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Introduction

The names “charts” or “atlas” have their origin in geography; it is of impor-
tance to represent “faithfully” on a sheet of paper a town, a province, on a
region of the Earth; the atlas is a collection of charts such that every point of
the Earth appears at least one time in the range of a chart of this collection.

In a more mathematical way the representation by longitude and latitude
is described as follows : on the two dimensional sphere S2, choose a North Pole
N and a half meridian of reference (Greenwich); denote S2

0 the open subset
of S2 constituted by the complement of the reference half meridian; then the
longitude, latitude (φ, θ) ∈]0, 2π[×]0, π[ defines a local chart a bijective map u0

of the domain of the chart, that is the open subset ]0, 2π[×]0, π[⊂ R2 onto the
range of the local chart, that is the open subset S2

0 ⊂ S2; by choosing another
North Pole and another reference half meridian we can construct another
open subset S2

1 of S2 such that S2 = S2
0 ∪ S2

1 ; denote u1 the corresponding
local chart; then the two local charts u0, u1 constitute an atlas of S2. This
representation is faithful in the sense that

A function f defined on S2 is differentiable if and only if fi := f ◦ ui, i =
0, 1 are differentiable; furthermore all differential geometric computations on
S2 can be effectively realized through the atlas.

Another possible atlas is the Mercator atlas: we denote vN the stereo-
graphic projection from the North pole which sends a sheet of paper into S2

in one to one correspondence with the tangent plane to S2 at the South pole;
the range of vN is the open set of S2 constituted by the complement of the
North pole. Denote vS the stereographic projection from the South pole; then
the Mercator atlas is the collection of the two charts vN , vS . For the geogra-
phy it is possible to study the Earth equally well in each of these atlas; the
choice between them is a question of convenience: the Mercator atlas preserves
the angles and the longitude-latitude atlas refer to coordinates which can be
immediately obtained from observations.
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Turn now to the same concepts for a d dimensional manifoldM; a chart φα

will be a continuous injective map of an open subset of Oα ⊂ Rd such that its
range φα(Oα) is an open set of M; every point of M is in the range of a chart:
∪αφα(Oα) = M. Finally the differentiable structure on M will be defined as
the “image” of the classical differential structure on Oα; more precisely a
function f : M 7→ R is differentiable if and only if f ◦ φα ∈ C1(Oα) ∀α;
the implementation of this definition can be done assuming the coherence
hypothesis, that is: φ−1

β ◦ φα ∈ C1(Oα).
A classical theory of Banach modeled manifold exits where the Oα are now

open subsets of a fixed Banach space B.
Lie algebra appearing in mathematical physics, as the Virasoro algebra V,

are infinite dimensional; the physical prerequisite of symplecticity determines
on V a unique Hilbertian metric which has low regularity; this low regularity
implies that the exponentiation from V to a propective “infinite dimensional
group” cannot be realized into the context of Banach modeled manifold. A
new concept of differential geometry has to be built in order to fit this infinite
dimensional challenge: this will be sketched in the second part of this paper.

Let us justify now the first part. It can be thought that the “state space”
of a financial market is an abstract manifold M. This manifold M can be
given through the choice of some model. We take a phenomenological point
of view: a broker, from the simple observation of the market, wants to obtain,
model free, some information on the structure of M. For instance he will
inquire: is it possible to compute econometrically the pathwise sensitivities?
The computation of the Greeks require the differentiation of the coefficients
the driving SDE. How could be possible to differentiate when we know this
SDE only on the path on M describing the market evolution!

Itô calculus answers these questions coming from two different worlds.

Itô’s Atlas

Given a “smooth manifold” S (finite or infinite dimensional) and an “elliptic
differential operator” on S, consider the sample path of the associated diffusion
sω(τ), τ ∈ [0, 1], ω ∈ Ω being the probability space.

An Itô local chart is the map τ 7→ sω(τ), τ ∈ [0, 1]: the domain of charts are
the 1-dimensional segment [0, 1], the range are sample paths of the diffusion.

The “dimensionality” of the range is 1, even if S is infinitely dimensional;
but the cardinality of the atlas is large: there are as many local charts as there
are sample paths of the diffusion.

Theorem 1 (Localization of derivative). Given a smooth function f on
S, its derivative can be computed in an Itô local chart from the knowledge of
f on the range of this local chart

Proof. Consider a local chart u : O 7→ S, in the classical sense: O is an
open subset of RN , the range of u is an open subset of S; let fu := f ◦ u.
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Given a semi-martingale ϕ(ω, τ) defined on Ω, denote < ϕ >τ the associated
increasing process and define Volτ (ϕ,ϕ) = d

dτ (< ϕ >τ ); then Volτ (ϕ,ϕ) is
pathwise computable; define by polarization Vol(φ, ψ) = 1

4 (Vol(φ+ψ, φ+ψ)−
Vol(φ− ψ, φ− ψ)); then by Itô Calculus

∂fu

∂ξk
=

Vol(φ, ψ)
Vol(φ, φ)

, φ = [u−1(sω)]k, ψ = f(sω) (1)

We split this paper in two parts which can be read independently one of
the other.

1 Computation of pathwise sensitivities in mathematical
finance

Let p be the asset price, we will assume that p(t) is a continuous semi-
martingale satisfying the SDE

dp(t) = σ(t) dW (t) + b(t) dt (2)

where W is a Brownian motion on a filtered probability space (Ω, (Ft)t∈[0,T ],

P ), σ and b are stochastic processes such that E[
∫ T

0
σ4(t)dt +

∫ T

0
b2(t)dt] <

∞. The random function σ2(t) is the spot volatility. We want to propose a
pathwise econometrical computation of the spot volatility [4, 13].

1.1 Fourier econometrical computation of spot volatility

By change of the origin of time and rescaling the unit of time we reduce
ourselves to the case where the time window is [0, 2π]. Given a function φ on
the circle S1, we consider its Fourier transform, defined by

F(φ)(k) =:
1
2π

∫ 2π

0

φ(ϑ) exp(−ikϑ) dϑ, for k ∈ Z.

Define
F(dφ)(k) =:

1
2π

∫
]0,2π[

exp(−ikϑ) dφ(ϑ) ,

then by integration by part

F(φ)(k) =
i

k
× [

1
2π
φ(2π)− φ(0)−F(dφ)(k)].

Given two functions Φ, Ψ on the integers their Bohr convolution product
is defined by

(Φ ∗B Ψ)(k) =: lim
N→∞

1
2N + 1

N∑
s=−N

Φ(s)Ψ(k − s).
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Theorem 2. Consider a process p satisfying assumption (2); then we have

1
2π

F(σ2) = Φ ∗B Φ, where Φ(k) := F(dp)(k), (3)

the limit corresponding to the definition of Φ ∗B Φ is attained in probability.

1.2 A reduced sensitivity: the feedback price-volatility rate

We shall firstly discussed a reduced sensitivity which has the advantage to be
computable through an ordinary ODE, when classical sensitivities require the
integration of SDE. Assume that the price of the considered asset is given by
a geometric martingale:

dSW (t) = σ(SW (t)) dW (t) (4)

where W is a Brownian motion, σ is a fixed but unknown smooth function
depending only upon the price.

The classical pathwise Greek Delta ζW (t) is defined as the solution of the
linearized SDE

dζW (t) = (σ′(SW (t)) dW ((t)) ζW (t)

We associate to ζ(t) the rescaled variation defined as

(1.4) z(t) =
ζ(t)

σ(SW (t))

Theorem 3 (price-volatility feedback rate [5]). The rescaled variation
is a derivable function of t; its logarithmic derivative λ(t) will be called the
price-volatility feedback rate function. Then

λ(t) = −1
2
(σσ′′)(SW (t)); z(t) = exp(

∫ t

s

λ(τ) dτ) z(s). (5)

Remark: λ(t) < 0 corresponds to a liquid market.
We suppose that we do not know the explicit expression of the function σ;

we want to obtain from the pathwise observation of the market evolution an
econometrical computation in real time of λ(t). Making the change of variables

xW (t) = log(SW (t)); a(x) = exp(−x)σ((exp(x)),

then xW (t) satisfies the following SDE:

dxW (t) = a(xW (t)) dW (t)− 1
2
a2(xW (t)) dt

The price-volatility feedback rate has in logarithmic coordinate the follow-
ing expression :

λ = −1
2
(a′a+ aa′′) (6)

Denote ? the Itô contraction, which can be compute pathwise by (3).
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Theorem 4 (Econometrical computation of the feed-back rate). De-
fine dx ? dx := A(t), dA ? dx := B(t), dB ? dx := C(t), then

λ(t) =
3
8
B2

A3
− 1

4
B

A
− 1

2
C

A2
(7)

Remark. The computations are made in the following order; firstly com-
pute the Fourier coefficients of x; by applying (3) we obtain the Fourier
coefficients of A; denote α a parameter, then the Fourier coefficients of
x + αA are known; by applying again (3) we get the Fourier coefficients
of Vol(x + αA); as 4B =Vol(x + A)−Vol(x − A) we get the Fourier coeffi-
cients of B; then the Fourier coefficients of x + αB are known and by using
again (3) we get the Fourier coefficients of Vol(x + αB); then the identity
4C =Vol(x+B)−Vol(x−B) gives the Fourier coefficients of C.

1.3 Outline of computations of general pathwise sensitivities

We sketch some facts which are developed in [14]. Start firstly from the obser-
vation that for the infinitesimal generator L of the risk free measure the drift
can be computed in term of the volatility: in the case of Black–Scholes model
L has a vanishing drift; in the case of HJM model of the interest curve the
drift is explicitly expressed in term of the volatility matrix. As the volatility
matrix can be econometrically pathwise computed, it results that L can be
pathwised computed.

Using (1) the derivatives of the coefficients of L can be computed; then the
pathwise Greek Delta can be computed, at the price of solving numerically
an SDE.

Compared to the computation of the feedback price-volatility rate, these
operations have the advantage to involve one step of computation of volatility
less but from the other hand there are leading to an SDE which is numerically
more instable than the ODE driving the reduced variation.

2 Differential geometry on Hölderian Jordan curves

When in 1870–1890 Sophus Lie made his foundational work on what is known
now as the theory of finite dimensional Lie algebras, he splitted his progression
along three main theorems; he called the Third Theorem the fact that given a
Lie algebra G, then it is possible to construct a group G having for Lie algebra
G. Let us call this statement the exponentiation problem for the Lie algebra
G. It took about twenty years to Sophus Lie to solve in full generality the
exponentiation problem for finite dimensional Lie algebras.

For infinite dimensional Lie algebras G coming from mathematical physics,
infinitesimal representations of G are known from around twenty years back;
the exponentiation problem can be thought as follows: given an infinitesimal
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representation λ of G , find a probability measure µλ, such that λ integrates
into a representation on L2

µλ
; this situation is furthermore complicated by a

the necessity to prove a Cameron–Martin theorem.
It is clear that in this situation the Banach-model manifold theory is hope-

less. We shall emphasize the advantage of the Itô atlas in a CFT (conformal
field theory) context.

2.1 Jordan curves and their parameterizations

A Jordan curve Γ is the range of a continuous injective map φ of the circle S1

into the plane. Let h ∈ H(S1) be the group of homeomorphisms of S1; then
φ and φ ◦ h define the same Jordan curve.

2.2 Holomorphic parameterization

The Jordan curve Γ splits the complex plane in two simply connected domains
Γ+, Γ−; by the Riemann mapping theorem there exists an holomorphic map
f+ realizing a bijective map of the unit disk D onto Γ+; by Caratheodory f+

has a continuous extension f̄+ to D̄; the restriction f̄+ to ∂D, the circle S1,
defines the holomorphic parameterization which is unique up to h ∈ H(S1)
the Poincaré group of holomorphic automorphisms of D.

2.3 Conformal welding parameterization

The composition g : θ 7→ ([f̄+]−1 ◦ f̄−)(eiθ) defines g ∈ H(S1), where H(S1)
denotes the group of homeomorphisms of the circle. Denote G the group of
C∞ diffeomorphisms of S1, then by Beurling–Ahlfors [6] the set of C∞ Jordan
curves is isomorphic to H\G/H.

2.4 Canonical Hilbert norm on G

The Lie algebra G of G the group of smooth diffeomorphisms of the circle is
constituted of smooth vector fields on S1; granted the parallelism d

dθ we have
a linear isomorphism G ' C∞(S1), the vector space of smooth functions on
S1.

H denotes the restriction to the circle of the Poincaré group of homographic
transformations

z 7→ az + b

b̄z + ā
, |a|2 − |b|2 = 1;

the Lie algebra of H is su(1, 1) which is generated by the three vector fields
cos θ, sin θ, 1.

There exists [2] a unique semi-Hilbertian metric on G invariant by the
adjoint action of su(1, 1). Therefore the set of C∞ Jordan curves ' H\G/H
has a unique Hilbert structure.
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The associated canonical Brownian motion on G has the following expres-
sion:

x(t) =
∑
k>1

1√
k3 − k

(x2k(t) cos kθ + x2k+1(t) sin kθ), (8)

where x∗(t) is an infinite sequence of scalar valued independent Brownian
motions.

2.5 Exponentiating Brownian motion on G

Fix ρ ∈]0, 1[ and use the Abel regularization:

ρxt(θ) :=
∑
k>1

ρk

√
k3 − k

(x2k(t) cos kθ + x2k+1(t) sin kθ),

then ρxt(∗) ∈ C∞(S1); by the theory of Stochastic flow of diffeomorphisms
there exits a solution of the SDE

(2.2) dt (ρgxt
(θ)) = (dt

ρxt)(ρgxt
(θ)), ρgx0

(θ) = θ

which is a C∞ diffeomorphism of S1. Furthermore by Beurling–Ahlfors is
associated to the process t 7→ ρgxt

a non markovian process t 7→ ρΓ xt on the
space of C∞ Jordan curves.

Theorem 5 ([3, 11]). The limit when ρ → 1 of ρgxt
exists =: gxt ; and gxt

is an homeomorphism which is Hölderian of exponent exp(−2t).

Theorem 6 ([2]). The process t 7→ ρΓ xt converges to a diffusion t 7→ Γxt

on the space of Hölderian Jordan curves, starting at time t = 0 from the unit
circle.

2.6 C∞ differential geometry “on” Hölderian Jordan curves

Denote µt the law of Γxt
; to study the Cameron–Martin Theorem for µt it

is known [9, 10] that infinite dimensional Riemannian geometry has to be
introduced.

It would be a non sense to try to enforce a Banach-model differentiable
structure on the space of Jordan curves.

We could proceed by using the notion of dressed up trajectory Γ̃x∗ of Γx,∗
which is the lift to the C∞ jet bundle of Γx,∗ provided by iterative applications
of the formula (1). As effective computations on jet bundles are difficult, even
in finite dimension, we shall not follow this approach.

We shall use the lift to the orthonormal frame bundle; this lift will pro-
vide the same information that the lift to the C∞ jet bundle and will enjoy
computational flexibility.



8 Paul Malliavin

2.7 Orthonormal frame bundle of over Gρ

Denote Gρ the Hilbert space associated to (∗|∗)ρ the scalar product associated
to the regularized metric which has been made positive definite by introducing
on the 3-dimensional subspace V generated by 1, sin θ, cos θ the hilbertian
metric generated by the L2(S1) norm, V being furthermore orthogonal to all
others trigonometrical functionals.

Denote Uρ the group of unitary operators of Gρ. Denote O(Gρ) the bundle
of orthonormal frame of Gρ: a frame is an hilbertian isomorphism of the
tangent plane Tg(Gρ) into the Hilbert space Gρ.

We have a canonical section of O(Gρ) given by

g 7→ r0g , r0g(ζ) where ζ = exp(εr0g(ζ)) g , ε→ 0; (9)

in another words r0g is the inverse map of the infinitesimal exponential map.
The natural action of Uρ acts on Gρ prolongate at the level of frame as

U × r0 = U ◦ r0. In this way we have the following canonical isomorphism

O(Gρ) ' Uρ ×Gρ. (10)

2.8 Christofell symbols

Two parallel transports in the direction z coexist: T 1
z := the algebraic

transport obtained by composition of homeomorphisms, T 2
z := the Rieman-

nian Levi–Civita parallel transport; then T 2
z − T 1

z defines Γ (z) ∈ Endo-
morphism(Gρ)); this key endomorphism is determined by the next Theorem.

Theorem 7 (see [8]). The Riemannian Levi–Civita connection on Gρ is ex-
pressed in the canonical moving frame r0∗ by the following (1, 2) constant tensor

ρΓ k
ij =

1
2
(
([ρei,

ρ ej ] | ρek)ρ − ([ρej ,
ρ ek] | ρei)ρ + ([ρek,

ρei] | ρej)ρ

)
; (11)

denote ρΓi the endomorphism of G corresponding to the last two indices, then
ρΓi ∈ so(Gρ).

Proof. As the antisymmetry property implies that connection preserves the
Riemannian metric we have only to prove that it has no torsion which means
that

ρΓ k
ij − ρΓ k

ji = ([ρei,
ρej ] | ρek)ρ,

identity which results by direct inspection from (11).

Corollary 8. The process t 7→ ρgx(t) is the Brownian motion on Gρ

As we have
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2[cos kθ , cos pθ] = (k − p) sin(k + p)θ + (k + p) sin(k − p)θ
2[sin kθ , sin pθ] = (p− k) sin(p+ k)θ + (p+ k) sin(k − p)θ
2[cos kθ , sin pθ] = (p− k) cos(p+ k)θ + (p+ k) cos(p− k)θ

we deduce the following expression for the Christofell symbol in the complex
exponential basis;

For p, k ≥ 2,

ρΓ (eipθ)eikθ = i
(2p+ k)α(k)
α(p+ k)

ei(p+k)θ

ρΓ (eipθ)e− ikθ = − iρ2p (p+ k) 1k≥p+2 × e− i(k−p)θ

(12)

where α(k) = k3 − k.

2.9 Riemannian parallelism on the frame bundle O(Gρ)

We have an algebraic parallelism on Uρ × G induced by the right invariant
Lie algebra of the product group so(Gρ) × G; a constant vector field in the
algebraic parallelism is of the form

(ζ)u,g = (exp εζ̈)× U , exp(εζ̇)× g), ε→ 0,

ζ̈ ∈ so(Gρ), ζ̇ ∈ Gρ

The 1-differential forms describing the passage from the algebraic to the
Riemannian parallelism are:

< ζ , σ̇ >U,g = U(ζ̇),

< ζ , σ̈ >U,g= U ◦
(
ζ̈ + ρΓ(U∗(ζ̇))

)
◦ U∗

(13)

where U∗ is the adjoint (and the inverse) of U .
The parallelism differential forms do not depend upon g, fact which corre-

sponds to the invariance of the Riemannian metric under the right G action.

2.10 Structural equations [8]

The coboundary of the parallelism differential forms are

< ζ1 ∧ ζ2 , dσ̇ > = σ̈(ζ1)(σ̇(ζ2))− σ̈(ζ2)(σ̇(ζ1))
< ζ1 ∧ ζ2 , dσ̈ > = σ̈(ζ1)σ̈(ζ2)− σ̈(ζ2)σ̈(ζ1) + ρR(σ̇(ζ) ∧ σ̇(ζ))

(14)

where ρR is the Riemannian curvature propagated by tensorial variance from
its definition in U = Identity given as

ρR(ζ̇1 ∧ ζ̇2) = ρΓ(ζ̇1)ρΓ(ζ̇2)− ρΓ(ζ̇2)ρΓ(ζ̇1)− ρΓ([ζ̇1, ζ̇2]).
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2.11 Change of parameterization through horizontal
parameterization

The canonical horizontal lifting of ρgx(t) to O(Gρ) is the process (Ωt, gx(t))
where Ω∗ is obtained by solving the stochastic differential system

dz(t) = Ωt(dx(t))

dΩt =
(
−

∑
k≥−1

ρΓ(ρek) dzk(t) +
1
2

∑
k≥−1

(ρΓ(ρek))2 dt
)
Ωt

(15)

with Ω0 = Id
We could look to the system (15) as x given and z must be determined by

an implicit SDE, which is difficult to solve.
As the mapping x 7→ z is an isomorphism of probability space, it is better

to take as initial data z then solve the second SDE (15), then obtain x by
dx(t) = Ω−1

t (dz(t)) and finally gx by solving dgx(t) = ∗dx(t) ◦ gx(t).

2.12 Stochastic Calculus of Variations on the horizontal flow

Let a 7→ zΘt←0(a) the stochastic flow on O(Gρ) defined by solving the
Stratanovitch SDE

< ∗drz , σ̇ >= dz(t), < ∗drz , σ̈ >= 0, rz(0) = a;

Given a(ε) a differentiable curve on O(Gρ) , the Jacobian flow zΘ
′
t←0 is

defined by

d

dεε=0
zΘt←0(a(ε)) =: zΘ

′
t←0(a

′(0))

< zΘ
′
t←0(a

′(0)), σ̇ > =: ḣ(t),

< zΘ
′
t←0(a

′(0)), σ̈ > =: ḧ(t).

Theorem 9.

dtḣ+
1
2

ρRicciΩz(t)(ḣ(t)) dt = ḧ(t) dzt,

dtḧ = ρRΩz(t)( dzt ∧ ḣ(t)) + ρfR̃Ωz(t)(ḧ(t)) dt,
(16)

where R̃ is the curvature tensor considered as defining an endomorphism of
so(Gρ), the space of antihermitian bounded operators over Gρ.

2.13 Integration by part for the regularized metric

Theorem 10 (Theorem of integration by part ([7, 9, 11])). Let v ∈ Gρ;
assume that there exists δ > 0 such that, in the sense of the order of hermitian
operator on Gρ, the following inequality holds true ρRicci ≥ −δ×Identity, then
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d

dεε=0

(
E(f(ρgx(t0) exp(εv0)))

)
= E(f(ρgx(t0)) k(x)), where

E(|k(x)|2) ≤ exp(δt0)− 1
δt20

‖v0‖2ρ.
(17)

Proof. We follow [12]; an infinitesimal euclidean motion of the Gρ-cylindrical
Brownian motion is defined

z 7→ y, y(t) =
∫ t

0

exp(εqs) dz(s) + ε

∫ t

0

w(s) ds

where s 7→ qs is an adapted functional with values in so(Gρ) and where the
map ∗ 7→ w∗ is an adapted functional with values in L2([0, t0];Gρ); define the
derivative

Dq,w

(
∗Θt0←0

)
:= ζ(t0), ζ(t) :=

∫ t

0
∗Θ
′
t0←s(qs, ws) ds. (a)

We choose (q, w) by solving the system

dtv +
1
2
Ricci(v) = w, v(0) = v0, dq = R(∗dz ∧ v), q(0) = 0; (b)

then taking ζ from (a) and (b) we get,

dtζ̇ +
1
2

ρRicciΩz(t)(ζ̇(t)) dt = (q − ζ̈(t) )dzt + w dt,

dtζ̈ = ρRΩz(t)( ∗dzt ∧ ζ̇(t))

which leads to the following remarkable expression

ζ̇ = v, ζ̈ = q. (c)

Denote At←0 the resolvent of the first equation (b), take

w(t) = − 1
t0
At←0(v0); (d)

w(t0) = At0←0(v0) +
∫ t0

0

At0←th(t) dt = 0 (e)

this last equality meaning that the “jump” resulting from the derivative at
t = 0 have been completely sweep out at time t0. Let us emphasize that the
equation (d) gives rise to an adapted h. As the infinitesimal rotations preserves
the gaussian measure we have Dq,h as the same formula of integration by part
as D0,h formula which is provided by Girsanov:

k(z) =
1
t0

∫ t0

0

(At←0(v0) | dzt);



12 Paul Malliavin

by Itô energy identity of stochastic integral we have

E(|k(z)|2) ≤ ‖v0‖2Gρ

1
t20

∫ t0

0

exp(δt) dt,

expression equal to the r.h.s. of (17).

2.14 Cameron–Martin for the Brownian on G

Theorem 11. Assume that there exists δ such that for all ρ < 1,

(ρRicciζ | ζ)ρ ≥ −δ‖ζ‖2ρ ∀ζ (18)

and that for all ρ < 1 the following SDE is resoluble and that its solution is a
unitary operator

d ρΩt =
(
−

∑
k≥−1

ρΓ(ρek) dzk(t) +
1
2

∑
k≥−1

(ρΓ(ρek))2 dt
)

ρΩt . (19)

Then under these hypothesis (20) holds true :

d

dεε=0
E(f(gx(t)) exp(εv0))) = E(f(gx(t))k(x)),

E(|k(x)|2) ≤ exp(δt0)− 1
δt20

‖v0‖2.
(20)

Remark. The unique hypothesis where uniformity relatively to ρ appears is
(18).

2.15 Existence of the horizontal stochastic transport

We shall prove, for ρ < 1 the existence of a solution of (19); remark that the
SDE (19) stays invariant in law by a rotation of the circle.

Lemma 12.
C :=

∑
p≥2

(rΓ(
cos pθ√
α(p)

))2 + (rΓ(
sin pθ√
α(p)

))2

is a diagonal bounded operator and the coefficients on the diagonal are given
by

λk =
1
2

∑
p≥2

[
− (p+ k)2

α(k − p)
α(p)α(k)

1k≥p+2 −
(2p+ k)2α(k)
α(p)α(p+ k)

]
ρp

Proof. The invariance in law of (19) under the action of S1 implies that C
commutes with the action of S1 which is equivalent to say that C diagonalizes
in the trigonometric basis. The expression of this diagonal matrix is obtained
by direct computation.
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Lemma 13. The solution of (19) is given by the Picard series:

Ωt =
∑
n≥0

∆n(t),

∆0(t) = Identity, ∆n(t) =
∫ t

0

ρΓ(dx(s)) ∆n−1(s)

Proof. Define Mn(t) := E(∆n(t)(∆n(t))∗), then as before Mn(t) is a diag-
onal matrix; by orthogonality of iterated Itô integrals we have : Mn(t) =∑

k
ρ2k

α(k)An,k(t) where An,k are the diagonal matrices defined by

An,k(t) := ρΓ(cos kθ)
∫ t

0

Mn−1(s) ds ρΓ(cos kθ)

+ ρΓ(sin kθ)
∫ t

0

Mn−1(s) ds ρΓ(sin kθ)

2.16 Curvatures of S1-homeomorphism group (see [1])

For u, v ∈ diff(S1), the Riemann curvature has been defined as

R(u, v) := Γ (u)Γ (v) − Γ (v)Γ (u) − Γ ([u, v])

Theorem 14. 2R(cosmθ, sinmθ) sin pθ = −λm,p cos pθ,

λm,p = 1p≥m+2
(m+ p)2α(p−m)

α(p)
− (2m+ p)2α(p)

α(p+m)
+ 2mp

∑
p≥2

λmp = −13
6

(m3 −m)

Theorem 15. The Ricci tensor is equal to − 13
6 × Identity

See for related results Bowick–Rajeev.
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