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1 Introduction

The concept of ambit processes discussed in this paper arose out of a cur-
rent study (Barndorff-Nielsen and Schmiegel (2005), Schmiegel et al (2006),
Barndorff-Nielsen and Schmiegel (2004), Schmiegel et al (2004) and Schmiegel
(2005a)) the ultimate aim of which is to build a realistic stochastic process
model of 3-dimensional turbulent velocity fields, in the spirit of Kolmogorov’s
phenomenological theory (Frisch (1995)) — and beyond. Besides applications
to turbulence, the concept has also been used in modelling the growth of can-
cer tumours (Schmiegel (2005b)), and it should be of interest to other fields
as well.

Section 2 outlines the idea of ambit processes and lists a number of basic
questions that need to be resolved in order to have a fullfledged stochastic
analysis theory for such processes. In some important special settings, rel-
evant for the turbulence context, the questions can be answered positively.
Section 3 provides some background on the physics of turbulence while Sec-
tion 4 discusses the phenomenology of turbulence. We then, in Section 5, turn
to the formulation of a stochastic modelling framework for the velocity and
intermittency fields, using the idea of ambit sets, and we outline how it is
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possible within this framework to capture main features of the phenomeno-
logical theory. Applications to cancer growth are briefly indicated in Section
6. Section 7 concludes.

2 Ambit processes

In this Section we consider a rather general type of spatio-temporal processes
that we shall refer to as ambit processes. We do not, at present, have a strict
mathematical specification of what should be called an ambit process, but
processes of the kind we have in mind would seem to be of interest in a
variety of situations, and have in fact been applied not only in turbulence (cf.
Section 5) but also for modelling cancer growth (see Section 6).

2.1 On spatio-temporal processes

Let ¢ denote time and o a point in some space S. To each point (t,0) € RxS
let there be associated a random variable Y; (o). Let w (w) = (¢ (w), o (w)),
where -0o < w < 00, be a smooth curve in space-time, such that w — ¢ (w) is
nondecreasing, and let X, = Yy () (0 (w)). We assume that X = {Xy}, g is
welldefined as a stochastic process. Unless otherwise specified we let S =R.

A key question is when the quadratic variation [X] of X is well-defined in
the sense of being a stochastic process such that

[X], = p—1im > (Xu, — Xu,_,)’ (1)

for any sequence of subdivisions 0 = wy < w; < -+ < w; = w with
max (w; — wj—1) — 0. Intimately connected to this is the question of whether
it is possible to define stochastic differentials d X,, and an associated symbolic
caleulus under which (dX,)* = d[X |-

In settings such that X, = Yj(,) (0 (w)) is a semimartingale or a linear
combination of semimartingales the existence of [X] and of such differentials
is of course ensured.

2.2 Ambit sets and Lévy bases

Turning now to a more specific setting, suppose that to each point (¢,0) is
associated a set A; (o), which we refer to as an ambit set. We take A; (o) to
be of the form

Ai(o)={(s,p):s<to—c; (s;0) < p<o+cf (s;0)} (2)

for some nonnegative functions ¢, (s;o) and ¢/ (s; ).
A particularly simple case is that of a homogeneous family of ambit sets
where
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A (0) ={(s,p) : (s —t,p —0) € Ao(0)} 3)

in which case ¢; (s;0) and ¢, (s;0) are independent of o and of the form
¢ (s50) = i (4)

We write the cumulant function of an arbitrary random variable X as

C{CH X} = log B {ei¢¥) (5)
and denote the m-th order cumulant of X by ¢, (X), i.e.
m X
em(X) :im%. (6)

Let L be a Lévy basis, i.e. an independently scattered random measure
whose values are infinitely divisible. Then L has a Lévy-Khintchine represen-
tation

CLCHIAB)} = iCa(B) = 3¢HB) + [ (¢ ~1~iCal iy (@)}n(da. B) (7

where a is a signed measure, b is a measure, and p(dz, B) is (for fixed B) a
Lévy measure on R and a measure for fixed dz. Heuristically it is useful to
express (7) in infinitesimal form as

C{Ct L(d2)} = ia(dz) — %CQb(dz) + / (6% 1~ iCelp_y (@)} p(de; dz).
R

(8)
If the Lévy basis L is such that L(B) is Poisson distributed for all B then L
is a Poisson basis. In this case the generalised Lévy measure is of the form
u(dz, B) = Leb(B)d; (dx) where Leb denotes Lebesgue measure and d; is the
Dirac measure at 1.

The Lévy basis is said to be factorisable provided p factorises as

u(dz,dz) = v (dx) c(dz) 9)

for some o-finite measure ¢(dz) and where v is a Lévy measure on R. If]
moreover, a, b and ¢ are proportional to Lebesgue measure then L is called
homogeneous.

The Brownian sheet is the homogeneous Lévy basis on R? with a(dz) = 0,
b(dz) = Leb (dz) and p(dz;dz) =0 in (8).

Remark 1. Integration of deterministic functions with respect to Lévy bases
is discussed in detail in Rajput and Rosinski (1989). Here we shall need more
general types of integration. However, for the time being we shall argue under
the presumption that all the integrals and differentials, and the manipulations
with these, are rigourously justifiable, taking up the questions of rigour briefly
in Section 2.5.
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2.3 Ambit processes

Let {Y; (0)},cr be a spatio-temporal stochastic process of the form
@) =t [ gsp o)) Liasdy)
Ai(o

—I—/ h(t—s,p—0)Js(p)dsdp (10)
Dy (o)

where p1 is a constant, { A¢(c) : (t,0) € R?} and {D(0) : (t,0) € R?} are fam-
ilies of ambit sets, g and h are damping functions (ensuring the convergence
of the integrals), I (o) and J; (o) are random fields on R?, and L is a Lévy
basis on R?. A related type of process {Y; (o)}, defines

m(o)-Yo<o>+A+( 99 =)L (o) L (dsd)

+/W)h<t—s,o—a> < (p)dsdp (1)

where A (o) = {(s,p) € A(0) : t > 0} and D (o) = {(s,p) € Dy(o) : t > 0}.
We refer to processes of these kinds as ambit processes, and we say that such
a process is of Brownian type if L is the Brownian sheet BS and of shot noise
type in case L is a pure jump basis (i.e. a =b =10 in (7)).

Now suppose that L is Brownian sheet and, for simplicity, that the ambit
sets are homogeneous (cf. (3)-(4)) and A;(0) = Dy(o). Then (10) may be

written

n=wt [ /+ g(t=s,0— )1, (p) BS (dsdp)

/ / B(t—s,p—0)J, (p)dsdp. (12)

it =ct(t—ys) (13)

—S

In particular, if

for some nonnegative constants ¢~ and ¢* (a choice motivated in the turbu-
lence context, see Section 5.1) then

o+ct (t—s)
u+/ / g(t—s,p—0)Is(p) BS (dsdp)

—c~ (t—s)

otct(t— s)
/ / h(t—s,p— o) Js (p) dsdp. (14)

c™(t—s)

Note that if I (p) and Js (p) are stationary processes in s for fixed p then
Y: (0) is a stationary process in t for fixed o.
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2.4 Lagrangian dynamics

We proceed to discuss associated questions of dynamics, for processes X
Yi(w) (0 (w)), as introduced in Section 2.1.

Figure 1 illustrates the dynamics of X,, along the curve (¢t(w),o(w)) for
arbitrary ambit sets Ay(,)(c(w)). We assume that J = I? (this setting is suf-
ficient for the applications to turbulence that will be reviewed later). Further,
for notational simplicity we let p = 0 and we restrict consideration to the
specification (14).

The process X,, may be written as

w_/ /MW Y gt~ 5.0 o) L. (o) BS (dsdp)
; / /- T = sp— ) . () dsdp
/ /“(1t Y ot~ 5 p— o) I (o) BS (dsdp)

o—c” (t—s)
_/_ /_ h(t—s,p—0c)Js(p)dsdp (15)

with (¢,0) = (¢ (w),o (w)). Continuing to argue formally, and suppressing in
the notation the dependence of ¢t and ¢ on w, we find

dX, =

/ g(t—s,ct(t—2s))Is(oc+ct(t—s))BS(dsdy (o + ¢t (t - 5)))

7/7 g(t—s,—c (t—5)) I, (c—c (t—s))BS(dsdy (0 — ¢ (t—9)))
+ dRy

where

/ /:+c+(t s) wg (t —s,p—0) I, (p) BS (dsdp)

c—(t—s)
o+c+(t a)
/ / s wh(t—s,p—0)Js(p)dsdp
+/ h(t—s,o+ct(t—s))Js(oc+ct(t—s))dsdy, (o +ctt)
—/ h(t—s,o0—c (t—s))Js(c—c (t—s))dsdy (0 —ct).

—0Q0

Consequently,
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(dX,)?
dw

:’U’+c+t"/ P (t—sct(t—s)Js(c+ct(t—s))ds
+’0'/—C_t/’/ G t—s,—c (t—3s))Js(c—c (t—s))ds

oo
=o' +c+t'|/ g*(s,cTs) (0 + cTs)ds
0
oo
—c | G*(s,—c8)Js(0 — ¢ s)ds. (16)
0

We adopt the notation e for (dX,,)?/dw.

Three special cases are of particular interest: (i) t(w) = w, o (w) = o
constant (ii) ¢ (w) = t constant, o(w) = w (iii) t (w) = w, 0 (W) = 0 + ¢ w.
The triangular specification (13) of the ambit set along the curves (i), (ii) and
(iii) is illustrated in Figures 2-4, respectively. For these the expression (16)
becomes respectively

Etime (t, U) =

/000 [cg%(s,—c78)Jy—s (0 — 7 5) +cTg*(s,cts)Jy_s (0 +cTs)]ds  (17)

Espace (t,0) = / [92 (s, —c_s) Ji s (O’ — c_s) +g° (s, c+s) Ji—s (O’ + c+s)]ds
0
(18)
ELagr (t,0) = (¢” + 1) / g* (s,cts) Ji—s (0 + cTs)ds. (19)
0

In the turbulence context €t;me is identified with the temporal energy dissipa-
tion and €gpqce is identified with the surrogate energy dissipation (cf. Section
3). The case (iii) corresponds to the energy dissipation obtained by following
the mean flow in turbulence (cf. Section 5.1).

2.5 Discussion

Let Y; (o) be an ambit spatio-temporal process of the general form (10), let
w(w) = (t(w),o (w)) be a curve in R? with ¢ (w) increasing in w, and let

Xw=/ g(t—s,p—a)ls(p)L(dsde/ h(t—s,p—0) T, (p) dsdp
Ai(o) Dy (

o)

(20)
where again, in the notation, we have suppressed the dependence of ¢ and
o on w. The following questions are of interest and do not seem answerable
in any immediate fashion from existing results in the literature on spatio-
temporal processes and on stochastic integration with respect to multiparam-
eter martingales. (In the present context, key references to that literature are
Cairoli and Walsh (1975), Khoshnevisan (2002), Klein and Giné (1975), Walsh
(1986a,b) and Wong and Zakai (1974).)
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(i) Under what conditions, especially on the ambit sets A; (o) and Dy (o),
does the quadratic variation [X] exist (in the sense of (1))

(ii) Under what conditions, especially on the ambit sets A; () and D, (o), is
it possible meaningfully to define the differential d X.

(iii) Related to (ii), what meaning should be given to an expression like
BS (dsdy (o +¢f (s;0))).

(iv) Supposing L = BS (the Brownian sheet), when is (dX)* = d[X] (or,
otherwise put, when is [X], = [/ (dX,)%).

(v) When is X a linear combination of semimartingales.

For the particular specification of X considered in Section 2.4, we have
argued as if these questions had been positively resolved. In fact, under mild
assumptions on g, h, I and J the manipulations in that Section can be verified
by direct calculations (details to be given elsewhere).

3 Some background on turbulence

There is no generally accepted definition of what should be called a turbulent
flow. Turbulent flows are characterized by low momentum diffusion, high mo-
mentum convection, and rapid variation of pressure and velocity in space and
time. Flow that is not turbulent is called laminar flow. The non-dimensional
Reynolds number R characterizes whether flow conditions lead to laminar or
turbulent flow. Increasing the Reynolds number increases the turbulent char-
acter and the limit of infinite Reynolds number is called the fully developed
turbulent state.

Turbulence as part of hydrodynamics is governed by the Navier-Stokes
equation which has been known since 1823. Its non-linear and non-local char-
acter does so far not allow to describe the wide range of turbulent phenomena
from basic principles. Consequently, a great deal of phenomenological models
have emerged that are based on and designed for certain aspects of turbulent
dynamics. Most of these models can be classified according to the physical
observable they address (see Section 4). The most prominent observables are
the velocity field and the energy dissipation process.

In general, turbulence concerns the dynamics in a fluid flow of the three-
dimensional velocity vector u(r,t) = (uz(r,t), uy(r,t), u,(r,t)) as a function of
position r = (z,y, z) and time ¢. A derived quantity is the energy dissipation,

defined as
> (Osuy(r,t) + Ojui(r, 1))? (21)

4L,J=T,Y,2

v
g(r,t) = 5
describing the loss of kinetic energy due to friction forces characterized by the
viscosity v.

A pedagogical valuable illustration of a turbulent flow can be gained from
the Kolmogorov cascade (Frisch (1995)). In this representation kinetic energy
is injected into the flow at large scales through large scale forcing. Non-linear
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effects redistribute the kinetic energy towards smaller scales. This cascade of
energy stops at small scales where dissipation transforms kinetic energy into
heat. It is traditional to call the large scale L of energy input the integral scale
and the small scale 7 of dissipation the dissipation scale or Kolmogorov scale.
With increasing Reynolds number the fraction L /7 increases, giving space for
the so called inertial range n < | < L where turbulent statistics are expected
to have some universal character.

The resolution of all dynamically active scales in experiments is at present
not achievable for the full three-dimensional velocity vector. Most experiments
measure a time-series of one component u (in direction of the mean flow) of
the velocity vector at a fixed single location ro (in the stochastic framework
we denote the spatial location by o). Based on this restriction one defines the
temporal energy dissipation

150 (du(re,t)\>
Crime(ro,1) = = <(d§)> 7 (22)

where @ denotes the mean velocity.
In going from (21) to (22) one assumes the flow to be stationary, homo-
geneous and isotropic. In this case (21) may be approximated as (Elsner and

Elsner (1996)) ,
Copae 1) = 150 (250 (23)

which is believed to have similar statistical properties as the true energy dis-
sipation at not too small scales. Discrepancies appear at small scales and are
termed surrogacy effects. In particular, the autocorrelation function of the
surrogate energy dissipation (23) shows an additional increase at small time
scales (Cleve et al (2003)).

The transformation of the spatial derivative in (23) to the temporal deriva-
tive in (22) is performed under the assumption of Taylor’s Frozen Flow Hy-
pothesis (Taylor (1938)) which states that spatial structures of the flow are
predominantly swept by the mean velocity @ without relevant distortion. Un-
der this hypothesis, widely used in analyzing turbulent time series, spatial
increments along the direction of the mean flow (in direction z) are expressed
in terms of temporal increments

Upts(r) — up(r) = up(r — °Ws) — ug(r). (24)

Remark 2. The temporal energy dissipation (22) is expected to approximate
the true energy dissipation (21) for stationary, homogeneous and isotropic
flows. Nevertheless, the temporal energy dissipation contains for all flow con-
ditions important statistical information about the turbulent velocity field.
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4 Turbulence phenomenology

The statistical analysis of a great variety of time series has revealed a number
of universal stylized facts of homogeneous and isotropic turbulent flows. Here
we restrict the discussion to the so-called intermittency and to the statistics
associated with the Kolmogorov variable, leaving aside, among others, the
important characterization of turbulent statistics in terms of scaling relations
(Meneveau and Sreenivasan (1991) and Sreenivasan and Antonia (1997) and
references therein). Scaling relations are expected to hold for fully developed
turbulent flows while being hard to detect for small and moderate Reynolds
number flows. Intermittency and universality of the statistics associated to the
Kolmogorov variable are found for a much wider range of Reynolds numbers
(Castaing et al (1990), Vincent and Meneguzzi (1991), Barndorff-Nielsen et al
(2004), Stolovitzky et al (1992), Zhu et al (1995) and Hosokawa et al (1994)).

4.1 Intermittency

Since the pioneering work of Kolmogorov (1962) and Obukhov (1962), in-
termittency of the turbulent velocity field is of major interest in turbulence
research. From a probabilistic point of view, intermittency refers, in particu-
lar, to the increase of the non-Gaussian behaviour of the probability density
function (pdf) of velocity increments with decreasing scale. A typical scenario
is characterized by an approximate Gaussian shape for the large scales, turn-
ing to exponential tails for the intermediate scales and stretched exponential
tails for dissipation scales (Castaing et al (1990) and Vincent and Meneguzzi
(1991)).

It was reported in Barndorff-Nielsen et al (2004) that the evolution of the
pdf of velocity increments for all amplitudes and all scales can be described
within one class of analytically tractable distributions, the normal inverse
Gaussian (NIG) distributions. This class of distributions equals the family
of possible distributions at time t = 1 of the NIG Lévy process, which is
defined as Brownian motion with drift subordinated by the inverse Gaussian
Lévy process, i.e. the Lévy process of first passage times to constant levels of
(another) Brownian motion. The Appendix provides a brief summary of the
definition and properties of NIG laws.

The NIG laws and associated processes have found widespread applica-
tion, particularly in finance, see for instance Barndorff-Nielsen (1998a,b),
Barndorff-Nielsen and Shephard (2001), Barndorff-Nielsen and Shephard
(2006), Qigard et al (2005), Corsi et al (2005), Carr et al (2003), Forsberg
(2002), Lindberg (2005), Eberlein and Prause (2002) and further references
there, cf. also Shiryaev (1999) and Cont and Tankov (2004).

Figure 5 shows, as an example, the log densities of velocity increments
Aug = upq s —uy measured in the atmospheric boundary layer for various time
scales s. The solid lines denote the approximation of these densities within
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the class of NIG distributions. NIG distributions fit the empirical densities
equally well for all time scales s.

A subsequent analysis of the observed parameters of the NIG distributions
from many, widely different data sets with Reynolds numbers ranging from
Ry =80 up to Ry = 17000 (where R) is the Taylor based Reynolds number,
see below) led to the formulation of a key universality law (Barndorff-Nielsen
et al (2004)): The temporal development of a turbulent velocity field has an
intrinsic clock which depends on the experimental conditions but in terms of
which the one-dimensional marginal distributions of the velocity differences
become independent of the experimental conditions. Figure 6 provides an em-
pirical validation of this. As a consequence, the collapse of pdf’s immediately
resulted in a substantially wider and more general reformulation of the con-
cept of Extended Self Similarity (Benzi et al (1993)) in terms of a stochastic
equivalence class. For details we refer to Barndorff-Nielsen et al (2004).

4.2 Kolmogorov’s refined hypotheses

In 1962, Kolmogorov published two hypotheses (usually refered to as K62)
about a quantity V that combines velocity increments, being a large scale
quantity, and the energy dissipation, being a small scale quantity. The first
hypothesis states that the pdf of the stochastic variable

L AL (25)

depends, for r < L, only on the local Reynolds number
Re, = r(re,;)Y3 /v. (26)

Here,
Aut(r) = U,t(l‘—i-’l“,y,Z) —ut(x,y,z) (27)

denotes the increment of one component of the velocity vector at scale » and
re, is the integrated energy dissipation over a domain of linear size r

1 xo+r/2
Er = 7/ g(r,t)dz. (28)
T Jao—r/2

The second hypothesis states that, for Re, > 1, the pdf of V,. does not depend
on Re,., either, and is therefore universal.

Note the unusual power 1/3 in (25). An immediate thinking would have
expected power 1/2.

Although, for small r, an additional r dependence of the pdf of V. has
been observed (Stolovitzky et al (1992)), the validity of several aspects of
K62 has been verified experimentally and by numerical simulation of turbu-
lence (Stolovitzky et al (1992), Zhu et al (1995), Hosokawa et al (1994) and
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Stolovitzky and Sreenivasan (1994)). In particular it has been shown that the
conditional densities p(V,.|re,) become independent of re, for a certain range
of scales r within the inertial range. However, the universality of the distribu-
tion of V' has not been verified in the literature. In this respect, it is important
to note that the experimental verification of the Kolmogorov hypotheses is,
with reasonable resolution of scales, restricted to temporal statistics and as
such relies on the use of the temporal energy dissipation (22) instead of the
true energy dissipation (21).
We take up the discussion of the Kolmogorov variable V' in Section 5.2.

5 Stochastic modelling of turbulent velocity fields

The modelling framework we propose for the velocity field specifies this as an
ambit process and incorporates the energy dissipation, also in the form of an
ambit process, as a building block. As we shall discuss, basic stylized facts of
turbulent statistics are captured by the model without specifying the degrees
of freedom in all detail.

Remark 3. For the energy dissipation, discrete cascade processes are one of the
most basic and successful models (Meneveau and Sreenivasan (1991), Jouault
et al (1999), Jouault et al (2000) and Cleve and Greiner (2000)). However,
these models lack translational invariance and moreover, they introduce an
artifical and discrete hierarchy of scales. To overcome these drawbacks, ambit
processes can be used as continuous and translation invariant generalisations
of discrete cascade models (cf. Section 5.3).

5.1 A spatio-temporal modelling framework

We propose to model one component of the velocity vector in homogeneous
and stationary turbulence as in (14)

o+ct (t—s)
M-i-/ / g({t—s,p—0)Is(p) BS(dsdp)

c™ (t s)
o’+c s
4 / / h(t—s,p—0).J, (p)dsdp (29)

where ;1 and (3 are constants, ¢ and ¢~ are positive constants and we assume
J = I?, which is sufficiently general in the turbulence context. Here we adopt
the notation u (instead of V) for the velocity as is customary in the physics
literature. The specific choice of a triangular ambit set corresponds to a con-
stant maximum speed for information to arrive at a given site (o,t). In this
simple set-up the influence of an event sitting at p < o or o < p is experienced
at o with a delay of (6 — p)/c™ or (p —0)/cT, respectively. The difference in
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the propagation velocities for ¢ > p and o < p is due to the presence of a
mean velocity. In general, interactions in the flow are due to pressure fluctu-
ations traveling with the speed of sound ¢ and interactions that are sweeping
with the flow. Here we only deal with the simplest case where the sweeping
velocity is assumed to be the mean velocity u > 0. In this case

ct=c-—u, ¢ =c+u (30)

In this definition, density fluctuations are taken into account which corre-
sponds to compressible flows. The ratio u/c is called the Mach number.

For incompressible flows, density fluctuations are neglected and this is
encompassed by the model (29) in setting

ct=0, ¢ =7u. (31)

The mean velocity @ is a free parameter of the model related to p by

=1 — Ber(J) /0 b [ C:SS h(s, p)dsdp. (32)

In the setting of stochastic differential equations of the Brownian semi-
martingale type (29) the quantity [dus(c)]?/dt (17) is the natural analogue
of the squared first order derivative of the velocity, which in the classical for-
mulation is taken to express the temporal local energy dissipation (22) (up
to a constant pre-factor). In a similar reasoning, [du.(c)]?/do (18) may be
identified with (23) (up to a constant pre-factor). In both cases, the local en-
ergy dissipation is independent of the second term in (29) which, importantly,
allows to choose the function h and the constant § in (29) independently of
the energy dissipation process.

The intermittency of the model, i.e. its non-Gaussian statistics, arises from
both terms in (29). In particular the third order cumulant results in a poly-
nomial of third order in 8. Here we do not present the results for the full
cumulant function of velocity increments. We rather specify the intermittent
and turbulent character of the model in terms of the Taylor based Reynolds
number (Frisch (1995)) defined as

co(u)

Ry= ——t
v/E{€space}

Using (29) and (18), we calculate this most prominent characteristic of tur-
bulence to be

(33)

Ry =1 (G1+Ga(6) (31)

where
fo SO g (s p)dsdp

\/fo (s,—c7s) + g2(s,cts))ds

(35)
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and G(3) = 382Gy where
+ + o
o S S SE S s p)h(S p) Cov{Js(p), I (p') }dsds'dpdp!

Ga
VDI (g2(s.—e ) + g2(s.c7s)) ds

b

(36)
Cov indicating covariance.

The first term (35) is independent of the weight function Sh. Therefore
we are able to increase Ry by manipulating § and/or the function h without
changing the statistics of the energy dissipation. In other words, the level of
turbulence can be increased independently of the energy dissipation process.
This type of behaviour has been observed for flows with strong shear where the
intermittency of the velocity field (measured in terms of structure functions)
shows an enhanced degree while the energy dissipation behaves in a universal
fashion (Casciola et al (2001)).

5.2 A temporal modelling framework

The spatio-temporal (1 + 1)-dimensional model (29) and its generalization
to higher dimensional modelling provides the general modelling framework
for the turbulent velocity field. For a preliminary verification of the proposed
modelling framework with experimental data we restrict ourselves to purely
temporal statistics at a fixed spatial position o, which are by now the type of
data that are accessible with reasonable quality. For mathematical simplicity,
we define a purely temporal version of (29) as

t t
up = p+ / g(t — s)I,dBs + 6/ g(t — s)Jgds, (37)
— 00 —0o0

where B denotes Brownian motion. This model is in fact a limiting case of
(29) with h = g, for ¢ = ¢™ = ¢/2 — oo and g(s,p) = c s 1T¢g(s).
The statistical properties of (37) are reported in more detail in Barndorff-
Nielsen and Schmiegel (2005) where it was shown that a considerable part of
its statistics are mediated by the structure of the model without specifying the
intermittency J and the weight function g in all details. In the following we
review the validation of the model (37) concerning the evolution of the density
of velocity increments across time scales and the experimental verification of
the statistics of the Kolmogorov variable.

In the setting of the model (37), the local energy dissipation can be iden-
tified with [du]?/dt = J; and consequently the quadratic variation [u]; is the
stochastic analogue of the integrated energy dissipation.

As for the spatio-temporal model (29), the energy dissipation process does
not depend on (. The constant ( introduces a non-vanishing skewness in
accordance with Kolmogorov’s famous 4/5-the law (Kolmogorov (1941)). For
the calculations below and for simulations we set 3 = 0, for convenience. This
restriction does not essentially alter the results we derived by simulations.
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Temporal model and shape dynamics

As mentioned earlier, the density of empirical velocity increments evolves from
heavy tails at small time scales s towards an approximate Gaussian shape at
large scales s, in a manner that is well described within the class of NIG-
distributions.

In comparing this to properties of the model (37) the first thing to note is
that under (37) the asymptotic law of u; — ug for t — oo will not be Gaussian
unless the intermittency field I is deterministic. This is in accordance with
experimental findings, as illustrated by Figure 7 which shows the estimated
(by maximum likelihood) asymmetry and steepness parameters x and & of the
fitted NIG laws, plotted in the NIG shape triangle (see Appendix). Note that
the normal law occurs as a limiting case near (x,&) = (0,0). The data are
from the atmospheric boundary layer (see also Figure 5).

To quantify the non-Gaussian character of the density of velocity incre-
ments in the model (37) we first focus on the standardized fourth order cu-
mulant ¢4 which, in the absence of skewness 3 = 0, is the first order that
distinguishes between a Gaussian shape and a heavytailed distribution. A
specific result can be obtained by setting

gty =e™" (38)

and assuming J to be of Ornstein-Uhlenbeck-type, i.e.

t
J, = / e Mt=9qL, (39)

— 00

where L is the inverse Gaussian Lévy process. For brevity a process J of this
form is refered to as an OU-IG process.

The parameters A and «y control the autocorrelation functions of J and w,
respectively. In this case we obtain

. — 3CQ(L1 - Lo) 7)\
1 —ug) = . 40
M @a(us = uo) 2¢1(Ly — Lo)? 2y + A (40)

and Ses(Ly — Lo)

R C2(L1 —

}1_1)1(1) Cq(up —ug) = m)\. (41)
The heaviness of the tails of the pdf of velocity increments increases with
increasing A, i.e. with a faster decrease of correlations of the local energy
dissipation. Qualitatively, the same behaviour is observed for turbulent flows
where the heaviness of the tails of the pdf of velocity increments increases
with increasing Reynolds number and with increasing intermittency exponent
w2 (Cleve et al (2004)), defined as E{epe;} ~ t~#2. (Due to this power-law
behaviour, the assumption of € (=.J) following an OU-IG process, for which
E{eoet} = ca(Ly — Lo)[2\] te ™ + ¢ (L1 — L)?A™2, is not a quite realistic
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approach for modelling the local energy dissipation. We come back to this
point in Section 5.3.)

The corresponding results for moderate time scales are only accessible
through numerical simulation. For the simulations we set 8 = 0 in (37) and
model J as an OU-IG-process. Figure 8 shows the evolution of the probability
densities of the simulated increments u; — ug for various time scales t. We
clearly observe heavy tails for the small scales and an approximately Gaus-
sian shape for the large scales. The solid lines denote the approximation of
the densities within the class of NIG-distributions. The densities of u; — ug
qualitatively display the empirical findings about the evolution across scales
of turbulent velocity increments shown in Figure 5.

Temporal model and K62

As the second validation of the model (37) we briefly discuss K62 and its
experimental verification. The original definition of V' in (25) relates to spatial
statistics which are not accessible in experiments. Therefore, the experimental
verification of K62 has been performed in terms of temporal analysis. In the
temporal model (37), the Kolmogorov variable may be defined as
V= (42)
{afu]}'?

The introduction of the mean velocity @ turns V; into a non-dimensional
stochastic process.

The most important property of V' concerns its conditional statistics. Nu-
merous investigations of turbulent data sets show that the conditional den-
sities p(V4| [u],) become independent of [u], for not too small ¢. Within the
model (37) this observation is confirmed to high accuracy by simulations done
with the same parameters as for the simulation of the densities of velocity in-
crements in Figure 8. Figures 9-10 show the conditional densities p(V|[u];) for
t =2 and t = 16 and various values of [u];. For small ¢, the conditional den-
sities strongly depend on [u];. With increasing time scale ¢, the dependence
gets smaller and for large enough ¢ (¢ &~ 16 in our simulation), the conditional
densities do not depend on [u];. This independence also holds for the larger
time scales t > 16 (not shown here). These findings agree well with results
reported for the turbulent velocity field in Stolovitzky et al (1992), Zhu et
al (1995) and Stolovitzky and Sreenivasan (1994), and they reveal the gist of
K62.

The exponent 1/3 in the definition of the Kolmogorov Variable V in
(42) has been introduced by Kolmogorov for dimensional reasons (three-
dimensional space). In order to give an impression about the peculiarity of

1/3 we define
U — Ug
Vot = ——=&- (43)
t {uful}
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which coincides with (42) for « = 1/3. To assess the question of how much
the independence of the conditional densities p(V;|[u];) on [u]; depends on
the specific choice a = 1/3 we analyse the dependence of the second-order
conditional cumulants ca(Ve ¢|[u]s) on [u]; for different values of «. Figure
11 compares co(Viy|u]s) for @« = 1/2 and o = 1/3. The conditional cumu-
lants are estimated from simulations with the same parameters as used for
the simulation of velocity increments in Figure 8. For a = 1/2 the condi-
tional cumulants considerably decrease with increasing [u];. For o = 1/3 the
conditional cumulants stay roughly constant. For the moment, we have no
explanation for why the model seems to be adapted to the exponent 1/3 (or
at least to an exponent close to 1/3).

5.3 The energy dissipation process

The basic ingredient of the model for the turbulent velocity is the intermit-
tency process J. For the temporal model (37), J coincides with the temporal
energy dissipation €4me.. For the more general spatio-temporal model (29),
the energy dissipation is expressed as an integral over the weighted J process
(see Section 2.4). In the following, we discuss a particular model for the en-
ergy dissipation process ¢ that is along the line of ambit processes (Schmiegel
et al (2006), Barndorff-Nielsen and Schmiegel (2004), Schmiegel et al (2004),
Schmiegel (2005a)).

We model the energy dissipation process as an ambit process of the expo-
nential form

e(0) =exp{/c( )f(lt—8|»|U—P|)L(d8dﬂ)}a (44)

where L is a homogeneous and factorisable Lévy basis and f is an integrable
deterministic function. Then we have the fundamental relation

E{exp{/c f(c)L(dc)}} - exp{/CK[f(c)]dc} : (45)

where K denotes the cumulant function of L(dc), defined by
InE {exp {¢L(dc)}} = K[¢]de. (46)

The usefulness of (45) is obvious: it permits explicit calculation of the cor-
relation function of the integrated and f-weighted noise field L(dc) once the
cumulant function K is known.

The generality of the model (44) is based on the possibility of choosing
the constituents of the process e;(0) independently. The available degrees of
freedom are an arbitrary infinitely divisible law for the Lévy basis L, the
deterministic function f and the shape of the family C of ambit sets.
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Despite its generality, the model is tractable enough to yield explicit ex-
pressions for arbitrary n-point correlations E {e, (c1) - ... €, (0)} in closed
form.

Here, we focus on two-point correlators of order (n1,n2), defined as

E{er, (01)" er,(02)"}
E{er, (01)" } E{er,(02)"2}

In the following we set f = 1. This choice of the weight function f is
motivated by the fact that two-point correlators obtained from a variety of
turbulent data sets show the property of self-scaling (see below). Moreover,
the freedom of choosing an arbitrary shape of the ambit set C is sufficient
to model a wide range of two-point correlators of order (1,1) which are of
primary interest in the present context.

Using (45), it is straightforward to show that

Cnl,ng (0'17 tl; g9, tg) = exp K[nl, 77,2] / dO’diL 5 (48)
Ctl (0'1)ﬂCt2(0'2)

with the abbreviation K[ny, ns] = K[ny + na] — K[n1] — K[na] > 0 (as follows
from the Minkowski inequality). The important point here is the fact that the
exponent in (48) factorizes into the Euclidean volume of the overlap of the
two ambit sets times a factor depending only on the order (n1,n2). Thus we
are able to rewrite (48) as a self-scaling relation of two point correlators of
orders (ni,ns2) and (mq, mg) (Schmiegel (2005a))

(47)

Cnymo (01,115 02,t2) =

Cry i (01, 11509, 12) = Cony oy (01, E1; 02, 1) R M2 m2] (49)
with the abbreviation

K[nl, ng]

K[ml, mg] , (50)

k[mi,ma;ny,ng) =

called the self-scaling exponent.

The self-scaling relation (49) implies that correlators of arbitrary order
(n1,n9) are determined by the correlator of order (1,1) and the knowledge of
the self-scaling exponents k of all orders. Note that the self-scaling exponents
k only depend on the Lévy basis L.

For a given Lévy basis L it is possible to extract the shape of the ambit
set directly from two-point correlators of order (1,1) which are accessible in
experiments. For that we assume the ambit set Cy(o) to be of the form

Ci(o)={(p,s): t—-T<s<t,pclo—q(s—t+T),0+q(s—t+T)]}
(51)
where the function ¢(s), defined on [0, 7] is nonnegative and decreasing. The
constant T' introduces a decorrelation time for the energy dissipation process.
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We further assume ¢ and its inverse ¢(=1) to be differentiable. In this case it is
easy to give necessary and sufficient conditions on spatial two-point correlators
of order (1,1) to be modelled by the Ansatz (44). From (48) it follows that

o . o =P (1/2)
3 Ineyq(o,t;0 +1,t) = K1, 1]5 2/0 (q(s) —1/2)ds

= —K[1, )¢ (1/2) (52)

and o2 . 5
) . 7 -1
FTH Iney1(o,t;0 +1,t) = _iK[l’ 1]5(1( )(1/2). (53)
Thus, the Ansatz (44) together with a decreasing boundary ¢(t) > 0 is able
to model any twice differentiable spatial two point correlator that has the

properties

0
alncm(a,t;a—i—l,t) <0 (54)
and
82
PTH Iney1(o,t;0 +1,t) > 0. (55)

Relation (52) has been applied to turbulent data in Schmiegel et al (2004)
where the shape of the ambit set has been extracted from scaling two-point
correlators. As a consequence the higher order correlators are fixed and the
three-point correlators have been successfully compared to experimental data.

In the temporal set-up (37) the intermittency process J is identified with
the local energy-disspation € and as such directly accessible to turbulent data
analysis. For the more general spatio-temporal model (14) correlators of the
energy-disspation can be expressed as weighted integrals over the correlators of
the intermittency process J and as such can be modelled by suitably adapting
the weight function g and the statistics of J.

6 Modelling tumour growth

The potential of processes of the type (44) for modelling a certain, well de-
fined correlation structure may also be useful for modelling tumour dynamics
(Schmiegel (2005b) and Jensen et al (2006)). The object of interest in that
context is the star-shaped approximation of planar tumour tissue character-
ized by a radius function

R (¢) = max{R:co+ Rey € S} (56)

where S; denotes the two-dimensional domain occupied by the tumour at time
t, co denotes the centre of mass of the tumour at time ¢ = 0 and ey is the
unit vector in direction ¢ € [0, 27].
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Tumour profiles show structures at very different scales with strongly local-
ized outbursts of different size. Due to the unrestricted growth of the tumour
in in vitro experiments we can expect the profiles to be statistically isotropic.
A comparison of these star-shaped profiles with the original profiles as ob-
served in the experiment (Bri et al (1998)) shows that (56) approximates the
growing tumour to a high accuracy. For the star-shaped approximation, we
neglect details of the tumour profiles where small regions of non-tumour tissue
are surrounded by tumour cells.

For the stochastic modelling of profiles we normalize the radial function

Ri(9)
E{R;(¢)}’

where E{R,;(¢)} is the mean radius at time ¢, assumed to be independent of
¢. Thus, E{r¢(¢)} = 1 for all times t. For the estimation of expectations, we
perform spatial averaging.

Spatial correlators of star shaped tumour profiles have the form (Schmiegel
(2005D))

In (Cny iy (£, @31, ¢ + AP)) = diny iy (1) f1(AD) 110,64 (1)) (AD) + by iy (1) COS(?‘ZS))
58
where the critical angle ¢o(t) confines the valitidity of the cosine behaviour
for Agp > ¢g. For Ap < ¢g deviations from the cosine behaviour occur and
are denoted by f;. The factors d and b are independent of A¢ and depend
only on the order (ny,ns).
To account for the particular correlation structure (58) we propose an
exponential ambit process of the type

t—to(t) pé+m
r¢(¢9) = exp { / / cos(¢p — ¢')BS(dt'd¢")

T(t)

+qi (' —t+to(t))
/ / BS(dt'dg) p, (59)
t—to(t) J p—qe (t' —t+to())

with cyclic definition in the angle and where BS is a Brownian sheet. The
first term on the right hand side of (59) is respounsible for the validity of the
cosine law (second term in (58)) and the second term on the right hand side
of (59) is associated with the deviations from the cosine law at small angular
distances. We call the first term in the exponent on the right hand side of (59)
the large scale term and the second term the small scale term.

The ambit set associated with the large scale term is a rectangle of the
form [t —T(t),t —to(t)] X [¢ — 7, p+7]. The deterministic function T'(¢) can be
interpreted as the decorrelation time of the radius process and to(t) expresses
the decorrelation time of the small scale term.

The ambit set associated with the small scale term is assumed to be de-
termined by a deterministic and monotonically decreasing function ¢; defined

ri(¢) = (57)
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on [0,%0(t)] and satisfying ¢:(to(t)) = 0. These two parts of the ambit set are
weighted differently according to the deterministic functions a(t) cos(¢ — ¢')
and h(t) for the large scale term and the small scale term, respectively.

Within the modelling framework (59) the two point correlators are of the
specific form (58) where

by ny (1) = nanga(t)m (T(t) — to(t)) (60)
and the small scale amplitude d,,, ,,(¢) has the form
iy ns (1) = ninoh(t)? (61)
and we identify f; by

"V (A4/2)
J1(Ad) = Vi(Ag) = / (21(s) — Ad)ds (62)

where V;(Ag) is the Euclidean volume of the overlap of the ambit sets of the
small scale terms separated by the angular distance A¢. The critical angle
¢o(t) is given by

¢o(t) = 24:(0), (63)

and is independent of the order (n1,nsg).

The modelling potential of the Ansatz (59) for the dynamics of tumour
profiles lies in the fact that the cosine behaviour at large scales can be mod-
elled independently of the deviations at the small scales. In particular, a suit-
able choice of the bounding function ¢;(s) allows to model any monotonically
decreasing overlap V;(¢) and, consequently, any monotonically decreasing de-
viation dp, n,(t) f:(Ad).

The assumption of a Brownian sheet in (59) is motivated by the implied
order dependence of the amplitudes b and d in (60) and (61), respectively, and
the fact that tumour profiles show self-scaling of spatial correlators (Schmiegel
(2005b))

Cny s (1 AG) = (Cony s (1, Ag))Felmameina (64)

with self-scaling exponents k; of the form

ning

ki[my, ma;ny,ng| = (65)

mimeso '
The self-scaling property (64) holds for all angular distances A¢ implying

dm,nz(t) _ bm,nz(t) _ ny,n2 (66)
dml M2 (t) bml ;M2 (t) my,msa

in accordance with (60) and (61).

Figure 12 shows a comparison of star-shaped brain tumour profiles with
simulations of the model (59). For the estimation of the parameters used for
the simulation we refer to Schmiegel (2005b).
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Remark 4. The modelling framework (59) has been defined for the normal-
ized radius r(¢). However, it equally applies to the modelling of the non-
normalized radius R;(¢). The definition of correlators is invariant under rescal-
ing with the mean radius. Going from r.(¢) to R:(¢) is equivalent to replacing
h(t) with h(t)—log(E{R:(¢)})/ f+(0), keeping all other parameters of the model
(59) unchanged.

7 Concluding remarks

The modelling of the turbulent energy dissipation (44) and the turbulent
velocity fields (29) and (37) within the class of ambit processes, as outlined
in Section 5, poses various important questions, in addition to the purely
mathematical problems listed in Section 2.5.

Of major interest is the identification of the parameters of the model with
physical observables. For the temporal model (37) the intermittency process
J is identified with the local energy dissipation and as such accessible to
data analysis. For the spatio-temporal model (29), the energy dissipation is
identified with a weighted integral of the intermittency process.

Specifying suitable observables for the statistical analysis of the intermit-
tency process J are of great importance. The recently developed asymptotic
theory of realised quadratic variation and its extension to realised multipower
variation, see Barndorff-Nielsen et al (2005) and Barndorff-Nielsen and Shep-
hard (2005) and references given there, is of relevance here.

The collapse of the densities of velocity increments at time scales s as func-
tions of the parameter §(s) of the associated approximations within the class
of NIG distributions indicates that 0(s) incorporates most of the individual
characteristics of each experimental situation. From this point of view, the
determination of the dependence of the weight function g and the intermit-
tency field J in (29) on the function §(s) should allow to model the evolution
of the densities of velocity increments across scales in more detail.

Furthermore, the identification of §(s) within the modelling framework is
a first step towards a separation of non-universal features of the model, i.e.
those that reflect the specific experimental situation, from universal features
of the model that are independent of experimental details.

Appendix: Normal inverse Gaussian distribution

The normal inverse Gaussian law, with parameters «, 3, 1 and 6, is the dis-
tribution on the real axis R having probability density function

-1
plasafnd) = atapondie (T2 g {oaa (S5 ) e o)
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where ¢(z) = v1 + 22 and
ale B,11,6) = 7 "acexp {61/a7 = 7 — gy (68)

and where K is the modified Bessel function of the third kind and index 1.
The domain of variation of the parameters is given by 1 € R, § € R4, and
0 < || < «. The distribution is denoted by NIG(«, 3, i, 9).

If X is a random variable with distribution NIG(«, 8, i, d) then the cu-
mulant generating function of X, i.e. K(6;a, 3, 1,8) = log E{e?X}, has the
simple explicit form

K(B50,8,1,0) = 0{y/0? = 3 = /a2 = (B+0)>} + b (69)
We note that the NIG distribution (67) has semiheavy tails; specifically,

—3/2

pla3 @, B, 1, 8) ~ comst. |o| 2 exp (—ala| + ), w — oo, (70)

The normal inverse Gaussian law can be characterized in terms of sub-
ordinated Brownian motion. For that, let B, be a Brownian motion starting
at the point p and having constant drift 3. Let Z; be the inverse Gaussian
Lévy process, assumed independent of the process B;. The inverse Gaussian
Lévy process is defined as the Lévy process for which Z; ' 7 and where

the distribution of Z is the inverse Gaussian law whose probability density
function is given by

(2m) 7126273 2 exp {— (82271 + 4%x) /2 .
This distribution is denoted IG(d, 7). Then, the process
Xt = th + /j/t

is also a Lévy process, termed the normal inverse Gaussian Lévy process,
whose distribution at time ¢ = 1 is NIG(a, 8, 1, §) where a = /32 + 2.

NIG shape triangle For some purposes it is useful, instead of the clas-
sical skewness and kurtosis quantities, to work with the alternative asymmetry
and steepness parameters y and £ defined by

X = p€ (71)
and
E=[1+5"2 (72)

where 4 = §y/a2 — 32. Like ¢3 and ¢4, these parameters are invariant under
location-scale changes and the domain of variation for (y,&) is the normal
inverse Gaussian shape triangle

{(,8):—1<x<1,0<&< 1} (73)

The distributions with x = 0 are symmetric, and the normal and Cauchy laws
occur as limiting cases for (x, &) near to (0,0) and (0, 1), respectively. Figure
13 gives an impression of the shape of the NIG distributions for various values

of (x,§)-
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Fig. 1. Illustration of the dynamics of the process X, (15) along the curve

(t(w), o (w)).
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Fig. 2. Illustration of the dynamics of the process X,, (15) along the curve t(w) = w,
o(w) = o constant.
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Fig. 3. Ilustration of the dynamics of the process X,, (15) along the curve t(w) =t
constant, o(w) = w.
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Fig. 4. Illustration of the dynamics of the process X. (15) along the curve
(tw), o (w)) = (w, o + " w).
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Fig. 5. Approximation of the pdf of velocity increments within the class of NIG
distributions (solid lines, fitting by maximum likelihood) for data from the atmo-
spheric boundary layer (kindly provided by K.R. Sreenivasan) with Ry = 17000 and
time scales s = 4,8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution).
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Fig. 6. Collapse of the densities of velocity increments at time scale s for various
fixed values of the scale parameter §(s) of the approximating NIG-distributions.
The data are from the atmospheric boundary layer (data set (at) with Ry = 17000,
kindly provided by K.R. Sreenivasan), from a free jet experiment (data set (j) with
R = 190, kindly provided by J. Peinke), from a wind tunnel experiment (data set
(w) with Ry = 80, kindly provided by B.R. Pearson) and from a gaseous helium jet
flow (data sets (h85), (h124), (h208), (h283), (h352), (h703), (h885), (h929), (h985)
and (h1181) with Ry = 85,124,208, 283,352, 703, 885,929, 985, 1181, respectively,
kindly provided by B. Chabaud). The corresponding values of the time scales s (in
units of the finest resolution of the corresponding data set) and the codes for the
data sets are (a) (s = 116, (at)) (o), (s = 4, (h352)) (H), (b) (s = 440, (at)) (o),
(s =8,(j) (), (s =8,(h929)) (V), () (s =192, (h885)) (M), (s = 88, (h352)) (H),
(s =10, (w)) (+), (d) (s = 380, (h885)) (M), (s = 410, (h929)) (V), (s = 350, (h703))
(x), (s = 340, (h985)) (@), (e) (s = 420, (h703)) (%), (s = 440, (h929)) (Vv), (s =
180, (h352)) (B), (s = 270, (h283)) (e), (s = 108, (h124)) (x), (s = 56, (h85)) (X), (f)
(s = 470, (h929)) (V), (s = 116, (h124)) (x), (s = 60, (h85)) (K), (s = 188, (h352))
(8), (s =470, (h1181)) (A), (s = 140, (h208)) (4).
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10

Fig. 7. Shape triangle for the evolution of the pdf of velocity increments across
time scales (time scales increase from top to bottom) for data from the atmospheric
boundary layer (kindly provided by K.R. Sreenivasan).
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Fig. 8. Logarithm of the probability densities of the simulated increments u; — uo
(arbitrary units) under the model (37) with ¢ = 1,2,8,16,32,98 (in units of the
finest resolution). The solid lines denote the approximation within the class of NIG
distributions (fitting by maximum likelihood).
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Fig. 9. Logarithm of the conditional densities p(V%|[u]:) of the simulated Kol-
mogorov variable V; under the model (37) for ¢ = 2 (in units of the finest resolution)

with [u]}/® = 0.45 (o), [u];”® = 0.77 (&), [u];”® = 0.99 (+) and [u];/® = 1.20 (x) (in
arbitrary units).
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Fig. 10. Logarithm of the conditional density p(V:|[u]+) of the simulated Kolmogorov
variable V; under the model (37) for t = 16 (in units of the finest resolution) with
[u];/® = 0.98 (o), [u];”® = 1.16 (1), [u]}/® = 1.26 (+), [u]}/® = 1.35 (), [u];/® = 1.44
(©), [uli’® = 1.53 (v), [u];’® = 1.63 (®), [u]}/® = 1.72 (%), [u]}’® = 1.81 (a),
[ul;/® = 1.9 (@) and [u]}’® = 2.0 (B) (in arbitrary units).



Ambit processes; with applications to turbulence and tumour growth

Fig. 11. Comparison of the simulated conditional variances ca(Va, ¢
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[u]¢) fora =1/3

(x) and o = 1/2 (o) as a function of [u]¢ (in arbitrary units) with ¢ = 32 (in units
of the finest resolution).
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Fig. 12. Comparison of the simulated tumour profiles (bottom row) under the
model (59) with the star-shaped tumour profiles (top row) at times ¢ = 21, 25,55

(arbitrary units).



34 Ole E. Barndorft-Nielsen and Jiirgen Schmiegel

T
/ N\
[\

0.25

-02 0.0 0.2 04 06 08 10

X

-0251; : - i
-10 -08 -06 -04

Fig. 13. The shape triangle of the NIG distributions with the log density functions
of the standardized distributions, i.e. with mean 0 and variance 1, corresponding to
the values (x, &) = (£0.8,0.999), (£+0.4,0.999), (0.0,0.999), (£0.6,0.75), (+0.2,0.75),
(£0.4,0.5), (0.0,0.5), (£0.2,0.25) and (0.0,0.0). The graphs of the log densities are
placed at the corresponding values of (x, &).



