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Summary. Stochastic Quantization is a procedure which provides the equation of
motion of a Quantum System starting from its classical description and incorpo-
rating quantum effects into a stochastic kinematics. After the pioneering work by
E.Nelson in 1966 the method has been developed in the eighties in various differ-
ent ways. In this communication I summarize and systematize the results obtained
within an approach based on a Lagrangian variational principle where 3/2 order
contributions in Itô calculus are required, leading to a generalization of Madelung
fluid equations where velocity fields with vorticity are allowed.

Such a vorticity induces dissipation of the energy so that the irrotational solu-
tions, corresponding to the usual conservative solutions of Schroedinger equation,
act as an attracting set. Recent numerical experiments show generation of zeroes of
the density with concentration of vorticity and formation of isolated central vortex
lines.

1 Introduction

This communication is concerned with an application of Itô calculus to the
problem of describing the dynamical evolution of a quantum system once its
classical description (which can be given in terms of forces, lagrangian or
hamiltonian) is given. We know that, if the classical hamiltonian is given, the
canonical quantization rules lead to Schrödinger equation, which beautifully
describes the behavior of microscopical systems. But we also know that this
procedure seems to fail when applied to microscopical systems interacting
with a (macroscopic) measuring apparatus. This fact has been a motivation
for investigating other quantization procedures.

In his pioneering work in 1966 E. Nelson proposed a Stochastic Quantiza-
tion (often called Stochastic Mechanics) where, given the forces acting on the
system, quantum effects are incorporated into a stochastic kinematics [18].
This approach was widely developed during the eighties, with the introduc-
tion of stochastic variational principles (see for example [19], [2] , [15] and
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references quoted therein). I present here a synthesis of the results obtained
within an approach which leads to a dissipative generalization of Schrödinger
equation, the usual conservative solutions being in fact dynamical equilibrium
states which form an attracting set [13] [14][10]. The basic tool is Itô calculus
where stochastic increments must be estimated to the order 3

2 .
For a quantum particle of mass m, subjected to a force which is the gra-

dient of a scalar potential Φ, Schrödinger equation reads

ı ~∂tΨ =
(
− 1

2m
~2∇2 + Φ

)
Ψ (1)

ψ denoting the quantum mechanical wave function.
By a change of variables Schrödinger equation can be formally written in

a fluidodynamical version, the so called Madelung fluid equations .

{
∂tρ = −∇ · (ρv)
∂tv +(v · ∇) v − ~2

2m2∇
(
∇2√ρ√

ρ

)
= − 1

m∇Φ
(2)

where

ρ = |ψ|2

v = ∇S

S being the phase of the wave function ψ.
The equivalence is only formal if the density ρ is not strictly positive at

all times.
The velocity field of Madelung fluid is irrotational in all points where the

density is different from zero. In many examples solutions of Schrödinger equa-
tion which exhibit nodes correspond to solutions of Madelung fluid equations
with singular velocity and isolated vortex lines.

In our setting we are led to a dissipative generalization of such equations,
which allow velocity fields with a distributed vorticity. It was conjectured
that such a vorticity asymptotically can concentrate in the zeroes of the den-
sity, describing the formation of the singularities and in particular of isolated
vortex lines. The problem is very difficult from the analytical point of view
but recent numerical results seem to confirm this conjecture [3]. It is worth
stressing that arrays of isolated vortex lines are observed in quantum fluids, as
liquid Helium and Bose Einstein condensates (see [9], [11], [12], [1]), but the
mechanism underlying their formation is still not well understood. Describing
the formation of isolated vortex lines in Madelung fluid, from smooth initial
data, could represent a contribution to the solution of this problem.
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2 A stochastic quantization procedure

For a quantum particle of mass m in a scalar potential Φ we denote its config-
uration at time t by q(t). We model the evolution in time of the configuration
by a “smooth diffusion”, in the following sense:

Definition 1. A diffusion q is a “smooth diffusion” if
1) Its drift v+ is a smooth (i.e. infinitely differentiable) time dependent

vector field and its diffusion coefficient is constant (in this setting equal to ~
m

, ~ denoting Planck’s constant divided by 2π)
2) There exists a probability space (Ω,F , P ) and a standard Brownian

Motion W s.t., for t ∈ [0, T ], T > 0,

q(t) = q(0) +
∫ t

0

v+ (q(s), s) ds+
(

~
m

) 1
2

W (t) (3)

3) There exists a reversed standard Brownian Motion W ∗ on (Ω,F , P )
and v− s.t., for any t ∈ [0, T ],

q(t) = q(0) +
∫ t

0

v− (q(s), s) ds+
(

~
m

) 1
2

(W ∗(t)−W ∗(0)) (4)

I recall that a reversed standard Brownian Motion W ∗ on the finite time
interval [0.T ] is defined by the equality

W ∗(t) = Ŵ (T − t), t ∈ [0, T ] (5)

Ŵ still denoting a standard Brownian Motion.
The finite energy condition is sufficient for property 3) (See [5]. An exten-

sion to the infinite dimensional case is given in [6]). We also recall that if ρ is
the (time dependent) density of a smooth diffusion one has, in particular

v+ − v−
2

=
~

2m
∇ ln ρ (6)

∂tρ = −∇ · (ρv) (7)

were v is the “current velocity”, defined as

v :=
v+ + v−

2
(8)

For any finite time interval [ta, tb] and positive integer N we fix the nota-
tions

∆ := tb−ta

N

∆+q(ti) := q(ti+1)− q(ti) future increment

∆−q(ti) := q(ti)− q(ti−1) past increment
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We now consider the following mean discretized version of the classical
action functional

AN
[ta,tb]

[q] := E
N∑

i=1

[
1
2
m
∆+q(ti) ·∆+q(ti)

∆2
− Φ(q(ti))

]
∆ (9)

were q is uniquely determined by the triple [W, v+, qo] and E denotes the
expectation.

By exploiting the backward representation and estimating ∆+q(ti) to the
order ∆

3
2 , which gives

∆+q(t) =
(

~
m

) 1
2

∆+W (t) + v+ (q(t), t)∆+

+
(

~
m

) 1
2 3∑

k=1

[
∂kv+ (q(t), t)

∫ t+∆

t

(Wk(s)−Wk(t)) ds

]
+

+ o(∆
3
2 ) (10)

we find

AN
[ta,tb]

[q] = E
N∑

i=1

[
1
2
m
∆+q(ti) ·∆−q(ti)

∆2

+
3
2

~
∆

+ o(∆)− Φ(q(ti))
]
∆ (11)

In order to generalize the classical action principle, starting from the above
defined functional, two methods have been considered. The former, that will
be called Eulerian or Stochastic Control approach, consists in eliminating the
divergent term in the discretized action and then take the limit for N going
to infinity. After simple manipulations one can see that such a limit can be
expressed as a simple functional of the drift field v+. This allows to exploit
stochastic control like techniques [8]. The latter, that will be called Lagrangian
or path-wise approach, consists in taking pathwise variations of q for fixed W
in AN

[ta,tb]
[q]. This eliminates the divergent term .The limit for N going to

infinity is taken only at the end of the calculus of variations (see [13], [14] and
[10]).This is the approach considered in the following.

Definition 2. The set of admissible test diffusions for a given W is consti-
tuted by the set of all smooth diffusions associated to W according to the
previous definition.

For the test diffusion q(t) at time t let q′(t) := q(t) + δq(t) denote the
varied diffusion. We require that this is still a smooth diffusion with the same
W . Therefore there must exist a smooth drift field v′+ such that
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q(t) = q(0) +
∫ t

0

v+ (q(s), s) ds+
(

~
m

) 1
2

W (t) (12)

q′(t) = q(0) +
∫ t

0

v′+ (q′(s), s) ds+
(

~
m

) 1
2

W (t) (13)

We introduce the variation process h and the variation of the drift f by
putting, for ε > 0, {

εh(t) := δq(t) ε > 0
εf := v′+ − v+

(14)

Then one finds

ḣ(t) =
3∑

j=1

∂jv+ (q(t), t)hj(t) + f (q(t), t) (15)

so that h(t) is a differentiable stochastic process. It satisfies a first order ODE
for every realization of q. As a consequence h cannot be fixed both in ta and
tb. This fact, which has no counterpart in the classical case, comes to be a
typical quantum peculiarity.

Definition 3. A process h will be said “admissible variation” for the test
diffusion q if it is solution of (15) for a smooth f .

We want now to characterize the motions which are represented by “critical
diffusions” :

Definition 4. A smooth diffusion q∗ is critical with fixed initial position if,
∀h admissible,

lim
N↑∞

{
AN

[ta,tb]
[q∗ + εh]−AN

[ta,tb]
[q∗]− εptb

htb

}
= o(ε) (16)

h(ta) = 0 and a smooth diffusion q∗ is critical with fixed final position if,
∀ h admissible,

lim
N↑∞

{
AN

[ta,tb]
[q∗ + εh]−AN

[ta,tb]
[q∗] + εptahta

}
= o(ε) (17)

h(tb) = 0 pta and ptb
are fixed random variables playing the role of the

classical initial and final “momentum”.

We can prove the following
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Theorem 5. A sufficient condition in order a smooth diffusion q∗ to be crit-
ical with fixed initial condition is

q∗(t) = q∗(0) +
∫ t

0

v+ (q∗(s), s) ds+
(

~
m

) 1
2

W (t)

where:

v+ = v +
~

2m
∇ ln ρ

and, if the initial position is fixed,

∂tρ = −∇ · (ρv) (18)

∂tv + (v · ∇) v − ~2

2m2
∇
(
∇2√ρ
√
ρ

)
− ~
m

(∇ ln ρ+∇) ∧ (∇∧ v) = − 1
m
∇Φ

with the boundary constraint

mv(qtb
, tb) = ptb

or, if the final position is fixed,

∂tρ = −∇ · (ρv) (19)

∂tv + (v · ∇) v − ~2

2m2
∇
(
∇2√ρ
√
ρ

)
+

~
m

(∇ ln ρ+∇) ∧ (∇∧ v) = − 1
m
∇Φ

with the boundary constraint

mv(qta , ta) = pta

Proof. (Outline)
Considering, without loss of generality, the first case, we have

δAN
[ta,tb]

[q] =ε
N∑

i=1

m

2
E
(
∆+q(ti) ·∆−h(ti)

∆2
+
∆−q(ti) ·∆+h(ti)

∆2
+ o(∆)

)
∆

− ε

N∑
i=1

E(∇Φ(q(ti, ti) · h(ti)∆− εE (ptb
· h(tb)) + o(ε) (20)

The analysis to the order∆
3
2 of the finite forward and backward increments

in the kinetic terms gives
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E
(
∆+q(ti) ·∆−h(ti)

∆2

)
=

1
∆
E
(
v+(q(t), t) ·∆−h(t) + o(∆)

)
(21)

and

E
(
∆−q(ti) ·∆+h(ti)

∆2

)
=

=
1
∆
E

(
v−(q(t), t) ·∆+h(t) +

(
~
m

) 1
2

∆−W∗(t) · ḣ+ o(∆)

)
(22)

The difference between the two kinetic terms comes from the fact that the
variation process h is measurable with respect to the σ algebra generated by
the past of q and not by the future, if the initial position is fixed. The proof
then exploits a discrete “integration by parts” and the equality

∆−W ∗(t) = 2(
m

~
)

1
2∇ ln ρ∆+∆+W (t−∆) + o(∆) (23)

Going to the limit at the end we get, exploiting (6) and (8)(see [10] for
the details)

lim
N→∞

δAN
[ta,tb]

[q] = ε E
∫ tb

ta

[
−∂tv − (v · ∇) v +

~2

2m2
∇
(
∇2√ρ
√
ρ

)
+

+
~
m

(∇ ln ρ+∇) ∧ (∇∧ v)− 1
m
∇Φ
]

(q(t), t) · h(t)dt+

+ ε E [mv(qtb
, tb)− ptb

] (24)

The assertion immediately follows recalling that the continuity equation
(7) always holds if (ρ, v) are the density and the current velocity field, respec-
tively, of a smooth diffusion.

In the case with final fixed condition the two kinetic terms read

E
(
∆+q(ti) ·∆−h(ti)

∆2

)
=

=
1
∆
E

(
v+(q(t), t) ·∆−h(t) +

(
~
m

) 1
2

∆+W (t) · ḣ+ o(∆)

)
(25)

and

E
(
∆−q(ti) ·∆+h(ti)

∆2

)
=

1
∆
E
(
v−(q(t), t) ·∆+h(t) + o(∆)

)
(26)

Then (23), with t replaced by t+∆, is exploited to estimate ∆+W (t). This
turns to change the sign in front of the term of first order in ~

m .
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The sufficient conditions as proved in the theorem are also necessary in
the following sense:

Corollary 6. Let q be critical with fixed initial position and let ρ and v be
its density and current velocity respectively. Let also pt = mv(q(t), t) for all
t ∈ [ta, tb]. Then the equality

[
∂tv + (v · ∇) v − ~2

2m2
∇
(
∇2√ρ
√
ρ

)
−

− ~
m

(∇ ln ρ+∇) ∧ (∇∧ v) +
1
m
∇Φ
]

(q(t), t) = 0 (27)

holds a.s. for all t in [ta, tb]. The analogous necessary condition holds in order
q to be critical with final fixed position.

Proof. (see [14] pag. 1986)
Let q be critical with initial fixed position and let (ρ, v) be its density

and current velocity, respectively. Let us also denote by F (q(t), t) = 0 the
equality (27) and put δA[t∗,t][q] := limN→∞AN

[ta,tb]
. Then if h is the admissible

variation of q which solves (15) for f = F with h(t∗) = 0 we get by (15)

δA[t∗,t]|t=t∗ = 0 ,
d

dt
δA[t∗,t]|t=t∗ = 0 ,

d2

dt2
δA[t∗,t]|t=t∗ = E

[
F 2(q(t∗), t∗)

]
.

Thus if at time t∗ (27) does not hold with probability one then q is not
critical.

So we find a generalization of Madelung fluid equations, where in particular
the velocity field v is not necessarily the gradient of some scalar field.

The two systems of PDE.s (18) and (19) represent two dynamical evolu-
tions which are one the time reversal of the other.

The second one, with the + sign in front of the term of the first order in
~
m , turns out to be dissipative.

In fact if (ρ, v) is a smooth solution of (19) and ρ has a good behavior at
infinity, we have, with u := ~

2m∇ ln ρ (osmotic velocity) and introducing the
energy functional

E[ρ, v] =
∫

R3

(
1
2
mv2 +

1
2
mu2 + Φ

)
ρd3x (28)

the following equality
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dE

dt
= −~

2

∫
R3

(∇∧ v)2 ρd3x (29)

This Energy Theorem was proved in [10] by a purely analytical method,
exploiting the equivalence of the new system of dynamical equations with a
nonlinear Schrödinger equation of electromagnetic type.

Thus we consider (19) as physical equations. They are related to the vari-
ational principle with final fixed position, while (18) are interpreted as their
time reversed picture.

Concluding, (19) is a dissipative generalization of Madelung fluid equations
and such a dissipation is caused by the vorticity of the velocity field.

Notice that the domain of definition of the two systems of PDEs (18) and
(19) is by construction C∞ since the admissible test diffusions are smooth
diffusions according to definition 1. The global existence for the linear Gaus-
sian solutions of the bidimensional harmonic oscillator was proved in [16]. The
general existence and uniqueness problem is still open. If a solution (ρ, v) of
(18) or (19) is irrotational dx-a.s. then the energy is conserved and it solves
Madelung equation.

To be more precise, if (ρ, v) satisfy equations of motion and there exists
an open set Q ∈ R3 s.t.

(∇∧ v) (x, t) = 0 ∀x ∈ Q ,∀t ≥ 0
ρ(x, t) > 0 ∀x ∈ Q ,∀t ≥ 0

then ∃ S s.t.

v(x, t) =
1
m
∇S(x, t) ∀x ∈ Q ,∀t ≥ 0

Then putting

Ψ = ρ
1
2 e

ı
~ S , (Ψ : Q× [0,∞) → C)

we have

ı ~∂tΨ =
(
− 1

2m
~2∆+ Φ

)
Ψ

These solutions conserve the energy (which turns to be the usual quantum
mechanical expectation of the observable energy) and work as an attract-
ing set. The case of Gaussian and linear solution for the bidimensional har-
monic oscillator was studied in [16] and [17]. In particular it was proved that
Schrödinger solutions constitute a center manifold and that the convergence
is in the sense of the relative entropy.

We also quote that a version of the Lagrangian variational principle leading
to (18) and (19) with a free parameter multiplying the term of the first order
in ~

m is proposed in [7].
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3 Concentration of vorticity

As an example we consider a bidimensional symmetric harmonic oscillator.
To be more precise we put, denoting by (r, θ) polar coordinates in the (x, y)
plane and by z the third spatial coordinate,

Φ := Φ(r) =
1
2
r2 , r =

√
x2 + y2

We consider the simultaneous eigenfunctions of the Hamiltonian H and of
the angular momentum Lz with respect to the z axis

χnd,ng
= |χnd,ng

| exp[ı(nd − ng)]θ, nd, ng = 0, 1, 2, . . .

These can be easily computed recursively (see for example [4]). The eigenval-
ues of the Hamiltonian turn to be

End,ng = 2(nd + ng + 1)

while those of the angular momentum read

`nd,ng = nd − ng

The eigenfunctions χnd,ng correspond to the following time invariant solu-
tions of Madelung equations, and of course of our new equations (19), on the
open set R2\ {0}

ρnd,ng (r) =
∣∣χnd,ng (r)

∣∣2
vnd,ng (r) =

~
m
∇((nd − ng) θ) =

~
m

nd − ng

r
θ̂

The vorticity of the velocity field vnd,ng , nd, ng = 0, 1, 2, . . . is at ev-
ery time equal to zero in R2\ {0} but, if nd − ng is different from zero, the
circulation around {0} is equal to h

m (nd − ng).
Indeed in this case a vortex line is present in {0} (roughly we have an

“infinite vorticity” in {0}). Notice that for all nd and ng, except the case
nd + ng = 0, corresponding to the ground state with bivariate symmetric
gaussian density centered in {0},

∣∣χnd,ng (r)
∣∣2 exhibits systems of rings of

zeroes (see Figure 1).
Let now (ρo, vo) be initial data for (19), smooth on the whole plane and

with distributed vorticity. We choose, for ao, Ao and Ωo positive constants

vo(r) := aorr̂ −Ωorθ̂, ρo(r) :=
Ao

2π
exp

[
−Ao

2
r2
]

The results of numerical computations with finite elements method in fi-
nite circular domains (for adimensional variables) show formation of rings of
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Fig. 1. Squared absolute value of some simultaneous eigenfunctions of energy and
momentum operators

zeroes for the density and concentration of vorticity near such zeroes, with
the approximation of an isolated vortex line in {0} [3].

An example is given in the Figures 2 – 7.
We can see that vorticity tends to take oscillating relative maxima and

minima in correspondence of the zeroes and maxima of the density, respec-
tively. In particular the periodic maximum in the origin increases in time,
approaching a central vortex line.

Acknowledgements. The accurate reading of the manuscript by M. Lof-
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Fig. 2. ρ and −∇ ∧ v = 2Ωo at time t = 0, E = 195
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