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1 Åbo Akademi, Mathematical Department, Växnriksgatan 3 B, FIN-20500 Åbo,
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Summary. In this paper we study perpetual integral functionals of diffusions. Our
interest is focused on cases where such functionals can be expressed as first hitting
times for some other diffusions. In particular, we generalize the result in [24] in
which one-sided functionals of Brownian motion with drift are connected with first
hitting times of reflecting diffusions.

Interpreting perpetual integral functionals as hitting times allows us to compute
numerically their distributions by applying numerical algorithms for hitting times.
Hereby, we discuss two approaches:

• numerical inversion of the Laplace transform of the first hitting time,
• numerical solution of the PDE associated with the distribution function of the

first hitting time.

For numerical inversion of Laplace tranforms we have implemented the Euler algo-
rithm developed by Abate and Whitt. However, perpetuities lead often to diffusions
for which the explicit forms of the Laplace transforms of first hitting times are
not available. In such cases, and also otherwise, algorithms for numerical solutions
of PDE’s can be evoked. In particular, we analyze the Kolmogorov PDE of some
diffusions appearing in our work via the Crank–Nicolson scheme.

AMS Classification: 60J65, 60J60, 62E25.

1 Introduction

Let {Yt : t ≥ 0} be a regular linear diffusion taking values on an interval I.
The left and right endpoints of the interval are denoted by l and r, respectively.
For a locally integrable function f : I 7→ R+ define the perpetual integral
functional associated with f and Y via∫ ∞

0

f(Yt) dt. (1)
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An important example of perpetual integral functionals is∫ ∞

0

exp
(
−2aB(µ)

t

)
dt, a > 0,

where B(µ) is a BM with positive drift µ, studied by Dufresne in [10] in
connection with risk theory and pension funding. In particular, from [10],
this functional is distributed as 1/(2 a2 Zν) where Zν is a gamma-distributed
random variable with the density function

fZν
(z) =

1
Γ (ν)

zν−1e−z, ν := µ/a.

In Yor [31] (see [32] for an English translation) it is shown that∫ ∞

0

exp(−2aB(µ)
s ) ds

(d)
= H0(R(δ)), (2)

where R(δ) is a Bessel process of dimension δ = 2(1− (µ/a)) started at 1/a,

H0(R(δ)) := inf{t : R(δ)
t = 0},

and
(d)
= reads ”is identical in law with” (in fact, R(δ) can be constructed

in the same probability space as B(µ) and then (2) holds a.s.). In [24] the
methodology used in [31] is developed for more general perpetual functionals
for BM with positive drift and, in particular, results for one sided functionals
are presented. An example of these is∫ ∞

0

exp(−2aB(µ)
s )1{B(µ)

s >0}ds
(d)
= H1/a(R(2µ/a)),

where the Bessel diffusion R (2µ/a) is started at 0 and, in the case 0 < µ < a,
reflected at 0. For further results and references for Dufresne’s functionals, see
[26], [21], [23], [24] and [9].

In this paper, Section 2, we recall (from [4]) the connection between per-
petual integral functionals and first hitting times. After this, the result in
[24], Proposition 2.3, concerning one-sided perpetual functionals of B(µ) is
generalized for Y (defined via a SDE) and functionals of the type in (1). In
Section 3, to make the paper more self contained and also as an introduction
to Section 4, some basic facts about the distributions of the first hitting times
are presented. Section 4 contains brief descriptions of the Euler algorithm for
numerical inversion of Laplace transforms and the Crank-Nicolson scheme for
solving PDE’s, which we implemented in Matlab. The paper is concluded with
Section 5 where the distributions of some perpetual functionals are computed
numerically. In particular, we compare the one-sided functionals
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0

exp(−2B(µ,σ)
s ))1{B(µ,σ)

s >0} ds

and
∫ ∞

0

(1 + exp(B(µ,σ)
s ))−2 1{B(µ,σ)

s >0} ds,

where B(µ,σ)
t := σ Bt + µ t with B the standard Brownian motion. It is also

seen that some of the diffusions studied have bad singularities making the
PDE’s numerically troublesome to solve. In some cases this problem can,
at least partly, be solved by transforming the diffusion to a new one with
better behaviour. It seems to us that for a general numerical approach for
calculating distributions of perpetualities, more sophisticated PDE or other
methods such as Monte Carlo simulation are needed for the cases where the
Laplace transform is not available for numerical inversion.

2 Perpetual integral functionals as first hitting times

Consider a diffusion Y on an open interval I = (l, r) determined by the SDE

dYt = σ(Yt) dBt + b(Yt) dt, (3)

where B is a standard Brownian motion defined in a complete probability
space (Ω,F , {Ft},P). It is assumed that σ and b are continuous and σ(x) > 0
for all x ∈ I. The diffusion Y is considered up to

ζ := inf{t : Yt 6∈ I},

but it is possible that ζ = ∞ a.s.
Let f be a (strictly) positive and continuous function defined on I, and

consider for t ≥ 0 the integral functional

At :=
∫ t

0

f(Ys) ds.

We remark that {At : t ≥ 0} is an additive functional of Y in the usual sense
(see e.g. [2] p. 148). Taking t = ζ gives us the perpetual integral functional

Aζ :=
∫ ζ

0

f(Ys) ds.

Assuming that Aζ <∞ a.s. we are interested in the distribution of Aζ .
A sufficient condition for finiteness is clearly that the mean of Aζ is finite:

Ex (Aζ) =
∫ ∞

0

Ex (f(Ys)) ds

=
∫ r

l

G0(x, y) f(y)m(dy) <∞,
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where G0 denotes the Green kernel of Y and m is the speed measure (for these
see, e.g., [3]). A neccessary and sufficient condition in the case of a Brownian
motion with drift µ > 0 is that the function f is integrable at +∞ (see
Engelbert and Senf [11] and Salminen and Yor [25]). We refer also to a recent
paper [18] for such a condition valid for measurable and locally bounded f
and a general diffusion Y.

Next proposition connects the perpetual integral functionals to the first
hitting times. The result is extracted from Propositions 2.1 and 2.3 in [4]
where the proof can be found. We remark also that the result generalizes
Proposition 2.1 in [24].

Proposition 1. Let Y, A, and f be as above and assume that there exists a
two times continuously differentiable function g such that

f(x) =
(
g′(x)σ(x)

)2
, x ∈ I. (4)

Let {at : 0 ≤ t < Aζ} denote the inverse of A, that is,

at := min
{
s : As > t

}
, t ∈ [0, Aζ).

1. Then the process Z given by

Zt := g (Yat
) , t ∈ [0, Aζ), (5)

is a diffusion satisfying the SDE

dZt = dB̃t +G(g−1(Zt)) dt, t ∈ [0, Aζ).

where B̃t is a Brownian motion and

G(x) =
1

f(x)

(
1
2
σ(x)2 g′′(x) + b(x) g′(x)

)
. (6)

2. Let x ∈ I and y ∈ I be such that Px-a.s.

Hy(Y ) := inf{t : Yt = y} <∞.

Then
AHy(Y ) = inf{t : Zt = g(y)} =: Hg(y)(Z) a.s.

with Y0 = x and Z0 = g(x).
3. Suppose g(r) := limz→r g(z) exists. Suppose also that the following state-
ments hold a.s.

(i) lim
t→ζ

Yt = r, (ii) Aζ := lim
t→ζ

At <∞.

Then
Aζ = Hg(r)(Z) a.s.
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In [24] Proposition 2.3 one sided functionals for Brownian motion with
positive drift are studied. This result is generalized here, under some assump-
tions, to the present case. Suppose 0 ∈ (l, r) and recall that f(x) > 0 for all
x ∈ (l, r). Consider the functional

A0
ζ :=

∫ ζ

0

f(Ys)1{Ys>0} ds.

Let

Ct :=
∫ t

0

1{Ys>0} ds, t ≤ ζ,

and {ct : 0 ≤ t < Bζ} denote the inverse of C. We assume also that

lim
t→ζ

Yt = r a.s. (7)

It is well known (see [16]) that the process

Y + := {Yct
: 0 ≤ t < Cζ}

is identical in law with Y living on [0, r) and having 0 as a reflecting boundary
point. Applying the random time change means that on every sample path
the excursions below 0 are omitted after which the gaps created are closed by
joining the excursions together. Therefore,

A0
ζ =

∫ ζ+

0

f(Y +
s ) ds =: A+

ζ

where ζ+ is the life time of Y +.
Next introduce the local time of Y + at 0 via

Lt(Y +) := σ2(0) lim
ε↓0

(2ε)−1Leb{0 ≤ s ≤ t : Y +
s < ε}.

Under some additional smoothness assumptions on σ and b (see McKean [20])
the pair (Y +, L(Y +)) with Y +

0 = x > 0 can be viewed as the unique solution
of the reflected SDE

dXt = σ(Xt) dBt + b(Xt) dt+ dLt(X), X0 = x,

such that

(a) limt→ζ(X)X(t) = r,
(b) 0 ≤ X(t) < r for all t < ζ(X),
(c) t 7→ Lt(X) is continuous, increasing with L0(X) = 0, and∫ t

0

1{0}(Xs) dLs(X) = Lt(X).
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We now give the promised generalization.

Proposition 2. Let Y + be as given above and define for t < ζ+

A+
t :=

∫ t

0

f(Y +
s ) ds.

The inverse of A+ is denoted by {a+
t : 0 ≤ t < Aζ}. Recall the definition of

the function g in (4) and define the process Z+ via

Z+
t := g

(
Y +

a+
t

)
, t ∈ [0, A+

ζ ). (8)

Then
A+

ζ = inf{t : Z+
t = g(r)} a.s. (9)

with Z0 = g(x). Moreover, Z+ satisfies the reflected SDE

dZ+
t = dB̃t +G(g−1(Z+

t )) dt+ dLt(Z+), t ∈ [0, A+
ζ ). (10)

where B̃t is a Brownian motion,

Lt(Z+) = lim
ε↓0

(2ε)−1Leb{0 ≤ s ≤ t : g(0) ≤ Z+
s < g(0) + ε}, (11)

and G is as in (6). The local time L(Z+) is related to the local time L(Y +)
by

Lt(Z+) = g′(0)La+
t
(Y +). (12)

Proof. Recall that since f > 0 it follows from (4) that g is monotone. Hence,
to fix ideas, we assume that g is monotonically increasing. By Ito’s formula
for u < ζ

g(Y +
u )− g(Y +

0 ) =
∫ u

0

g′(Y +
s )

(
σ(Y +

s ) dBs + b(Y +
s ) ds+ dLs(Y +)

)
+

1
2

∫ u

0

g′′(Y +
s )σ2(Y +

s ) ds.

Replacing u by a+
t yields

Z+
t − Z+

0 =
∫ a+

t

0

g′(Y +
s )σ(Y +

s ) dBs + g′(0)La+
t
(Y +)

+
∫ a+

t

0

(
g′(Y +

s )σ(Y +
s )

)2
G(Y +

s ) ds.

Since a+
t is the inverse of A+

t and (A+
s )′ =

(
g′(Y +

s )σ(Y +
s )

)2 we have

(a+
t )′ =

1
(A+

a+
t

)′
=

(
g′(Y +

a+
t

)σ(Y +

a+
t

)
)−2

. (13)



Perpetual integral functionals 7

From Lévy’s theorem it follows that

B̃t :=
∫ a+

t

0

g′(Y +
s )σ(Y +

s ) dBs, t ∈ [0, A+
ζ ),

is a (stopped) Brownian motion. Consequently, for t < A+
ζ

Z+
t − Z+

0 = B̃t + g′(0)La+
t
(Y +) +

∫ t

0

(
g′(Y +

a+
s
)σ(Y +

a+
s
)
)2
G(Y +

a+
s
) da+

s

= B̃t +
∫ t

0

G(g−1(Z+
s )) ds+ g′(0)La+

t
(Y +).

Clearly, viewing t 7→ g′(0)La+
t
(Y +) as a functional of Z+ then this functional

increases only on the set {t . : Z+
t = g(0)}. Moreover, since Y +

t ≥ 0 for t ≥ 0
we have Z+

t ≥ g(0) for t ≥ 0 by monotonicity of g. Hence, (Z+, L(Z+)) can
be seen as the unique solution of the reflected SDE (10) with L(Z+) as in
(11) satisfying (12), as claimed. Finally, again by the monotonicity of g, the
identity (9) follows from the definition (8) of Z+ and the assumption (7).

Remark 3. Notice that the above approach yields a stronger result than in
[24], i.e., the identity (9) holds a.s.

3 Reminder on first hitting times

3.1 Distribution functions and PDEs

Let Y be a linear diffusion determined via the SDE (3) up to ζ. It is here
assumed that Y hits r a.s. and is killed when this happens. Therefore, the
boundary point r is either exit-not-entrance or regular with killing, and l is
either natural or entrance-not-exit or regular with reflection (hence, in this
last mentioned case Y is taking values in [l, r). Letting Hr(Y ) denote the
hitting time of r we have

Px(Hr(Y ) > t) =
∫ r

l

p(t;x, y)m(dy), (14)

where p denotes the symmetric transition density of Y with respect to its speed
measure m. It is well known (see [16] p. 149 and [19]) that (t, x) 7→ p(t;x, y)
satisfies for all y ∈ (l, r) the PDE

∂

∂t
p(t;x, y) =

1
2
σ2(x)

∂2

∂x2
p(t;x, y) + b(x)

∂

∂x
p(t;x, y)

=: (G p)(t;x, y)

and the condition limx→r p(t;x, y) = 0. Moreover, in the case l is regular with
reflection or entrance-not-exit we impose at l the condition
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lim
x→l

∂

∂x
p(t;x, y) = 0,

and in the case l is natural the condition

lim
x→l

p(t;x, y) = lim
x→l

∂

∂x
p(t;x, y) = 0.

See [16] or [3] for the boundary classification of linear diffusions.
Letting {Tt} denote the semigroup associated with Y we may write from

(14)
Px(Hr(Y ) > t) = Tt1(x).

Recall from [19] (where the case with natural scale is treated) that (t, x) 7→
Ttg(x) with g bounded and continuous satisfies

∂

∂t
(Ttg)(x) = (G Tt)g(x).

Consequently, the distribution function

(t, x) 7→ u(t, x) := Px(Hz(Y ) < t)

is the unique solution of the PDE problem

∂

∂t
u(t, x) = (G u)(t, x) (15)

with the initial condition limt→0 u(t, x) = 0 for all x ∈ (l, r) and the bound-
ary condition limx→r u(t, x) = 1 for all t > 0. Further, if l is regular with
reflection or entrance-not-exit

lim
x→l

∂

∂x
u(t, x) = 0,

and in the case l is natural

lim
x→l

u(t, x) = lim
x→l

∂

∂x
u(t, x) = 0.

Remark 4. Using the fact (see [19]) that

(t, x, y) 7→ ∂

∂t
p(t;x, y)

is continuous and satisfies the same boundary conditions as the density
p(t;x, y) it is easy (at least when m(l, r) <∞) to deduce that

∂

∂t
Px(Hz(Y ) < t) = − lim

y→z

1
S′(y)

∂

∂y
p(t;x, y),

where

S′(y) = exp
(
−

∫ y

2σ−2(v) b(v) dv
)

is the derivative of the scale function S (cf. [16] p. 154).
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3.2 Laplace transforms and ODEs

For the approach with the Laplace transform of Hr(Y ) consider the second
order ODE

Gu(x) = λu(x), (16)

where λ ≥ 0. It is known (see [12] p. 488, and [16] p. 128) that the equation
(16) has a positive increasing solution ψλ and a positive decreasing solution
ϕλ. In case l is natural or entrance and r is exit these solutions are unique
up to multiplicative constants. When l is regular with reflection the condition
ψ′λ(l) = 0 must be posed, and when r is regular with killing the condition is
ϕλ(r−) = 0. The Green kernel Gλ of Y can be expressed via these solutions
as

Gλ(x, y) :=
∫ ∞

0

e−λ t p(t;x, y) dt

=

{
1

wλ
ψλ(x)ϕλ(y), x ≤ y,

1
wλ

ψλ(y)ϕλ(x), y ≤ x,

where wλ is the Wronskian (see e.g. [3]). Using the Green kernel the Laplace
transform for the first hitting time Hy(Y ) is given by

Ex

(
e−λ Hy(Y )

)
=
Gλ(x, y)
Gλ(y, y)

and, in particular,

Ex

(
e−λ Hr(Y )

)
=
ψλ(x)
ψλ(r)

. (17)

4 Numerical methods

4.1 Numerical inversion of Laplace transforms

There are several efficient methods for numerical inversion of the Laplace
transforms of probability density functions or probability distribution func-
tions. We have implemented a method developed by Abate and Whitt in [1].
This so called Euler-algorithm has proved to be very effective in many ap-
plications see e.g. [13], [6], [7] and [8]. The main features of this method are
presented below. For more details and also for further references, see [1].

Consider a non-negative random variable with density f and its Laplace
transform

f̂(λ) :=
∫ ∞

0

e−λt f(t) dt.

The well known inversion integral formula (called the Bromwich or also the
Fourier-Mellin integral) states that
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f(t) =
1

2π i

∫ a+i∞

a−i∞
eλ t f̂(λ) dλ, (18)

where it is assumed that f̂ does not have singularities on or to the right of
the vertical line λ = a.

Remark 5. For first hitting times of diffusions considered in Section 3 we have
(cf. (17))

f̂(λ) = Ex

(
e−λ Hr(Y )

)
=
ψλ(x)
ψλ(r)

.

If the left boundary point l is not natural it follows from the classical theory
of second order differential operators (see e.g. [17]) that ψλ(x) is for every
x ∈ (l, r) an entire function of λ and the zeroes of λ 7→ ψλ(x) are for every
x ∈ (l, r) simple and negative. Consequently, the inversion formula (18) holds
in this case for any a > 0. If l is natural we can approximate the first hitting
time Hr(Y ) via a sequence of first hitting times {Hr(Y (n))} associated with
the diffusions Y (n), n = 1, 2, . . . , constructed from Y by reflection at l +
1
n , respectively. Then Hr(Y (n)) → Hr(Y ) in distribution and by dominated
convergence it is seen that (18) is valid also in this case.

Since Re(f̂(a + iu)) = Re(f̂(a − iu)), Im(f̂(a + iu)) = −Im(f̂(a − iu)),
and f(t) = 0 for t < 0 the inversion integral (18) takes the form

f(t) =
2eat

π

∫ ∞

0

Re(f̂(a+ iu)) cos(ut) du. (19)

Next we approximate f(t) by using the trapezoidal rule for the integral (19)
(see [1] for some comments on the effectiveness of this procedure). Letting h
denote the step size we have for fixed a and t

f(t) ≈ fh(t) =
heat

π
Re

(
f̂(a)

)
+

2heat

π

∞∑
k=1

Re
(
f̂(a+ kh i)

)
cos(kht).

Choosing h = π/(2t), a = A/(2t) (with A to be made precise later) and
truncating the infinite series to the first j terms we are led to define

sj(t) :=
eA/2

t

j∑
k=0

(−1)kak(t), (20)

where
a0(t) := f̂ (A/2t) /2

and
ak(t) := Re

(
f̂ ((A+ 2kπ i)/2t)

)
, k = 1, 2, . . . , j.

It is possible to accelerate the convergence of the series in (20) by recog-
nizing it is approximately alternating and using the Euler summation with
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binomial weights (see page 50 in [1] for more on this point). Hence, the pro-
posed final approximation with parameters m, n, and A is

f(t) ≈ E(m,n, t) :=
m∑

k=0

(
m

k

)
2−m sn+k(t),

In the examples below we use, following [1], m = 11 and n = 15. The er-
ror associated with Euler summation can be estimated by considering the
difference

E(m,n+ 1, t)− E(m,n, t).

It is advantageous from numerical computational point of view to in-
vert, instead of the density function, the complementary distribution function.
Therefore consider

F̂ c(λ) :=
∫ ∞

0

e−λt (1− F (t)) dt,

where F is the distribution function associated with f. Firstly, the fact |1 −
F (t)| ≤ 1 can be used to show (see [1]) that

|ed| ≤
e−A

1− e−A
,

where ed stands for the discretization error when approximating the integral
in (19) for F̂ c via the trapezoidal rule. For instance, A = 18.4 gives the upper
bound 10−8. Secondly, under some additional smoothness assumption, it can
be proved (see [1] Remark 1) that for F̂ c we have ak(t) > 0 when k/t is large
enough motivating the use of the Euler summation (since the series in (20) is
now alternating).

For the first hitting time of r for the diffusion Y the Laplace transform of
the complementary distribution function is given by

F̂ c(λ) =
1
λ

(
1−Ex

(
e−λ Hr(Y )

))
=

1
λ

(
1− ψλ(x)

ψλ(r)

)
=

1
λ

ψλ(r)− ψλ(x)
ψλ(r)

4.2 Numerical solutions of PDEs

In this section we describe using [28] and [27] two finite difference methods
known as the Crank-Nicolson (C-N) scheme and the backward Euler (BE)
method. The C-N scheme is used with satisfactory results in [22] for calcula-
tion of transition probability densities of certain diffusions. The BE method
can be applied in connection with the C-N scheme for the first time step to
damp some numerical oscillations typical to the C-N scheme. Both methods
are unconditionally stable: the numerical solutions are well behaved (do not
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blow up) for any choice of ∆t. Because of the singularities appearing in the
drift coefficients of our equations, methods that do not have this property
(such as the explicit, forward Euler method) are practically unusable since
they would require extremely small time steps.

To start with, let us introduce a uniformly spaced grid on the rectangle
[0, T ]× [l, r] with (M + 1)× (N + 1) nodes, that is, for

∆t =
T

M
, ∆x =

r − l

N
,

we let tm = m∆t and xn = l+n∆x where m = 0, 1, ...,M , n = 0, 1, ..., N . For
a real valued function f we use the following finite difference approximations,
which can be justified with Taylor’s expansion:

· the forward difference approximation of the derivative of f is

∂f

∂x
(xi) =

f(xi+1)− f(xi)
∆x

+O(∆x).

· the centralized difference approximation of the derivative of f is

∂f

∂x
(xi) =

f(xi+1)− f(xi−1)
2∆x

+O((∆x)2).

· the centralized difference approximation of the second order derivative of
f is

∂2f

∂x2
(xi) =

f(xi+1)− 2f(xi) + f(xi−1)
(∆x)2

+O((∆x)2).

The C-N scheme approximates the left hand side in equation (15) with the
forward difference and the right hand side with the average of the centralized
differences at two consequtive times. Denoting um

n := u(tm, xn) and dropping
the truncation error terms, the discretized equation then reads

um+1
n − um

n

∆t
=

1
2
σ2(xn)

1
2

(um+1
n+1 − 2um+1

n + um+1
n−1

(∆x)2
+
um

n+1 − 2um
n + um

n−1

(∆x)2
)

+ b(xn)
1
2

(um+1
n+1 − um+1

n−1

2∆x
+
um

n+1 − um
n−1

2∆x

)
.

Multiply both sides with ∆t, and define r1 = ∆t
2∆x , r2 = ∆t

2(∆x)2 . Rearranging
the terms so that the values at time tm+1 appear on the left hand side and
values at time tm appear on the right hand side, we have

Anu
m+1
n−1 +Bnu

m+1
n − Cnu

m+1
n+1 = −Anu

m
n−1 +Dnu

m
n + Cnu

m
n+1

where
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An =
1
2

(
b(xn)r1 − σ2(xn)r2

)
, (21)

Bn = 1 + σ2(xn)r2, (22)

Cn =
1
2

(
b(xn)r1 + σ2(xn)r2

)
, (23)

Dn = 1− σ2(xn)r2. (24)

Together with the boundary conditions, these form a set of N + 1 linear
equations which we then solve for each m = 1, 2, ...,M + 1, using the initial
condition for m = 0. The Neumann boundary condition (which is needed at
a reflecting or an entrance boundary point) is implemented with the second
order approximation. In other words, from

um
1 − um

−1

2∆x
= 0

we have um
−1 = um

1 for the value of u at a ”ghost” point beyond the boundary.
Plugging this into the discretized equation at n = 0 gives

(1 + r2σ
2(xn))um+1

0 − r2σ
2(xn)um+1

1 = (1− r2σ
2(xn))um

0 + r2σ
2(xn)um

1 .

Using a second order approximation for the boundary condition seems to be
important in order to have good convergence.

For the backward Euler method, one similarly takes the central approxi-
mations for the spatial derivatives but now only at the time step m+ 1. This
leads to the equation

Anu
m+1
n−1 +Bnu

m+1
n − Cnu

m+1
n+1 = um

n

for n = 1, ..., N and m = 1, ...,M , where An, Bn, Cn are given in (21)-(23)
but now with r1 = ∆t

∆x , r2 = ∆t
(∆x)2 . The second order implementation of the

Neumann boundary condition becomes

(1 + r2σ
2(xn))um+1

0 − r2σ
2(xn)um+1

1 = um
0 .

Both methods described above are second order accurate in space, but only
the C-N scheme is second order accurate in time. However, C-N is known to
produce numerical oscillations around discontinuities and sharp gradients if
the drift term is large compared to the diffusion coefficient (see for example [5],
[15]), while the BE method does not have this problem. In our examples this is
seen as oscillations near the killing boundary. Although these oscillations were
damped quite rapidly both in space and time, they still produced a small phase
shift in the numerical solution of the hitting time distribution t 7→ u(x, t). For
this reason the first step in the C-N scheme is divided into 10− 100 substeps,
as suggested in [5]. For the substeps we used the BE method. While small
oscillations still remained for some of the examples, this procedure provided
sufficient damping to give very accurate results in our test cases.
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A problem more serious than the oscillations appearing in the C-N scheme
is faced when the diffusing particle is pushed away from an exit boundary by
a drift term tending to infinity in the vicinity of the boundary. In such cases
convergence can be very slow or even nonattainable without huge computer
capacity. We discuss this problem in more detail in the examples below.

5 Examples

In this section some perpetuities are examined numerically. If the Laplace
transforms of the functionals are available we use the Euler algorithm for
computing the density and/or the distribution functions. Applying in these
cases also the numerical methods based on the associated PDE’s obtained
from the hitting time representations of the functionals and checking that the
solutions resulting from the different methods coincide we are able to verify
the correctness of the implementations.

Numerical methods for solving PDEs constitute a powerful tool for com-
puting hitting time distributions of diffusions in general. However, there are
diffusions as in Example 9 for which the methods presented here work un-
satisfactorily. At least in some particular cases it is possible to transform the
diffusion to a new one for which the methods seem to work better. This is dis-
cussed in Example 9. Due to these difficulties one may consider the numerical
inversion of the Laplace transforms when available as the first choice for the
kind of numerical computations studied in the paper.

Below the notation {B(µ,σ)
t : t ≥ 0} is used for a Brownian motion with

(infinitesimal) drift µ and variance σ, i.e.,B(µ,σ)
t = σ Bt+µ t withB a standard

Brownian motion. We assume that σ > 0 and µ > 0. In case σ = 1 we write
B(µ) for B(µ,1). For a Bessel process with dimension parameter δ we use the
notation of {R(δ)

t : t ≥ 0}, and refer to [3] for their properties. If nothing else
is written it is assumed that B(µ,σ)

0 = 0 and R(δ)
0 = 0.

Example 6. Consider the perpetual integral functional

I1 :=
∫ ∞

0

cosh−2(B(µ)
t ) dt.

The Laplace transform of this functional is computed in [4] and [29] for an
arbitrary initial value x; taking therein x = 0 gives

E0

(
exp

(
−ρ I1

))
= K 2F1(α, β, 1 + µ; 1/2).

where
α =

1
2

+
1
2

√
1− 8ρ, β =

1
2
− 1

2

√
1− 8ρ,

K =
Γ (µ+ α) Γ (µ+ β)
Γ (µ) Γ (µ+ 1)

,
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and 2F1 denotes Gauss’s hypergeometric function given by

2F1(a, b, c;x) : =
Γ (c)

Γ (a)Γ (b)

∞∑
k=0

Γ (a+ k)Γ (b+ k)
Γ (c+ k)

xk

k!

= 1 +
∞∑

k=1

a(a+ 1) . . . (a+ k − 1) b(b+ 1) . . . (b+ k − 1)
c(c+ 1) . . . (c+ k − 1)

xk

k!
.

Applying Proposition 1 with g(x) := 2arctan ex we obtain

I1 = Hπ(Z) a.s.,

where Z satisfies

dZt = dBt +
(

1
2

ctnZt +
µ

sinZt

)
dt, Z0 = π/2. (25)

For the drift term in (25), it holds

G(g−1(x)) =
1
2

ctnx+
µ

sinx
=

1
2

(
µ− 1

2

)
tan

x

2
+

1
2

(
µ+

1
2

)
ctn

x

2
.

Notice that for 0 < µ < 1/2 the drift of Z tends to −∞ when Z is approaching
π.

In Figures 6 and 1 we present the density and the distribution functions,
respectively, of I1 computed with the Euler algorithm. It has been checked
that the PDE method yields the same results. However, the convergence in
the case µ = 0.3 seems to be slow. In fact, for µ = 0.1 the convergence rate
of the PDE method is so slow that we were unable to get satisfactory results
with our limited computation capacity (RAM).

Example 7. In this example we compare the functionals

I2 :=
∫ ∞

0

exp(−2B(µ,σ)
s )ds and I3 :=

∫ ∞

0

(exp(B(µ,σ)
s ) + 1)−2ds.

Notice that

I3 =
∫ ∞

0

exp(−2B(µ,σ)
s )

1

(1 + exp(−B(µ,σ)
s ))2

ds,

hence I3 may be seen as a modification of I2 which does not allow arbitrary
large positive discounting. We remark also that I3 has all moments which is
not the case with I2.

The Dufresne-Yor identity (cf. (2)) states that

I2 = H0(R(2−2µ/σ2)) a.s.,
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Fig. 1. Density of
R∞
0

cosh−2(B
(µ)
t ) dt for µ = 0.3 (lowest peak), µ = 0.5 and µ = 0.7

(highest peak).
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Fig. 2. Distribution function of
R∞
0

cosh−2(B
(µ)
t ) dt for µ = 0.3 (lowest curve),

µ = 0.5 and µ = 0.7 (highest curve).
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where R(2−2µ/σ2)
0 = 1/σ. Consequently,

E0

(
exp

(
−ρ I2

))
=
ϕρ(1/σ)
ϕρ(0)

,

with (see [3] p. 133)

ϕρ(x) = x−ν Kν(x
√

2ρ), and ϕρ(0) = 2−(ν+2)/2Γ (−ν) ρν/2

and ν = −µ/σ2.
For I3 we have the identity

I3 = H0(Z) a.s.,

where Z is the diffusion associated with the SDE

dZt = dBt +
(
µ+ (µ− 1

2
)

exp(Zt)
1− exp(Zt)

)
dt, Z0 = − log 2.

Notice that here g(x) := − log(1 + exp(−x)) (cf. Proposition 1) and that Z
lives on R−. From [4] we recall the Laplace transform

E0

(
exp

(
− ρ I3

))
= K 2µ−

√
µ2+2ρ

2F1(α, β, α+ β + 2µ ; 1/2),

where

α =
1
2
− µ+

√
µ2 + 2ρ+

√
1
4

+ 2ρ, β =
1
2
− µ+

√
µ2 + 2ρ−

√
1
4

+ 2ρ,

and

K =
Γ (2µ+ α) Γ (2µ+ β)
Γ (2µ+ α+ β) Γ (2µ)

.

See Figures 3, 4, 5 and 6 for illustrations of the distributions of I2 and I3
computed with the Euler algorithm.

For both functionals in this example it was possible to solve the corre-
sponding PDE numerically for µ ≥ 1

2 . For µ < 1/2 the drift term tends to
−∞ as Z approaches the killing boundary 0. This again leads to very slow
convergence. While it was still possible to achieve good results for some choices
of µ < 1

2 , for a small enough µ the results were bad even with the finest grid
we could run on the computer. Notice that here we also need to truncate
the semi-infinite domains into finite ones for numerical computations. This
did not constitute a major problem, but with larger domains it is difficult to
achieve (depending on the computer capacity) a grid which is spatially dense
enough for accurate computations.

Example 8. We define the one-sided variants of I2 and I3 via

I4 :=
∫ ∞

0

exp(−2B(µ,σ)
s )1{B(µ,σ)

s >0}ds
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Fig. 3. Density of
R∞
0

exp(−2 B
(µ)
t ) dt for µ = 0.75 (lowest peak), µ = 1.50 and

µ = 2.50 (highest peak).
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Fig. 4. Distribution function of
R∞
0

exp(−2 B
(µ)
t ) dt for µ = 0.75 (lowest curve),

µ = 1.50 and µ = 2.50 (highest curve).
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Fig. 5. Density function of
R∞
0

(exp( B
(µ)
t ) + 1)−2 dt for µ = 0.25 (lowest peak),

µ = 0.50 and µ = 0.75 (highest peak).
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Fig. 6. Distribution function of
R∞
0

(exp( B
(µ)
t )+1)−2 dt for µ = 0.25 (lowest curve),

µ = 0.50 and µ = 0.75 (highest curve).
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and
I5 :=

∫ ∞

0

(exp(B(µ,σ)
s ) + 1)−21{B(µ,σ)

s >0}ds,

respectively.
In [24] it is shown that

I4 = H1/σ(R(2µ/σ2)) a.s.

where R(2µ/σ2)
0 = 0. The Laplace transform of I4 is hence given by

E0

(
exp

(
−ρ I4

))
=

ψρ(0)
ψρ(1/σ)

,

with (see [3] p. 133)

ψρ(x) = x−ν Iν(x
√

2ρ) and ψρ(0) =
ρν/2

2ν/2 Γ (ν + 1)

and ν = µ/σ2 − 1.
The Laplace transform of the functional I5 (in [24] this is called the one-

sided translated Dufresne functional) is not known but the following identity
(see [24]) holds

I5 = H0(Z) a.s.,

where Z is a diffusion associated with the generator

Gf(x) =
1
2
d2f

dx2
(x) +

(
1
2
σ +

µ− 1
2σ

2

σ (1− exp(σx))

)
d f

dx
(x)

living on [−(log 2)/σ, 0), having −(log 2)/σ as a reflecting barrier, and 0 as a
killing barrier.

In Figure 7 we compare the densities of I4 and I5 (see [9] for comparisions
between I2 and I4). The density and distribution functions of I5 are displayed
for different values of µ and σ in Figures 8 and 9.

Example 9. In our final example we consider the functional

I
(δ)
6 :=

∫ ∞

0

exp(−2R(δ)
s )ds, δ ≥ 2.

Proposition 1 when applied for R(δ) and g(x) := exp(x) leads us to the identity

I6 = H0(Z) a.s. (26)

with Z a diffusion associated with the SDE

dZt = dBt +
1

2Zt

(
1 +

δ − 1
logZt

)
dt, Z0 = 1. (27)
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Fig. 7. Density function of
R∞
0

(exp( B
(µ,σ)
t )+1)−2 1{B

(µ,σ)
t >0} dt (upper peak) com-

pared with the density function of
R∞
0

exp(−2 B
(µ,σ)
t )1{B

(µ,σ)
t >0} dt for µ = 0.04 and

σ = 0.20.

In the case δ = 3 it is known (see Legall [14] and also [24]) that

I
(3)
6 = H1(R(2)) a.s. (28)

with R(2)
0 = 0.

Since we do not have an expression for the Laplace transform of I(δ)
6 for

δ 6= 3 we solve numerically the associated PDE. Unfortunately, due to the
complexity of the drift term (in particular, notice that this tends, for all
values on δ ≥ 2, to +∞ in the vicinity of 0+) simple finite difference schemes
do not seem to give solutions converging to the correct one, see Figure 10.
In search for improvement we implemented a nonuniform grid making the
spatial discretization denser near the boundaries, and used a fourth-order
implementation at the Neumann boundary. While this yielded better results
than what is seen in Figure 10, full convergence still remained out of reach.

These difficulties can at least partly be overcome by transforming the
diffusion Z given via SDE (27). Indeed, we study now the h-transform of Z
with h(x) = S(x) − S(0) where S is the scale function of Z Straightforward
computations (cf. [3] p. 17) show that we may take

S(x) =
1

δ − 2
|log x|2−δ

, 0 < x < 1

(for simplicity we consider only the case δ > 2). Then

lim
x→0

S(x) = 0 and S′(x) = x−1| log x|1−δ.
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Fig. 8. Density function of
R∞
0

(exp( B
(µ,σ)
t ) + 1)−2 1{B

(µ,σ)
t >0} dt for σ = 0.20 and

µ = 0.03 (lowest peak), µ = 0.04, and µ = 0.05 (highest peak)
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Fig. 9. Distribution function of
R∞
0

(exp( B
(µ,σ)
t ) + 1)−2 1{B

(µ,σ)
t >0} dt for σ = 0.20

and µ = 0.03 (lowest curve), µ = 0.04, and µ = 0.05 (highest curve)
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Fig. 10. Density function of
R∞
0

exp(−2 R
(δ)
t ) dt for δ = 3.0 (upper peak) obtained

using the drift 1
2x

(1 + δ−1
log x

) compared with the correct one (lower peak).

Consequently, the generator of the h-transform is given by

G↑f =
1
2
d2f

dx2
+

1
2x

(
1 +

δ − 1
log x

)
df

dx
+
S′(x)
S(x)

df

dx

=
1
2
d2f

dx2
+

1
2x

(
1 +

3− δ

log x

)
df

dx
, 0 < x < 1.

Let Z↑ denote the h-transform, i.e., Z↑ is the diffusion associated with the
generator G↑. By Williams [30] time reversal result (see [3] p. 35, also for
further references)

H0(Z)
(d)
= H1(Z↑).

The PDE associated with Z↑ seems to be well suited for numerical compu-
tations. Notice, in particular, that if δ > 3 the drift term of Z↑ tends to +∞
as x→ 1 which fact is in strong contrast with the corresponding behaviour of
the drift term of Z. Hereby it is also of interest to classify the boundaries of Z
and Z↑. It holds for Z that the boundary point 0 is exit-not-entrance and 1 is
entrance-not-exit. For the process Z↑ we have that 0 is entrance-not-exit and
1 is entrance-exit (regular) if 2 < δ < 4 and entrance-not-exit if δ ≥ 4. Figures
11, 12 show the density and distribution functions of I6 for some choises of δ
computed from the PDE associated with Z↑.

As a final comment, and as an extra bonus from our transformation, we
remark that when δ = 3 then G↑ is the generator ofR(2), and we have recovered
the identity (28).
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Fig. 11. Density function of
R∞
0

exp(−2 R
(δ)
t ) dt for δ = 2.5 (lowest peak), δ = 3.0,

δ = 3.5 (highest peak).
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Fig. 12. Distribution function of
R∞
0

exp(−2 R
(δ)
t ) dt for δ = 2.5 (lowest curve),

δ = 3.0, δ = 3.5 (highest curve).
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