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case, there is one known model so that Q = {P} for a fixed probability
measure P , and U(π, P ) has the form of a P -expected utility from terminal
wealth and/or consumption, both of which are determined by π. There is
a vast literature on this by now classical problem; but there is always the
drawback that one assumes the underlying model to be exactly known.

To address this issue, one recent line of research considers a non-singleton
set Q of probability measures while keeping for U(π,Q) a Q-expected utility.
Such a setting for Q is often called a multiple priors model, and the corre-
sponding optimization problem (1) is known as robust utility maximization.
Some results in this area have been obtained in [10], [16] and [18], among
others, and the overall approach relies a lot on convex duality ideas. The set
Q of models under consideration is assumed to have certain properties, but is
otherwise quite abstract and usually not specified in any detail.

Instead of working with a somehow given set of models, an alternative is to
allow a priori all possible models Q, but to include in U(π,Q) a penalization
term; this should only depend on Q (not on π) and quantify the decision
maker’s attitude towards the model Q. Such an approach has for instance
been suggested in [1] and [11]; they take as U(π,Q) the sum of a Q-expected
utility, like above, plus a penalty term based on the relative entropy of Q with
respect to a reference model (measure) P . This is also the setting that we
use here. For a very recent treatment of a closely related problem via duality
methods, see [17].

The focus of the analysis in [1] and [11] is on general insights about the
qualitative behaviour of a solution to (1) in their framework. This is done via
a mostly formal study of the corresponding Hamilton–Jacobi–Bellman (HJB)
equations in a Markovian setting. Our goal in contrast is to obtain rigorous
mathematical results, and the present paper achieves some progress in that
direction for the partial (inner) problem of minimizing U(π,Q) over Q when
π is kept fixed. This problem has also been studied by [21] who has obtained
very similar results, but with a different approach; see Section 6 for a more
detailed comparison.

The paper is structured as follows. Section 2 sets the stage by giving a
precise definition of the functional Q 7→ U(π,Q) with fixed π and of the
corresponding optimization problem, and by introducing notations and key
assumptions. Section 3 provides a number of auxiliary results for subsequent
use. In Section 4, we show with the help of a standard Komlós-type argument
that there exists a unique minimizing measure Q∗, and we prove that Q∗ is
even equivalent to P . This mainly functional analytic approach is comple-
mented by Section 5. There we treat our optimization problem by stochastic
control methods and show that for a continuous filtration, the corresponding
dynamic value process is characterized as the unique solution of a generalized
backward stochastic differential equation (BSDE) with a quadratic term in its
driver. Our BSDE is a slight generalization of an equation studied in detail
by [19], but our method of attack is rather different. Like in [19], however, our
BSDE involves unbounded terms in the driver and the terminal value which
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cannot be handled by existing general techniques from the BSDE literature.
Hence our approach has to exploit the precise structure of our equation. The
final Section 6 contains a brief comparison with some of the most closely
related literature.

2 The basic optimization problem

This section gives a precise formulation of our optimization problem and in-
troduces a number of notations for later use.

We start with a filtered probability space (Ω,F ,F, P ) over a finite time
horizon T ∈ (0,∞). The filtration F = (Ft)0≤t≤T satisfies the usual conditions
of right-continuity and P -completeness. For any probability measure Q� P
on FT , the density process of Q with respect to P is the RCLL P -martingale
ZQ = (ZQ

t )0≤t≤T with

ZQ
t =

dQ
dP

∣∣∣∣
Ft

= EP

[
dQ
dP

∣∣∣∣ Ft

]
, 0 ≤ t ≤ T.

Since ZQ is closed on the right by ZQ
T = dQ

dP

∣∣∣
FT

, we can and do identify ZQ

with Q. (More precisely, ZQ determines the restriction of Q to FT , but this
will be enough for our purposes.)

The basic ingredients for our optimization problem are now

• parameters α, α′ ∈ [0,∞) and β ∈ (0,∞);
• progressively measurable processes δ = (δt)0≤t≤T and U = (Ut)0≤t≤T ;
• an FT -measurable random variable U ′T .

Interpretations will follow presently. We define the discounting process

Sδ
t := exp

(
−
∫ t

0

δs ds
)
, 0 ≤ t ≤ T,

the auxiliary quantities

Uδ
t,T := α

∫ T

t

Sδ
s

Sδ
t

Us ds+ α′
Sδ

T

Sδ
t

U ′T , 0 ≤ t ≤ T,

Rδ
t,T (Q) :=

∫ T

t

δs
Sδ

s

Sδ
t

log
ZQ

s

ZQ
t

ds+
Sδ

T

Sδ
t

log
ZQ

T

ZQ
t

, 0 ≤ t ≤ T

for Q� P on FT and consider the cost functional

c(ω,Q) := Uδ
0,T (ω) + βRδ

0,T (Q)(ω).

The basic goal is to

minimize the functional Q 7→ Γ (Q) := EQ[c(·, Q)] (2)
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over a suitable class of probability measures Q� P on FT . Note that in the
language of the introduction, Γ (Q) represents U(π,Q) for fixed π.

A closer look at the cost functional c(ω,Q) shows that

Γ (Q) = EP

[
ZQ

T

(
α

∫ T

0

Sδ
sUs ds+ α′Sδ

TU
′
T

)]
(3)

+βEP

[∫ T

0

δsS
δ
sZ

Q
s logZQ

s ds+ Sδ
TZ

Q
T logZQ

T

]

consists of two terms. The first is a Q-expected discounted utility with dis-
count rate δ, utility rate Us at time s and terminal utility U ′T at time T .
Usually, Us comes from consumption and U ′T from final wealth. As explained
above, we consider the strategy decisions π as being frozen for the moment;
a maximization over some π determining U.(π) and U ′T (π) will only be done
in a second step. The weights α and α′ can be used to obtain as special cases
the extreme situations of utility rate only or terminal utility only. The second
summand is a sort of discounted relative entropy term with both an “entropy
rate” as well as a “terminal entropy”. The (constant) factor β determines the
strength of this penalty term.

Definition 1. Dexp
0 is the space of all progressively measurable processes y =

(yt)0≤t≤T with

EP

[
exp

(
γ ess sup

0≤t≤T
|yt|
)]

<∞ for all γ > 0.

Dexp
1 denotes the space of all progressively measurable processes y = (yt)0≤t≤T

such that

EP

[
exp

(
γ

∫ T

0

|ys|ds

)]
<∞ for all γ > 0.

Definition 2. For any probability measure Q on (Ω,F),

H(Q|P ) :=

EQ

[
log dQ

dP

∣∣∣
FT

]
if Q� P on FT

+∞ otherwise

denotes the relative entropy of Q with respect to P on FT . We denote by Qf

the space of all probability measures Q on (Ω,F) with Q� P on FT , Q = P
on F0 and H(Q|P ) <∞. Clearly P ∈ Qe

f := {Q ∈ Qf |Q ≈ P on FT }.

For a precise formulation of (2), we now assume

(A1) 0 ≤ δ ≤ ‖δ‖∞ <∞ for some constant ‖δ‖∞;
(A2) the process U is in Dexp

1 ;
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(A3) EP [exp (γ|U ′T |)] <∞ for all γ > 0.

We shall see below that EQ[c(·, Q)] is then well-defined and finite for Q ∈ Qf .
Due to (A1), a simple estimation gives

EP

[
Sδ

TZ
Q
T logZQ

T

]
≥ −e−1 + e−‖δ‖∞TH(Q|P ).

Hence the second term in Γ (Q) explodes unless H(Q|P ) < ∞. Because we
want to minimize Γ (Q), this explains why we only consider measures Q in
Qf .

Remark 3. The special case δ ≡ 0 is much simpler and already gives a flavour
of the results we obtain for general δ. In fact, δ ≡ 0 yields Sδ ≡ 1 and allows
us to rewrite Γ (Q) as

Γ (Q) = EQ[U0
0,T ] + βH(Q|P ) = βH(Q|PU )− β logEP

[
exp

(
− 1
β
U0

0,T

)]
if we define a new probability measure PU ≈ P by

dPU := const. exp
(
− 1
β
U0

0,T

)
dP.

Hence (2) amounts to minimizing the relative entropy of Q with respect to
PU , and it is well known from [4] that there exists a unique solution Q∗ to
this problem and that Q∗ is equivalent to PU , hence also to P . In fact, the
minimizer obviously is Q∗ = PU .

For δ 6≡ 0, we shall also find that there exists a unique minimizer Q∗ of
Γ (Q) and that Q∗ ≈ P . However, it does not seem possible to reduce the
general δ case to δ ≡ 0 in a simple way. The presence of a discounting term
with positive δ is indispensable for an infinite horizon version of (2); see [11]
and forthcoming work by G. Bordigoni for more on this issue. �

We later embed the minimization of Γ (Q) in a stochastic control problem
and to that end now introduce a few more notations. Let S denote the set
of all F-stopping times τ with values in [0, T ] and D the space of all density
processes ZQ with Q ∈ Qf . Recall that we can identify Q with ZQ. We define

D(Q, τ) :=
{
ZQ′

∈ D
∣∣∣ Q′ = Q on Fτ

}
,

Γ (τ,Q) := EQ[c(·, Q) | Fτ ]

and the minimal conditional cost at time τ ,

J(τ,Q) := Q - ess inf
ZQ′∈D(Q,τ)

Γ (τ,Q′).

Then (2) can be reformulated to

find inf
Q∈Qf

Γ (Q) = inf
Q∈Qf

EQ[c(·, Q)] = EP [J(0, Q)] (4)

by using the dynamic programming equation and the fact that Q = P on F0

for every Q ∈ Qf .
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3 Auxiliary estimates

In this section, we prove a number of auxiliary estimates that will help us
later in establishing our main results. We frequently use the inequalities

x log x ≥ −e−1 for all x ≥ 0, (5)

|x log x| ≤ x log x+ 2e−1 for all x ≥ 0

(where we set 0 log 0 := 0) and

xy ≤ y log y − y + ex for all x ∈ R, y ≥ 0. (6)

The latter is simply the observation that the function x 7→ xy−ex on R takes
its maximum for y > 0 in x = log y. Throughout this section, we assume that
(A1) – (A3) hold.

We first show that Γ (Q) can be controlled by H(Q|P ).

Lemma 4. There is a constant C ∈ (0,∞) depending only on α, α′, β, δ, T ,
U , U ′T such that

Γ (Q) ≤ EQ[|c(·, Q)|] ≤ C
(
1 +H(Q|P )

)
for all Q ∈ Qf .

Proof. The first inequality is obvious. To prove the second, we introduce R :=
α
∫ T

0
|Us|ds+α′|U ′T | and use first the definition of c(ω,Q), the Bayes formula,

(A1) and 0 ≤ Sδ ≤ 1, and then (5) and (6) to obtain

EQ[|c(·, Q)|] ≤ EP [ZQ
T R] + βEP

[
‖δ‖∞

∫ T

0

|ZQ
s logZQ

s |ds+ |ZQ
T logZQ

T |

]
≤ EP [ZQ

T logZQ
T − ZQ

T + eR] + 2e−1β(‖δ‖∞T + 1)

+βEP

[
‖δ‖∞

∫ T

0

ZQ
s logZQ

s ds+ ZQ
T logZQ

T

]
.

By Jensen’s inequality and conditioning on Fs, we have

EP [ZQ
s logZQ

s ] ≤ EP [ZQ
T logZQ

T ] = H(Q|P )

and therefore

EQ[|c(·, Q)|] ≤ EP [eR] + 2e−1β(‖δ‖∞T + 1) +
(
1 + β(‖δ‖∞T + 1)

)
H(Q|P ).

Hence

C := max
(
EP [eR] + 2e−1β(‖δ‖∞T + 1), 1 + β‖δ‖∞T + β

)
will do, and C <∞ due to (A1) – (A3) and the definition of R. ut
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An immediate but very useful consequence is

Corollary 5. Assume (A1) – (A3). Then

c(·, Q) ∈ L1(Q) for every Q ∈ Qf ,

and in particular Γ (Q) is well-defined and finite for every Q ∈ Qf .

Our next result now shows that conversely, H(Q|P ) can also be controlled
by Γ (Q). This is a bit more tricky and will be crucial later on. Note how the
argument exploits almost the full strength of the integrability assumptions
(A2) and (A3).

Proposition 6. There is a constant C ∈ (0,∞) depending only on α, α′, β,
δ, T , U , U ′T with

H(Q|P ) ≤ C
(
1 + Γ (Q)

)
for all Q ∈ Qf . (7)

In particular, infQ∈Qf
Γ (Q) > −∞.

Proof. We first prove for later use an auxiliary inequality in somewhat greater
generality. Fix a stopping time τ ∈ S. Using the Bayes formula, (A1), then
0 ≤ Sδ ≤ 1 and (5) gives

EQ

[∫ T

0

δsS
δ
s logZQ

s ds

∣∣∣∣∣ Fτ

]
=

1

ZQ
τ

EP

[∫ T

0

δsS
δ
sZ

Q
s logZQ

s ds

∣∣∣∣∣ Fτ

]

≥ − 1

ZQ
τ

‖δ‖∞T e−1.

Similarly, using 1 ≥ Sδ
T ≥ e−‖δ‖∞T yields

EQ[Sδ
T logZQ

T | Fτ ] =
1

ZQ
τ

EP [Sδ
TZ

Q
T logZQ

T | Fτ ]

≥ 1

ZQ
τ

(
−e−1 + e−‖δ‖∞T (e−1 + EP [ZQ

T logZQ
T | Fτ ])

)
≥ 1

ZQ
τ

(
−e−1 + e−‖δ‖∞TEP [ZQ

T logZQ
T | Fτ ]

)
.

Moreover, using 0 ≤ Sδ ≤ 1 and again setting R := α
∫ T

0
|Us|ds+α′|U ′T | gives

EQ[Uδ
0,T |Fτ ] ≥ −EQ[R|Fτ ] = − 1

ZQ
τ

EP [ZQ
T R | Fτ ]

so that we get

Γ (τ,Q) ≥ − 1

ZQ
τ

(
EP

[
ZQ

T

(
α

∫ T

0

|Us|ds+ α′|U ′T |

)∣∣∣∣∣ Fτ

]
(8)

+ β
(
−‖δ‖∞T e−1 − e−1 + e−‖δ‖∞TEP [ZQ

T logZQ
T | Fτ ]

))
.
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To estimate the first term in (8), we now use (6) with x = γR, y = 1
γZ

Q
T and

γ > 0 to be chosen later. This yields

EP [ZQ
T R | Fτ ] ≤ EP

[
1
γ
ZQ

T logZQ
T − 1

γ
ZQ

T log γ − 1
γ
ZQ

T

∣∣∣∣ Fτ

]
+ EP [eγR | Fτ ]

=
1
γ
EP [ZQ

T logZQ
T | Fτ ]− 1

γ
(log γ + 1)ZQ

τ + EP [eγR | Fτ ].

We plug this into (8) to obtain for later use

Γ (τ,Q) ≥ 1
γ

(log γ + 1)− 1

ZQ
τ

EP

[
exp

(
γα

∫ T

0

|Us|ds+ γα′|U ′T |

)∣∣∣∣∣ Fτ

]
(9)

− 1

ZQ
τ

βe−1(‖δ‖∞T + 1)

+
1

ZQ
τ

EP [ZQ
T logZQ

T | Fτ ]
(
βe−‖δ‖∞T − 1

γ

)
.

If we choose τ = 0 and take expectations, this gives in particular

Γ (Q) ≥ 1
γ

(log γ+1)−EP [eγR]−βe−1(‖δ‖∞T+1)+H(Q|P )
(
βe−‖δ‖∞T − 1

γ

)
.

For any γ > 0 such that

βe−‖δ‖∞T − 1
γ
≥ η > 0

we thus obtain (7) with

C :=
1
η

max
(

1, EP [eγR] +
1
γ

(| log γ|+ 1) + βe−1(‖δ‖∞T + 1)
)
,

and C <∞ due to (A1) – (A3) and the definition of R. The final assertion is
clear since H(Q|P ) ≥ 0. ut

A slight modification in the proof of Proposition 6 also yields the following
technical estimate.

Lemma 7. For any γ > 0 and any set A ∈ FT , we have

EQ[|Uδ
0,T |IA] ≤ 1

γ
H(Q|P ) +

1
γ

(e−1 + | log γ|+ 1) (10)

+EP

[
IA exp

(
γα

∫ T

0

|Us|ds+ γα′|U ′T |

)]
.
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Proof. We again use (6) with x = γR := γ
(
α
∫ T

0
Sδ

s |Us|ds+ α′Sδ
T |U ′T |

)
,

y = 1
γZ

Q
T and then multiply by IA to obtain

ZQ
T |U

δ
0,T |IA ≤ ZQ

T RIA ≤ IA

(
1
γ
ZQ

T logZQ
T − 1

γ
ZQ

T (log γ + 1) + eγR

)
.

Adding e−1 and using (5) then yields

ZQ
T |U

δ
0,T |IA ≤ 1

γ
(ZQ

T logZQ
T + e−1) + ZQ

T

1
γ

(| log γ|+ 1) + eγRIA,

and (10) follows by taking expectations under P . ut

We later want to use the martingale optimality principle from stochastic
control theory. Although we know from Corollary 5 that c(·, Q) is Q-integrable
for every Q ∈ Qf , this is not enough since we have no uniformity in Q.
Therefore we prove here directly that each J(τ,Q) is Q-integrable.

Lemma 8. For each τ ∈ S and Q ∈ Qf , the random variable J(τ,Q) is in
L1(Q).

Proof. By definition,

J(τ,Q) ≤ Γ (τ,Q) ≤ EQ

[
|c(·, Q)|

∣∣Fτ

]
so that (

J(τ,Q)
)+ ≤ EQ

[
|c(·, Q)|

∣∣Fτ

]
is Q-integrable by Corollary 5. Dealing with the negative part is a bit more
delicate. We first fix ZQ′ ∈ D(Q, τ) and consider Γ (τ,Q′). Our goal is to find
a Q-integrable lower bound for Γ (τ,Q′) which does not depend on Q′, because
this will then also work for J(τ,Q) = ess infZQ′∈D(Q,τ) Γ (τ,Q′). To that end,
we use (9) with Q′ instead of Q and observe that ZQ′

τ = ZQ
τ because Q′ = Q

on Fτ . Choosing γ > 0 to satisfy βe−‖δ‖∞T − 1
γ = 0 thus yields

(
Γ (τ,Q′)

)− ≤ B :=
1

ZQ
τ

(
EP

[
exp

(
γα

∫ T

0

|Us|ds+ γα′|U ′T |

)∣∣∣∣∣ Fτ

]

+ βe−1(‖δ‖∞T + 1)

)
+

1
γ

(| log γ|+ 1).

But this nonnegative random variable does not depend on Q′, and thus we
conclude that

J(τ,Q) = ess inf
ZQ′∈D(Q,τ)

Γ (τ,Q′) ≥ ess inf
ZQ′∈D(Q,τ)

−
(
Γ (τ,Q′)

)− ≥ −B

so that
(
J(τ,Q)

)− ≤ B. Finally, B ∈ L1(Q) because (A1) – (A3) yield that
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EQ[B] = EP

[
exp

(
γα

∫ T

0

|Us|ds+ γα′|U ′T |

)]
+ βe−1(‖δ‖∞T + 1)

+
1
γ

(| log γ|+ 1) <∞.

ut

4 Existence of an optimal measure Q∗

The main result of this section is that the problem (2) of minimizing Γ (Q) =
EQ[c(·, Q)] over Q ∈ Qf has a unique solution Q∗ ∈ Qf , and that Q∗ is even
equivalent to P . This is proved for a general filtration F.

Theorem 9. Assume (A1) – (A3). Then there exists a unique Q∗ ∈ Qf which
minimizes Q 7→ Γ (Q) over all Q ∈ Qf .

Proof. 1) x 7→ x log x is strictly convex and δ and Sδ are nonnegative; hence
Q 7→ Γ (Q) is also strictly convex and Q∗ must be unique if it exists.

2) Let (Qn)n∈N be a sequence in Qf such that

↘ - lim
n→∞

Γ (Qn) = inf
Q∈Qf

Γ (Q) > −∞

and denote by Zn = ZQn

the corresponding density processes. Since each
Zn

T ≥ 0, it follows from Komlós’ theorem that there exists a sequence (Z̄n
T )n∈N

with Z̄n
T ∈ conv(Zn

T , Z
n+1
T , . . . ) for each n ∈ N and such that (Z̄n

T ) converges
P -a.s. to some random variable Z̄∞T , which is then also nonnegative but may
take the value +∞. Because Qf is convex, each Z̄n

T is again associated to some
Q̄n ∈ Qf . We claim that this also holds for Z̄∞T , i.e., that dQ̄∞ := Z̄∞T dP
defines a probability measure Q̄∞ ∈ Qf . To see this, note first that we have

Γ (Q̄n) ≤ sup
m≥n

Γ (Qm) = Γ (Qn) ≤ Γ (Q1) (11)

because Q 7→ Γ (Q) is convex and n 7→ Γ (Qn) is decreasing. Hence Proposi-
tion 6 yields

sup
n∈N

EP [Z̄n
T log Z̄n

T ] = sup
n∈N

H(Q̄n|P ) ≤ C

(
1 + sup

n∈N
Γ (Q̄n)

)
(12)

≤ C
(
1 + Γ (Q1)

)
<∞.

Thus (Z̄n
T )n∈N is P -uniformly integrable by de la Vallée-Poussin’s crite-

rion and therefore converges in L1(P ) as well. This implies that EP [Z̄∞T ] =
limn→∞EP [Z̄n

T ] = 1 so that Q̄∞ is indeed a probability measure and Q̄∞ � P
on FT . Because x 7→ x log x is bounded below by −e−1, Fatou’s lemma and
(12) yield
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H(Q̄∞|P ) = EP [Z̄∞T log Z̄∞T ] ≤ lim inf
n→∞

EP [Z̄n
T log Z̄n

T ] <∞. (13)

Finally, we also have Q̄∞ = P on F0; in fact, (Z̄n
T ) converges to Z̄∞T strongly,

hence also weakly in L1(P ) and so we have for every A ∈ F0

Q̄∞[A] = EP [Z̄∞T IA] = lim
n→∞

EP [Z̄n
T IA] = lim

n→∞
Q̄n[A] = P [A]

since all the Q̄n are in Qf and hence agree with P on F0. This shows that
Q̄∞ ∈ Qf .

3) We now want to show that Q∗ := Q̄∞ attains the infimum of Q 7→ Γ (Q)
in Qf and therefore examine Γ (Q̄∞) more closely. Let Z̄∞ be the density
process of Q̄∞ with respect to P . Because we know that (Z̄n

T ) converges to
Z̄∞T in L1(P ), Doob’s maximal inequality

P

[
sup

0≤t≤T
|Z̄∞t − Z̄n

t | ≥ ε

]
≤ 1
ε
EP

[
|Z̄∞T − Z̄n

T |
]

implies that
(

sup0≤t≤T |Z̄∞t − Z̄n
t |
)

n∈N
converges to 0 in P -probability. By

passing to a subsequence that we still denote by (Z̄n)n∈N, we may thus assume
that (Z̄n

. ) converges to Z̄∞. uniformly in t with P -probability 1. This implies
that

Z̄n
T c( · , Q̄n) −→ Z̄∞T c( · , Q̄∞) P -a.s.

and in more detail with

Ȳ n
1 := Z̄n

T Uδ
0,T ,

Ȳ n
2 := β

(∫ T

0

δsS
δ
s Z̄

n
s log Z̄n

s ds+ Sδ
T Z̄

n
T log Z̄n

T

)
= βRδ

0,T (Q̄n)

for n ∈ N ∪ {∞} that

lim
n→∞

Ȳ n
i = Ȳ∞i P -a.s. for i = 1, 2.

Since Ȳ n
2 is by (A1) like x log x bounded below, uniformly in n and ω, Fatou’s

lemma yields
EP [Ȳ∞2 ] ≤ lim inf

n→∞
EP [Ȳ n

2 ]. (14)

We prove below that we also have

EP [Ȳ∞1 ] ≤ lim inf
n→∞

EP [Ȳ n
1 ]. (15)

Adding (15) and (14) then yields by (11) that

Γ (Q̄∞) = EP [Ȳ∞1 + Ȳ∞2 ] ≤ lim inf
n→∞

Γ (Q̄n) ≤ lim inf
n→∞

Γ (Qn) = inf
Q∈Qf

Γ (Q)
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which proves that Q̄∞ is indeed optimal.
4) Although Ȳ n

1 is linear in Z̄n
T , it is more difficult to handle than Ȳ n

2

because the factor Uδ
0,T is not bounded. However, the random variables Uδ

0,T

and R := α
∫ T

0
|Us|ds+α′|U ′T | are still manageable thanks to the exponential

integrability properties from (A2) and (A3); these imply that R is almost
bounded in the sense that eγR ∈ L1(P ) for all γ > 0. To exploit this, we set

R̃m := Uδ
0,T I{Uδ

0,T≥−m} ≥ −m for m ∈ N

so that we have for each n ∈ N ∪ {∞}

Ȳ n
1 = Z̄n

T Uδ
0,T = Z̄n

T R̃m + Z̄n
T Uδ

0,T I{Uδ
0,T <−m}.

Because R̃m ≥ −m and each Z̄n
T has P -expectation 1, Fatou’s lemma yields

EP [Z̄∞T R̃m] = −m+ EP [Z̄∞T (R̃m +m)] ≤ lim inf
n→∞

EP [Z̄n
T R̃m]

and therefore adding and subtracting EP

[
Z̄n

T Uδ
0,T I{Uδ

0,T <−m}

]
gives

EP [Ȳ∞1 ] ≤ lim inf
n→∞

EP [Z̄n
T R̃m] + EP

[
Z̄∞T Uδ

0,T I{Uδ
0,T <−m}

]
≤ lim inf

n→∞
EP [Ȳ n

1 ] + 2 sup
n∈N∪{∞}

EP

[
Z̄n

T |Uδ
0,T |I{Uδ

0,T <−m}

]
.

Hence (15) will follow once we prove that

lim
m→∞

sup
n∈N∪{∞}

EP

[
Z̄n

T |Uδ
0,T |I{Uδ

0,T <−m}

]
= 0. (16)

However, Lemma 7 yields for each n ∈ N ∪ {∞}

EP

[
Z̄n

T |Uδ
0,T |I{Uδ

0,T <−m}

]
= EQ̄n

[
|Uδ

0,T |I{Uδ
0,T <−m}

]
≤ 1
γ
H(Q̄n|P ) +

1
γ

(e−1 + | log γ|+ 1)

+EP

[
I{Uδ

0,T <−m}e
γR
]

and therefore by using (12) and (13)

sup
n∈N∪{∞}

EP

[
Z̄n

T |Uδ
0,T |I{Uδ

0,T <−m}

]
≤ 1
γ

(
C(1 + Γ (Q1) + e−1 + | log γ|+ 1

)
+EP

[
I{Uδ

0,T <−m}e
γR
]

for each γ > 0. The first term on the right-hand side becomes arbitrarily
small for γ large enough, and the second converges for each fixed γ to 0 as
m→∞ by dominated convergence, due to the exponential integrability of R
from (A1) – (A3). This proves (16) and completes the proof. ut
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Remark 10. In abstract terms, the proof of Theorem 9 can morally be sum-
marized as follows:

a) Use Komlós’ theorem to produce a candidate Q̄∞ for the optimal measure,
where Z̄∞T is a P -almost sure limit of convex combinations Z̄n

T formed from
a minimizing sequence (Zn

T )n∈N.
b) View Γ (Q) like in (3) as a function g(ZQ) defined on density processes

ZQ. Minimality of Q̄∞ then follows by standard reasoning if g is convex
and lower semicontinuous with respect to P -almost sure convergence of
ZQ

T .

While convexity of g is immediate, lower semicontinuity is not obvious at
all. For the entropy term (the second summand in (3)), we can use Fatou’s
lemma, but we first need the convergence of the entire density process ZQ

.
and not only of its final value ZQ

T . We have done this above by using L1(P )-
convergence of the final values, but this requires of course P -uniform inte-
grability. Thanks to the linearity in ZQ

T , there is no convergence problem for
the integrand of the first summand in (3); but we cannot use Fatou’s lemma
there since we have no uniform lower bound. The arguments in steps 3) and
4) of the above proof show that while g is probably not lower semicontinu-
ous on all of D with respect to P -almost sure convergence of ZQ

T , it is so at
least along any sequence

(
ZQn)

n∈N
which is bounded in entropy in the sense

that supn∈NH(Qn|P ) <∞. Note that we exploit here the full strength of the
assumptions (A2) and (A3) because we need to let γ tend to ∞.

The above problems disappear if the utility terms U and U ′T are uni-
formly bounded below or if we have a uniform bound on H(Q|P ) for all
measures Q we allow in the minimization problem. In [2], this is for instance
achieved by minimizing over a set Q̃ ⊆ Qf which is convex and satisfies

supQ∈Q̃

∥∥∥dQ
dP

∥∥∥
Lp(P )

< ∞ for some p > 1. One major achievement of the

present work is that it avoids such restrictive assumptions on U , U ′T and
Q. �

Having established existence and uniqueness of an optimal Q∗, our next
goal is to prove that Q∗ is equivalent to P . This uses an adaptation of an
argument in [9], and we start with an auxiliary result.

Lemma 11. Suppose for i = 0, 1 that Qi ∈ Qf with density processes Zi =
ZQi

. Then

sup
0≤t≤T

EP

[
(Z1

t logZ0
t )+
]
≤ 2 + e−1 +H(Q1|P ) <∞. (17)

Proof. This slightly sharpens a result obtained in the proof of Lemma 2.1
in [9]. For completeness we give details. If we set Zx := xZ1 + (1 − x)Z0,
ψ(x) := x log x and

H(x; t) :=
1
x

(
ψ(Zx

t )− ψ(Z0
t )
)

for x ∈ (0, 1] and t fixed, (18)
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the random function x 7→ H(x; t) is increasing because ψ is convex, and so

H(1; t) ≥ lim
x↘0

ψ(Zx
t )− ψ(Z0

t )
x

=
d
dx
ψ(Zx

t )
∣∣∣∣
x=0

= ψ′(Z0
t )(Z1

t − Z0
t )

= (logZ0
t + 1)(Z1

t − Z0
t ).

Rearranging terms gives

Z1
t logZ0

t ≤ ψ(Z1
t )−ψ(Z0

t )+Z0
t logZ0

t +Z0
t−Z1

t ≤ ψ(Z1
t )+e−1+Z0

t +Z1
t , (19)

and the right-hand side is by (5) nonnegative with

EP [ψ(Z1
t )] ≤ EP [ψ(Z1

T )] = H(Q1|P )

by Jensen’s inequality. Hence (17) follows from (19). ut

Now we are ready to prove the second main result of this section.

Theorem 12. Assume (A1) – (A3). Then the optimal measure Q∗ from The-
orem 9 is equivalent to P .

Proof. 1) Like in the proof of Lemma 11, we take Q0, Q1 ∈ Qf , define Qx :=
xQ1 + (1 − x)Q0 for x ∈ [0, 1] and denote by Zx the density process of Qx

with respect to P . With ψ(x) = x log x and H as in (18), we then obtain

1
x

(
Γ (Qx)− Γ (Q0)

)
= EP [(Z1

T − Z0
T )Uδ

0,T ]

+
1
x
βEP

[∫ T

0

δsS
δ
s

(
ψ(Zx

s )− ψ(Z0
s )
)

ds+ Sδ
T

(
ψ(Zx

T )− ψ(Z0
T )
)]

= EP [(Z1
T − Z0

T )Uδ
0,T ] + βEP

[∫ T

0

δsS
δ
sH(x; s) ds+ Sδ

TH(x;T )

]
.

For x decreasing to 0, H(x; s) decreases like in the proof of Lemma 11 to
(logZ0

s + 1)(Z1
s − Z0

s ), and

H(x; s) ≤ H(1; s) = ψ(Z1
s )− ψ(Z0

s ) ≤ ψ(Z1
s ) + e−1

shows that we have an integrable upper bound. Hence we can use monotone
convergence to conclude that

d
dx
Γ (Qx)

∣∣∣∣
x=0

(20)

= EP [(Z1
T − Z0

T )Uδ
0,T ]

+ βEP

[∫ T

0

δsS
δ
s (logZ0

s + 1)(Z1
s − Z0

s ) ds+ Sδ
T (logZ0

T + 1)(Z1
T − Z0

T )

]
=: EP [Y1] + EP [Y2].
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As in the proof of Lemma 4, (A1) – (A3) imply that Y1 ∈ L1(P ), and since
x 7→ H(x; s) is increasing, Y2 is majorized by∫ T

0

δsS
δ
sH(1; s) ds+ Sδ

TH(1;T )

≤
∫ T

0

δsS
δ
s

(
ψ(Z1

s ) + e−1
)

ds+ Sδ
T

(
ψ(Z1

T ) + e−1
)

which is P -integrable because Q1 ∈ Qf . Hence Y +
2 ∈ L1(P ) and so the right-

hand side of (20) is well-defined in [−∞,+∞).
2) Now take Q0 = Q∗ and any Q1 ∈ Qf which is equivalent to P ; this is

possible since Qf contains P . The optimality of Q∗ yields Γ (Qx)−Γ (Q∗) ≥ 0
for all x ∈ (0, 1], hence also

d
dx
Γ (Qx)

∣∣∣∣
x=0

≥ 0. (21)

Therefore the right-hand side of (20) is nonnegative which implies that Y2

must be in L1(P ). This allows us to rearrange terms and rewrite (21) by
using (20) as

βEP

[∫ T

0

δsS
δ
sZ

1
s logZ∗s ds+ Sδ

TZ
1
T logZ∗T

]
(22)

≥ −EP [(Z1
T − Z∗T )Uδ

0,T ] + βEP

[∫ T

0

δsS
δ
sZ

∗
s logZ∗s ds+ Sδ

TZ
∗
T logZ∗T

]

− βEP

[
(Z1

T − Z∗T )
∫ T

0

δsS
δ
s ds+ Sδ

T

]
.

But the right-hand side of (22) is > −∞ and the first term on the left-
hand side is < +∞ due to (A1) and Lemma 11. Moreover, (A1) implies
that Sδ

T ≥ e−‖δ‖∞T > 0. So if we have Q∗ 6≈ P , we get (logZ∗T )− = ∞ on
the set A := {Z∗T = 0} and P [A] > 0. This gives (Z1

T logZ∗T )− = ∞ on
A because Z1

T > 0 since Q1 ≈ P . But since we know from Lemma 11 that
(Z1

T logZ∗T )+ ∈ L1(P ), we then conclude that EP [Sδ
TZ

1
T logZ∗T ] = −∞, and

this gives a contradiction to (22). Therefore Q∗ ≈ P . ut

5 A BSDE description for the dynamic value process

In this section, we use stochastic control techniques to study the dynamic
value process V associated to the optimization problem (2) or (4). We show
that V is the unique solution of a backward stochastic differential equation
(BSDE) with a quadratic driver, if the underlying filtration is continuous.
This extends earlier work by [21], [19] and [13].
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We first recall from Section 2 the conditional cost Γ (τ,Q) = EQ[c(·, Q) | Fτ ]
and the minimal conditional cost

J(τ,Q) = Q - ess inf
ZQ′∈D(Q,τ)

Γ (τ,Q′) for τ ∈ S and Q ∈ Qf .

A measure Q̃ ∈ Qf is called optimal if it minimizes Q 7→ Γ (Q) = EQ[c(·, Q)]
over Q ∈ Qf . Then we have the following martingale optimality principle from
stochastic control.

Proposition 13. Assume (A1) – (A3). Then:

1. The family {J(τ,Q) | τ ∈ S, Q ∈ Qf} is a submartingale system; this
implies that for any Q ∈ Qf , we have for any stopping times σ ≤ τ the
Q-submartingale property

EQ[J(τ,Q) | Fσ] ≥ J(σ,Q) Q-a.s. (23)

2. Q̃ ∈ Qf is optimal if and only if {J(τ, Q̃) | τ ∈ S} is a Q̃-martingale
system; this means that instead of (23), we have for any stopping times
σ ≤ τ

EQ[J(τ, Q̃) | Fσ] = J(σ, Q̃) Q̃-a.s.

3. For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQ
t )0≤t≤T

which is a right-closed Q-submartingale such that

JQ
τ = J(τ,Q) Q-a.s. for each stopping time τ .

Proof. This is almost a direct consequence of Theorems 1.15 (for 1.), 1.17
(for 2.) and 1.21 (for 3.) in [6]. It is straightforward (but a little tedious; see
[2] for details) to check that our control problem satisfies all the assumptions
required for these results, with just one exception; we have neither c ≥ 0 nor
infZQ′∈D(Q,τ)EQ′ [|c( · , Q′)|] < ∞ for all τ ∈ S and Q ∈ Qf as required in
[6]. However, closer inspection of the proofs in [6] shows that all the required
assertions from there still hold true if one can show that EQ[|J(τ,Q)|] < ∞
for each Q ∈ Qf and τ ∈ S. Because we have proved this in Lemma 8, our
assertion follows. ut

We already know from Theorem 9 that there exists an optimal Q∗ ∈ Qf ,
and we even have Q∗ ∈ Qe

f by Theorem 12. Hence we may equally well
minimize Q 7→ Γ (Q) only over Q ∈ Qe

f without losing any generality. For
each Q ∈ Qe

f , τ ∈ S and Q′ ∈ D(Q, τ), we now define

Ṽ (τ,Q′) := EQ′ [Uδ
τ,T |Fτ ] + βEQ′ [Rδ

τ,T (Q′)|Fτ ]

and
V (τ,Q) := Q - ess inf

ZQ′∈D(Q,τ)
Ṽ (τ,Q′).
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The latter is the value of the control problem started at time τ instead of 0
and assuming one has used the model Q up to time τ . By using the Bayes
formula and the definition of Rδ

τ,T (Q′), one easily sees that each Ṽ (τ,Q′)
depends only on the values of ZQ′

on ]]τ, T ]] and therefore not on Q, since
ZQ′ ∈ D(Q, τ) only says that ZQ′

= ZQ on [[0, τ ]]. So we can equally well take
the ess inf under P ≈ Q and over all Q′ ∈ Qf and call the result V (τ) since
it does not depend on Q ∈ Qe

f .
From the definition of Rδ

τ,T (Q′), we have for Q′ with ZQ′ ∈ D(Q, τ) that

Rδ
0,T (Q′) =

∫ τ

0

δsS
δ
s logZQ′

s ds+ Sδ
τRδ

τ,T (Q′) +

(∫ T

τ

δsS
δ
s ds+ Sδ

T

)
logZQ′

τ

= Sδ
τRδ

τ,T (Q′) +
∫ τ

0

δsS
δ
s logZQ

s ds+ Sδ
τ logZQ

τ .

Comparing the definitions of V (τ) = V (τ,Q) and J(τ,Q) therefore yields for
Q ∈ Qe

f

J(τ,Q) = Sδ
τV (τ) + α

∫ τ

0

Sδ
sUs ds+ β

∫ τ

0

δsS
δ
s logZQ

s ds+ βSδ
τ logZQ

τ ,

because we can also take the ess inf for J(τ,Q) under P ≈ Q. Since each
J( · , Q) admits an RCLL version by Proposition 13, we can choose an adapted
RCLL process V = (Vt)0≤t≤T such that

Vτ = V (τ) = V (τ,Q) P -a.s., for each τ ∈ S and Q ∈ Qe
f ,

and then we have for each Q ∈ Qe
f

JQ = SδV + α

∫
Sδ

sUs ds+ β

∫
δsS

δ
s logZQ

s ds+ βSδ logZQ. (24)

As P is in Qe
f and JP is a P -submartingale by Proposition 13, (24) yields via

JP = SδV + α
∫
Sδ

sUs ds that V is a P -special semimartingale. We write its
canonical decomposition as

V = V0 +MV +AV

and want to know more about MV and AV . Since Sδ is uniformly bounded
from below and JP is a P -submartingale, (A2) implies that MV is a P -
martingale. In a continuous filtration, we even obtain much stronger results a
bit later.

Consider now the semimartingale backward equation

dYt = (δtYt − αUt) dt+
1
2β

d〈M〉t + dMt, (25)

YT = α′U ′T .
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A solution of (25) is a pair (Y,M) satisfying (25), where Y is a P -semimartin-
gale and M is a locally square-integrable local P -martingale null at 0. Note
that Y is then automatically P -special, and that if M is continuous, so is Y .

Remark 14. Like the optimization problem (2), the BSDE (25) becomes much
simpler when δ ≡ 0; in fact, one can explicitly write down its solution. This
has already been observed in [19], and we come back to this point at the end
of this section. �

Our main result in this section shows that (V,MV ) is the unique solution
of (25) if the filtration F is continuous. As a preliminary, we first establish
some auxiliary results about the structure and uniqueness of solutions to (25).

Lemma 15. Assume (A1), (A2) and let (Y,M) be a solution of (25) with
M continuous. Assume either Y ∈ Dexp

0 or that E
(
− 1

βM
)

is a true P -
martingale. For any pair of stopping times σ ≤ τ , we then have the recursive
relation

Yσ = −β logEP

[
exp

(
1
β

∫ τ

σ

(δsYs − αUs) ds− 1
β
Yτ

) ∣∣∣∣ Fσ

]
. (26)

Proof. From (25), we have

Yτ − Yσ =
∫ τ

σ

dYs =
∫ τ

σ

(δsYs − αUs) ds+Mτ −Mσ +
1
2β
(
〈M〉τ − 〈M〉σ

)
.

Divide by −β, exponentiate and use continuity of M to obtain

E
(
− 1

βM
)

τ

E
(
− 1

βM
)

σ

= exp
(

1
β
Yσ +

1
β

∫ τ

σ

(δsYs − αUs) ds− 1
β
Yτ

)
. (27)

If E
(
− 1

βM
)

is a P -martingale, (26) follows directly by conditioning on Fσ

and solving for Yσ. In general, we stop E
(
− 1

βM
)

after σ by τn to have the
P -martingale property and thus obtain (27) and (26) with τn ∧ τ instead of
τ . Then (A1), (A2) and the assumption that Y ∈ Dexp

0 yield a P -integrable
majorant for the right-hand side of (27) and so we can use dominated conver-
gence to let n→∞ and again get (26) for τ . ut

The argument for the next result is a simple adaptation of the proof for
Lemma A2 in [19].

Lemma 16. 1. For any semimartingale Y , there is at most one local P -
martingale M such that (Y,M) solves (25).

2. Assume (A1), (A2). Then (25) has at most one solution (Y,M) with
Y ∈ Dexp

0 and M continuous.
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Proof. 1. For any solution (Y,M) of (25), Y is P -special, and its unique local
P -martingale part is M by (25).

2. Let (Y,M) and (Ỹ , M̃) be two solutions as stated. Suppose that for some
t ∈ [0, T ], the event A := {Yt > Ỹt} has P [A] > 0. Since YT = α′U ′T = ỸT ,
the stopping time τ := inf

{
s ≥ t

∣∣Ys ≤ Ỹs

}
has values in [t, T ], and

since Y, Ỹ are both continuous, we have Yτ = Ỹτ on A and Ys > Ỹs on
A ∩ {t ≤ s < τ}. This implies that∫ τ

t

(δsYs − αUs) ds− Yτ >

∫ τ

t

(δsỸs − αUs) ds− Ỹτ on A ∈ Ft

so that Lemma 15 yields

exp
(
− 1
β
Yt

)
= EP

[
exp

(
1
β

∫ τ

t

(δsYs − αUs) ds− 1
β
Yτ

) ∣∣∣∣ Ft

]
> exp

(
− 1
β
Ỹt

)
on A.

Hence Yt < Ỹt on A, in contradiction to the definition of A, and so Y and
Ỹ must be indistinguishable. By part 1., M and M̃ must then coincide as
well.

ut

Armed with the above results, we can now prove the announced charac-
terization of (V,MV ) as the unique solution of the generalized BSDE (25).

Theorem 17. Assume (A1) – (A3). If F is continuous, the pair (V,MV ) is
the unique solution in Dexp

0 ×M0,loc(P ) of the BSDE

dYt = (δtYt − αUt) dt+
1
2β

d〈M〉t + dMt,

YT = α′U ′T .

Moreover, E
(
− 1

βM
V
)

is a true P -martingale.

Proof. 1) We first use the martingale optimality principle to show that
(V,MV ) is indeed a solution. For each Q ∈ Qe

f , we have ZQ = E(LQ) for
some continuous local P -martingale LQ null at 0 since Q = P on F0. This im-
plies that d(logZQ) = dLQ − 1

2 d〈LQ〉, and combining this with Itô’s formula
applied to (24) yields

dJQ = Sδ(dMV +dAV )−δSδV dt+αSδU dt+βSδ

(
dLQ − 1

2
d〈LQ〉

)
. (28)

By Girsanov’s theorem,

NQ := MV + βLQ −
〈
MV + βLQ, LQ

〉
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is a local Q-martingale. Together with (28), this gives the Q-canonical decom-
position

dJQ = Sδ dNQ + Sδ

(
dAV − δV dt+ αU dt+ d

〈
MV , LQ

〉
(29)

+ β d〈LQ〉 − β

2
d〈LQ〉

)
.

Because JQ is by Proposition 13 a Q-submartingale for any Q ∈ Qe
f and a

Q∗-martingale for the optimal Q∗ (which exists and is in Qe
f by Theorem 9

and Theorem 12), the second term in (29) is increasing for any Q ∈ Qe
f and

constant (at 0) for Q = Q∗. Thus we have

AV =
∫

(δV − αU) dt− ess inf
Q∈Qe

f

(〈
MV , LQ

〉
+
β

2
〈LQ〉

)
,

where the ess inf is taken with respect to the strong order � (so that A � B
means that B − A is increasing). Step 2) shows that the ess inf term equals
− 1

2β 〈M
V 〉 so that we get

dVt = dMV
t + dAV

t = (δtVt − αUt) dt+
1
2β

d〈MV 〉t + dMV
t .

Since clearly from the definitions VT = V (T,Q) = α′U ′T , (25) follows with
M = MV .

2) We claim that

ess inf
Q∈Qe

f

(〈
MV , LQ

〉
+
β

2
〈LQ〉

)
= − 1

2β
〈MV 〉, (30)

and that the ess inf is attained for LQ∗
= − 1

βM
V . To prove this, choose

localizing stopping times (τn)n∈N such that for Ln := − 1
β (MV )τn , the process

Zn := E(Ln) is bounded. Then Zn is a strictly positive P -martingale starting
at 1 with EP [|Zn

T logZn
T |] < ∞ so that dQn := Zn

T dP defines an element
Qn ∈ Qe

f . Moreover, the definition of Ln gives

〈
MV , Ln

〉
t
+
β

2
〈Ln〉t = − 1

β
〈MV 〉t∧τn +

1
2β
〈MV 〉t∧τn

and so we get for n→∞ that

ess inf
Q∈Qe

f

(〈
MV , LQ

〉
+
β

2
〈LQ〉

)
≤ lim

n→∞

(〈
MV , Ln

〉
+
β

2
〈Ln〉

)
= − 1

2β
〈MV 〉.

Because we also have〈
MV , LQ

〉
+
β

2
〈LQ〉 =

β

2

〈
LQ +

1
β
MV

〉
− 1

2β
〈MV 〉 ≥ − 1

2β
〈MV 〉, (31)
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(30) follows. Finally, since the ess inf in (30) is attained by Q∗ due to Propo-
sition 13, combining (30) with (31) for Q = Q∗ yields

− 1
2β
〈MV 〉 =

(〈
MV , LQ∗〉

+
β

2
〈LQ∗

〉
)

=
β

2

〈
LQ∗

+
1
β
MV

〉
− 1

2β
〈MV 〉,

and this implies that LQ∗
= − 1

βM
V .

3) By step 2), E
(
− 1

βM
V
)

= E
(
LQ∗)

= ZQ∗
is a true P -martingale.

4) Since F is continuous, so isMV ; hence uniqueness follows from Lemma 16
once we show that V ∈ Dexp

0 . This is done below in Proposition 20, and com-
pletes the proof. ut

A closer look at the proof of Theorem 17 shows that we have the following
additional integrability property for the P -martingale MV .

Corollary 18. Assume (A1) – (A3). If F is continuous, the optimal measure
Q∗ is given by ZQ∗

= E
(
− 1

βM
V
)
, and E

(
− 1

βM
V
)

is a P -martingale whose

supremum is in L1(P ).

Proof. The first assertion is just step 3) from the preceding proof. Because
Q∗ ∈ Qe

f , we have EP

[
ZQ∗

T logZQ∗

T

]
= H(Q∗|P ) <∞, and this implies that

sup0≤t≤T Z
Q∗

t is in L1(P ). ut

To finish the proof of Theorem 17, it remains to show that V ∈ Dexp
0 . We

begin with

Lemma 19. Assume (A1) – (A3). Then the process (JP )+ is in Dexp
0 .

Proof. We have seen in the proof of Lemma 8 that(
J(τ, P )

)+ ≤ EP

[
|c( · , P )|

∣∣Fτ

]
.

Now fix γ > 0 and choose for N an RCLL version of the P -martingale N :=
EP

[
eγ|c( · ,P )|

∣∣ F
]
. Then Proposition 13, right-continuity of JP and Jensen’s

inequality imply that

exp
(
γ ess sup

0≤t≤T

(
JP

t

)+)
= exp

(
γ sup

0≤t≤T

(
JP

t

)+) ≤ sup
0≤t≤T

Nt. (32)

Since Sδ ≤ 1, we have |c( · , P )| = |Uδ
0,T | ≤ α

∫ T

0
|Us|ds + α′|U ′T | =: R, and

since eγR ∈ Lp(P ) for every p ∈ (1,∞) by (A2) and (A3), Doob’s inequality
implies that sup0≤t≤T Nt is in Lp(P ) for every p ∈ (1,∞). Hence the assertion
follows from (32). ut

We have already shown that (V,MV ) is a solution of (25) and also that
E
(
− 1

βM
V
)

is a true P -martingale. This allows us now to use Lemma 15 and
prove that V inherits the good integrability properties of U and U ′T .
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Proposition 20. Assume (A1) – (A3). If F is continuous, the process V is
in Dexp

0 .

Proof. Because Dexp
0 is a vector space, it is enough to prove that V + and V −

lie both in it. Using (26) for V with σ = t, τ = T and Jensen’s inequality
gives

−Vt ≥ EP

[∫ T

t

(δsVs − αUs) ds− α′U ′T

∣∣∣∣∣ Ft

]
and therefore

V +
t = Vt +V −t ≤ V −t +EP

[
‖δ‖∞T sup

0≤s≤T
V −s + α

∫ T

0

|Us|ds+ α′|U ′T |

∣∣∣∣∣ Ft

]
.

Due to (A2) and (A3), the same argument via Doob’s inequality as in the
proof of Lemma 19 shows that the last term is in Dexp

0 as soon as V − is, and
this implies then in turn that V + is in Dexp

0 . Hence it only remains to prove
that V − is in Dexp

0 .
Now (24) for Q = P gives

δsVs = δs

(
JP

s − α

∫ s

0

Sδ
rUr dr

)/
Sδ

s

≤ ‖δ‖∞

(
sup

0≤t≤T

(
JP

t

)+
+ α

∫ T

0

|Ur|dr

)
e‖δ‖∞T ,

and combining this with (26) for V with σ = t, τ = T yields

−Vt ≤ β log

(
1 + EP

[
exp

(
1
β

∫ T

t

(δsVs − αUs) ds− 1
β
α′U ′T

)∣∣∣∣∣ Ft

])
(33)

≤ β log

(
1 + EP

[
exp

(
1
β
‖δ‖∞e‖δ‖∞T

(
sup

0≤t≤T

(
JP

t

)+
+ α

∫ T

0

|Ur|dr

)

+
1
β
α

∫ T

0

|Us|ds+
1
β
α′|U ′T |

)∣∣∣∣∣Ft

])
=: β log

(
1 + EP [eB |Ft]

)
.

Thanks to (A2), (A3) and Lemma 19, the above random variable B satisfies
EP [eγ|B|] <∞ for all γ > 0. Hence the martingale EP [eB |F] has its supremum
in Lp(P ) for every p ∈ (1,∞) by Doob’s inequality, and this implies by (33)
that V − is in Dexp

0 . ut

Remark 21. 1. The above argument rests on continuity of F because we ex-
ploit via Lemma 15 the BSDE for V . However, one feels that the integra-
bility of V should be a general result, and this raises the question if there
is an alternative proof for Proposition 20 which works for general F.
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2. The BSDE (25) is very similar to an equation studied in detail in [15], but
has a crucial difference: If the final value YT = α′U ′T is unbounded, there
is no evident way in which the results from [15] could be used or adapted.

�

By exploiting the BSDE for (V,MV ), we can show that the P -martingale
MV has very good integrability properties. This adapts an argument in the
proof of Lemma A1 from [19].

Proposition 22. Assume (A1) – (A3). If F is continuous, then MV lies in
the martingale space Mp

0(P ) for every p ∈ [1,∞).

Proof. Because V ∈ Dexp
0 by Proposition 20, (A1) – (A3) imply via Doob’s

inequality that the (continuous) P -martingale

N := EP

[
exp

(
1
β

∫ T

0

(δsVs − αUs) ds− 1
β
α′U ′T

)∣∣∣∣∣ F

]
lies in everyMp

0(P ), and so 〈N〉T ∈ Lp(P ) for every p by the BDG inequalities.
Moreover, Lemma 15 applied to (V,MV ) with σ = t, τ = T yields

Vt = −β logNt +
∫ t

0

(δsVs − αUs) ds, 0 ≤ t ≤ T (34)

which implies that

1
Nt

= exp
(

1
β
Vt −

1
β

∫ t

0

(δsVs − αUs) ds
)
, 0 ≤ t ≤ T. (35)

Using (25) for (V,MV ) and comparing the local P -martingale parts in (34)
gives via Itô’s formula that MV = −β

∫
1
N dN . Combining this with (35), we

get

〈MV 〉T = β2

∫ T

0

1
N2

t

d〈N〉t

≤ β2〈N〉T sup
0≤t≤T

1
N2

t

≤ β2〈N〉T exp

(
2
β

sup
0≤t≤T

|Vt|(1 + ‖δ‖∞T ) +
2
β
α

∫ T

0

|Us|ds

)
.

Due to (A1), (A2) and V ∈ Dexp
0 , all the terms on the right-hand side are in

Lp(P ) for every p ∈ [1,∞), and hence so is 〈MV 〉T by Hölder’s inequality. So
the assertion follows by the BDG inequalities. ut

We have formulated Theorem 17 as a result on the characterization of the
dynamic value process V for the stochastic control problem (4). If we want to
restate our results in pure BSDE terms, we have also shown
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Theorem 23. Let δ and ρ be progressively measurable processes and B an
FT -measurable random variable. Assume that δ is nonnegative and uniformly
bounded, that ρ ∈ Dexp

1 and that exp(γ|B|) ∈ L1(P ) for every γ > 0. If
the filtration F is continuous, there exists for every β > 0 a unique solution
(Y,M) ∈ Dexp

0 ×M0,loc(P ) to the BSDE

dYt = (δtYt + ρt) dt+
1
2β

d〈M〉t + dMt, (36)

YT = B.

For this solution, we have M ∈Mp
0(P ) for every p ∈ [1,∞).

Remark 24. As mentioned above, the BSDE (25) or (36) can be explicitly
solved for δ ≡ 0. This has already been observed in [19], Appendix A; in fact,
it follows immediately from Lemma 15 which gives for σ = t and τ = T the
representation

Yt = −β logEP

[
exp

(
− 1
β

∫ T

t

ρs ds− 1
β
B

)∣∣∣∣∣ Ft

]

for the solution of (36). Choosing ρ = αU and B = α′U ′T gives the solution
to (25). �

6 A comparison with related results

This section is an attempt to position the results of the present paper in
relation to other work in the area. Such a comparison naturally cannot be
complete, but we have made an effort to include at least some of the most
relevant papers.

6.1 Skiadas (2003) and Schroder/Skiadas (1999)

Our primary inspiration clearly comes from the two papers [21] and [19]. In
[21], Skiadas studies essentially the same optimization problem as (2) or (4),
and proves that its dynamic value process V can be described by the BSDE

dVt = (δtVt − αUt) dt+
1
2β
|zt|2 dt+ zt dWt, (37)

VT = α′U ′T .

This is clearly our BSDE (25) specialized to the case of a filtration F = FW

generated by a P -Brownian motion W . It is a minor point that [21] only
treats the case α′ = 0. The important differences to our work lie in the
interpretation and in the way that [21] derives its results. The main point
Skiadas wants to make is that the BSDE (37) coincides with one describing a
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stochastic differential utility; hence working with a standard expected utility
under (a particular form of) model uncertainty is observationally equivalent
to working with a corresponding stochastic differential utility under one fixed
model. For the derivation, Skiadas argues in a first step that (37) does have
a solution (V ∗, z∗), since this is proved in [19]. In a second step, he uses
explicit computations to show that z∗ induces an optimal measure Q∗: in our
terminology, he proves for every τ ∈ S that

Vτ = Ṽ (τ,Q∗) ≤ Ṽ (τ,Q′) for every Q′ with ZQ′
∈ D(Q∗, τ).

However, this approach has a disadvantage. The existence proof for (V ∗, z∗)
relies on a fixed point argument in [19], and thus from the beginning uses
the assumption that F = FW . (One could slightly generalize this fixed point
method to a continuous filtration; see forthcoming work by G. Bordigoni.)
In contrast, our method first shows for a general filtration the existence of
an optimal measure Q∗. Only then do we assume and use continuity of F to
deduce via the martingale optimality principle that V satisfies a BSDE. As a
further minor point, the integrability of MV in Proposition 22 is not given in
[19].

An alternative proof for the result in [21] can be found in [13]. These
authors also assume F = FW and in addition impose the severe condition
that U and U ′T are bounded. The argument then uses a comparison result for
BSDEs from [12].

6.2 Robustness, control and portfolio choice

Our second important source of inspiration has been provided by the work of
L. P. Hansen and T. Sargent with coauthors; see for instance the homepage
of Hansen at the URL http://home.uchicago.edu/~lhansen. We explicitly
mention here the two papers [1] and [11] which also contain more references.
They both introduce and discuss (in slightly different ways) the basic prob-
lem of robust utility maximization when model uncertainty is penalized by
a relative entropy term. Both papers are cast in Markovian settings and use
mainly formal manipulations of Hamilton–Jacobi–Bellman (HJB) equations
to provide insights about the optimal investment behaviour in these situa-
tions. While the authors of [11] find that “One Hamilton–Jacobi–Bellman
(HJB) equation is worth a thousand words”, our (still partial) analysis here is
driven by a desire to obtain rigorous results in a general setting by stochastic
methods.

The related paper [14] studies (also via formal HJB analysis) a problem
where the penalization parameter β is allowed to depend on V ; this is also
briefly discussed in [21]. And when the present paper was almost finished, we
discovered that A. Schied has also been working on the problem (2) with a
fairly general penalization term for Q; see [17]. However, his (static) results
do not contain ours even without the dynamic parts in Section 5 — they only
cover as one example the simple case δ ≡ 0.
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6.3 BSDEs with quadratic drivers

In the setting of a Brownian filtration F = FW , the pure BSDE (36) takes the
form

dYt =
(
δtYt + ρt +

1
2β
|zt|2

)
dt+ zt dWt, (38)

YT = B.

This is one particular BSDE with a driver (dt-term) which is quadratic in
the z-variable. Such BSDEs have been much studied recently and typically
appear in problems from mathematical finance; see [5] for probably the first
appearance of such a BSDE (derived in the context of stochastic differential
utility), and for instance [8], [7] or [20] for some recent references. However,
almost all (existence and comparison) results for these equations (with non-
vanishing quadratic term) assume that the terminal value B is bounded. This
condition is too restrictive for our purposes and seems very difficult to get rid
of. A class of BSDEs with quadratic growth and unbounded terminal value
has recently been studied in [3], but (38) does not satisfy the assumptions of
that paper as soon as ρ is unbounded.
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