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Summary. We study a class of diffusions, conjugate Brownian motion, related to
Brownian motion in Riemannian manifolds. Mappings that, up to a change of time
scale, carry these processes into each other, are characterised. The characterisation
involves conformality and a space-time version of harmonicity. Infinitesimal descrip-
tions are given and used to produce martingales and conservation laws. The relation
to classical constants of motion is presented, as well as the relation to Noether’s
theorem in classical mechanics and field theory.

To K. Itô on the occasion of his 90th birthday.

Introduction

The theme of the present article is invariance properties of a wide class of
diffusions, termed conjugate Brownian motion. Much of the inspiration comes
from the interplay between classical and quantum mechanics as expressed in
the ideas of R.P. Feynman [FH] and early approaches to quantum mechan-
ics. (See also Nelson [N].) Feynman’s ideas are based on using the classical
variational principle (in the free case)

δ

∫
1
2
|q̇|2 dt = 0 (1)

to explain, e.g., its quantum counterpart

δ

∫
1
2
|du(q)|2 dq = 0. (2)

The latter case is related to harmonic morphisms, which, under pull back,
preserve harmonic functions, and therefore Brownian motion. The basic re-
sult, due to Fuglede and Ishihara, is a characterisation of harmonic morphisms
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in terms of harmonicity (harmonic mappings Eells-Lemaire [EL]) and confor-
mality. See [F1], [F2] and [Ish]. These concepts correspond to preservation of
martingales, and conformality (Darling [D] and Emery [Em]). A non-geometric
treatment of related problems can be found in Øksendal [Ok].

The heat equation can obtained from the variational principle ([BK2],
[Gol], [IK], [MF])

δ

∫∫
1
2

(
θθ̇∗ − θ̇θ∗ + 〈dθ, dθ∗〉

)
= 0, (3)

where integration is carried out over space-time. The result is a pair of equa-
tions, viz., θ̇ + 1

2∆θ = 0 and θ̇∗ − 1
2∆θ

∗ = 0. Time-symmetry is built in: we
have one backward and one forward heat equation.

The intimate relations between the classical Newton equation q̈ = 0 and
the (backward) heat equation θ̇ + 1

2θ
′′ = 0, in one space dimension for sim-

plicity, are fundamental. They are apparent when looking at the classical con-
stants of motion 1, p, pt−q, the Heisenberg algebra, and p2, p(pt−q), (pt−q)2,
the Lie algebra sl2, and comparing with the heat Lie algebra (Lie [Lie],
Anderson-Ibragimov [AI], Ibragimov [Ibr2], [Ibr3], Olver [Or1]). The latter
consists of linear differential operators of order at most one, viz., the Heisen-
berg algebra 〈1, ∂q, t∂q − q〉, and

a = 〈∂t, t∂t + 1
2q∂q,

1
2 t

2∂t + 1
2 tq∂q − 1

4 (q2 − t)〉. (4)

This is another representation of sl2. Whereas the first five elements in the
classical and the heat Lie algebras correspond via the symbol map—a kind of
Laplace transform, see Sect. 6—the sixth elements differ. In the classical case,
we have the function − 1

4 t
2p2 + t

2pq −
1
4q

2, the symbol of the PDO 1
2 t

2∂t +
1
2 tq∂q− 1

4q
2. In the heat Lie algebra, there is an additional term: instead of q2

we have q2 − t. The former function satisfies the equation u̇ = 0, the second
satisfies u̇ + 1

2u
′′ = 0. What we observe is Itô’s formula: q2 − t ≡ :q2: is the

renormalised second power, corrected to fit the heat equation. In essence, this
is the difference between the equations.

The main results presented below are

• A characterisation of the mappings that preserve ordinary and conjugate
Brownian motion; (Sect. 4)

• The corresponding infinitesimal description in terms of Lie algebras, and
the identification, in the free case, of the Lie algebra in terms of classical
Lie algebras; (Sect. 5)

• Analysis of conservation laws and stochastic constants of motion (martin-
gales), and their relation to the heat Lie algebra. Relations to the classical
Lie algebra. Comparison via two Noether theorems. (Sect. 6)

In Sect. 2, we provide background on diffusions in manifolds, as well as
the dynamical aspects of conjugate Brownian motion. In Sect. 3 we present
the background for the mappings and Lie algebras needed. Cf. [Ibr2] or [Or1].
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Among other related treatments we mention Djehiche–Kolsrud [DK],
Ibragimov [Ibr2], Kolsrud [K2], Kolsrud–Loubeau [KL], Loubeau [Lob] and
Thieullen–Zambrini [TZ1], [TZ2].

General references are [AI], [Arn], [AG], [AKN], [DKN], [DNF], [Ga], [Go],
[Gol], [Gorb], [Ibr2], [Ibr3], [IW], [Ko], [LL], [M], [MF], [Or1].

1 Preliminaries

We shall consider a connected manifold N of dimension n. When N is given
a Riemannian structure, the metric g = (gij) will also be written 〈·, ·〉. ∇
shall denote covariant (Levi-Civita) differentiation with Christoffel symbols
Γ k

ij , and d the outer derivative. Recall that ∇ is completely determined by
being metric: ∇g = 0, and symmetric: Γ k

(ij) := 1
2 (Γ k

ij + Γ k
ji) = Γ k

ij . µg, or just
vol, is the volume form determined by g. We will need two Laplacians: The
Laplace-Beltrami operator

∆ = ∆g = gij(∂i∂j − Γ k
ij∂k) = ∇†∇ = gij∇i∇j = Trg ∇2, (5)

and the de Rham-Hodge Laplacian

� = −(dd† + d†d), (6)

where d† is the formal L2(µg)-adjoint of d. Here and below we use Einstein’s
summation convention with respect to repeated indices, one up, one down.
When acting on functions, ∆ and � coincide. The Ricci tensor will be denoted
by Ric. We shall often make use of Weitzenböck’s identity

∆α = �α+ Ricα (7)

for one-forms α, and the fact that d and � commute:

[d,�] = 0. (8)

2 Basics on diffusions in manifolds

2.1 Connections, geodesics and scalar 2nd order elliptic PDOs

Consider a differential operator on N of the form Q := 1
2g

ij∂i∂j + bk∂k. We
assume that for all points x in N , gij(x)ξiξj > 0 whenever some ξi 6= 0.
Then (gij) is the inverse of a metric g = (gij) on N . Let ∆ = ∆g be the
corresponding Laplace-Beltrami operator. Q may be written Q = 1

2∆ + b,
where b is a vector field. Up to a sign, this is the general expression for a scalar
linear second order elliptic differential operator in N , satisfying Q1 = 0. It
is formally self-adjoint (w.r.t. to L2(e2Fµg)) precisely when b is a gradient:
b = gradF . Let
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Γ
k

ij := Γ k
ij +

2
n− 1

(δk
i bj − gijb

k), n 6= 1, (9)

where bk = gikb
i. Then (Γ

k

ij) defines a metric connection ∇ such that Q =
1
2Trg (∇2

). ∇ is unique for n = 2, but not otherwise (Ikeda-Watanabe [IW],
Prop. V.4.3). In general, the difference of two connections is a (1,2)-tensor.
We may write

(Γ − Γ )k
ij = A

k

ij + S
k

ij , (10)

where, for each k, A
k

ij is antisymmetric and S
k

ij symmetric in the lower indices.
The ∇-geodesics are given by

D
2
xk

dt2
=
D2xk

dt2
+ S

k

ij ẋ
iẋj = ẍk + (Γ k

ij + S
k

ij)ẋ
iẋj = 0, 1 ≤ k ≤ n, (11)

independently of A. A 6= 0 if and only if ∇ 6= ∇, the connections being metric.
Q however, only depends on ∇ through the trace of its symmetric part.

Proposition 1. Let ∇′ and ∇′′ be two g-metric connections with symmetric
parts S′ and S′′, respectively. They have the same geodesics if and only if
S′ = S′′. They have the same Laplacian if and only if Trg(S′)k = Trg(S′′)k

for each k. Moreover, this happens if and only if their corresponding torsion
tensors satisfy T ′kik = T ′′kik .

The last characterisation can be found in [IW], Prop. V.4.3.
The important conclusion is

Observation 1. Two ‘quantum equivalent’ connections need not be classically
equivalent: Laplacians and geodesics do not correspond.

Ground state transform

Consider now the case Q1 6= 0. Write Q = Q0−V , where V is a smooth func-
tion (potential) onN , and Q0 = 1

2∆+b, as above. In general, multiplication by
a function Ω > 0 is an isometry (unitary equivalence) between L2(Ω−2µg) and
L2(µg). Suppose also that Ω solves the equation QΩ = 0. (The case where Ω
corresponds to another eigenvalue can be handled by letting V → V +const.)

This is an implicit condition on V . Then (ground state transform or Doob’s
h-transform)

Q := Ω−1QΩ = Ω−1(Q0 − V )Ω = Q0 + grad logΩ, (12)

independently of b. Conjugation by Ω transforms Q to an operator without
constant term. Let b = 0 (the symmetric case when b is a gradient can be
handled similarly), so that Q0 is the Laplace-Beltrami operator. Then, for n 6=
2, Q is a factor times the Laplace-Beltrami operator for a new, conformally
equivalent, metric:
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Ω−1

(
1
2
∆g − V

)
Ω =

1
2
∆g + grad logΩ =

1
2
ρ−1∆ρg, ρ = Ω

4
n−2 , n 6= 2.

(13)
There seems to be no general relations between the geodesics of ρg and the
solutions curves of the classical Euclidean Newton equations

D2x

dt2
= gradV (x). (14)

In other words, there is no classical counterpart of the ground state trans-
formation. The Maupertuis principle ([Arn], [Ga], [LL]) shows how, given a
constant energy submanifold, one can remove a potential and instead intro-
duce another conformally equivalent metric. This new metric is, however, not
the one in (13).

2.2 (g, ∇)-Brownian Motion and Conformal Martingales

Let (N, g) be Riemannian with a g-metric connection ∇ (not necessarily the
Levi-Civita). The Christoffel symbols are denoted Γ

k

ij . Let Y be a continuous
N -valued semi-martingale, so that in local coordinates

dY k = dAk + dMk, 1 ≤ k ≤ n, (15)

where the Ak are processes of finite variation, and the Mk are (ordinary)
martingales. Define the covariant Itô differential dcY of Y by

dcY k
t := dY k

t +
1
2
Γ

k

ij(Yt)d[Y i, Y j ]t, 1 ≤ k ≤ n, (16)

where the brackets indicate compensator. Given a connection, dcY is well
defined, as observed originally by Bismut.

Definition 2. A semimartingale Y is a martingale w.r.t. ∇ if

dAk
t = −1

2
Γ

k

ij(Yt)d[Y i, Y j ]t, 1 ≤ k ≤ n. (17)

Definition 3. A semimartingale Y is conformal w.r.t. g if

d[Y i, Y j ]t = gij(Yt)dCt, 1 ≤ i, j ≤ n, (18)

for some strictly positive and increasing continuous process C.

Itô’s formula shows that if Y satisfies (17) and (18), the time-shifted process
Y (γt), where γ is the inverse of C, has generator 1

2∆ := 1
2Tr∇2

. ∆ is the
Laplacian given by the connection.

Proposition 4. With respect to (g,∇), any conformal martingale is a time-
shift of Brownian motion, and conversely.



6 Torbjörn Kolsrud

2.3 Conjugate BM

Let N = (N, g) and ∇ be as in Sect. 2.2 with corresponding Laplacian ∆. Let
I = [−1, 1], and let θ : I ×N → (0,∞) be smooth. Write V = (θ̇ + 1

2∆θ)/θ,
and H = − 1

2∆+ V , so that θ̇ = Hθ. Hence θ is a solution of the (backward)
heat equation with potential V . By conjugating the generator of BM(g,∇)
with θ we obtain a new, in general non-stationary, diffusion Z = (Zt, t ∈ I),
called conjugate BM. Its (forward) generator (regularised forward derivative
of u along Z) is

Du :=
1
θ

(
∂

∂t
−H

)
(θ · u) =

(
∂

∂t
+

1
2
∆

)
u+

1
θ
〈dθ, du〉. (19)

When θ is independent of time, this is the ground state transform as in
Sect. 2.1. The (forward) Itô equation is

dcZt = grad log θ(t, Zt) dt+ dMt. (20)

The compensator satisfies

d[Zα, Zβ ]t = gαβ(Zt) dt. (21)

Note that (19) makes sense for tensor fields:

Dσ =
∂σ

∂t
+

1
2
∇i∇iσ +∇ξσ, (22)

where ξ is the vector field dual to dθ/θ. The following variant of Itô’s formula
is useful:

D(Φ(u)) = Φ′(u)Du+
1
2
Φ′′(u)|du|2, Φ ∈ C2(R). (23)

2.4 Schrödinger diffusions

Schrödinger (or Bernstein) diffusions are time-symmetric in the following
sense. The forward description is a conjugate BM w.r.t. a positive solution
of a backward heat equation, whereas the backward description is a conjugate
backward BM w.r.t. a positive solution of the corresponding forward heat
equation. (Cf. [KZ1] for details on the construction of Bernstein processes.
See also [CZ].)

Consider again the situation in the preceding section, but with V given
(and sufficiently smooth). For simplicity we assume that V does not depend
on time. We assume that θ∗ solves the usual, forward, heat equation with
potential V : θ̇∗ = −Hθ∗. The forward generator of the Bernstein diffusion Z
is as in (19). The backward generator is

D∗u :=
1
θ∗

(
∂

∂t
+H

)
(θ∗ · u) =

(
∂

∂t
− 1

2
∆

)
u− 1

θ∗
〈dθ∗, du〉. (24)



Quantum and Classical Conserved Quantities 7

There is also a backward Itô equation similar to the one in Sect. 2.3.
Generally speaking, the backward heat evolution creates irregularities. We

can produce smooth positive solutions by letting θ(t, ·) = exp{−(1 − t)H}χ,
where 0 6≡ χ ≥ 0 is given. Similarly, we obtain solutions to the forward heat
equation with potential V by θ∗(t, ·) = exp{−(1 + t)H}χ∗. In particular we
may choose θ∗(t, ·) = θ(−t, ·).

The probability density of Z is the product of these two functions: P(Zt ∈
C) =

∫
C
θ(t, ·)θ∗(t, ·) dµg, C ∈ Borel (N). This requires the normalisation∫

N

χ∗ exp(−2H)χdvol = 1. (25)

2.5 Forward dynamics of conjugate BMs

Drift and momenta

IfX is a continuous semi-martingale with values in a manifold with connection
{Γα

βγ}, we define its drift, DX, by

dcXt = DXt dt+ dMt, (26)

where (Mt) is a martingale. DXt is a tangent vector above Xt for each t. The
drift measures the martingale deviation for X.

For conjugate BM, DZt = gradA(t, Zt), where A = log θ. We let p be the
corresponding one-form, i.e. p = dA = d log θ. This is the vector of momenta
corresponding to our process.

p(t, Zt) is a regularised forward derivative along Z. For the Levi-Civita
connection, one can calculate the drift directly, but along harmonic coordi-
nates. Then Dqα = 〈p, dqα〉 = gαβpβ = pα.

The Lagrangian

Using Dθ = |dθ/θ|2 + V = |p|2 + V , (23) yields

DA = D log θ =
1
2
|p|2 + V = L(p, ·), L(ω, q) :=

1
2
|ω|2 + V (q). (27)

L is the classical Euclidean Lagrangian. By Dynkin’s formula we get the path
integral formula

θ(t, Zt) = exp
{
− E

[ ∫ 1

t

L(DZt′ , Zt′) dt′ − log θ(1, Z1)|Ft

]}
. (28)

We therefore look at A as the forward action density.
We can now deduce the (forward) regularised Newton’s equations:
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Proposition 5. For the Levi-Civita connection,

Dp− 1
2
Ric p = dV. (29)

Proof. On forms, the term in the generator involving the logarithmic deriva-
tives of θ has to be replaced by the corresponding covariant differentiation. By
Weitzenböck’s formula Dp− 1

2Ric p = ∂tp+ 1
2�p+∇ξp := D0p, where ξ is the

vector field dual to p. The right-hand side equals D0dA = dD0A+ [D0, d]A =
dDA + [D0, d]A =: I + II. Using ∇g = 0 and ξα = gαγ∇γA, we find
∇ξdA = pα∇α∇βAdq

β = gαγ∇γA∇α∇βAdq
β = 1

2d|dA|
2 = 1

2d|p|
2. Since

∂t and � commute with d, II = [∇ξ, d]A. Obviously d∇ξA = d(dA(ξ)) =
d|dA|2 = d|p|2, so II = − 1

2d|p|
2. Finally, dDA = d( 1

2 |p|
2 + V ) according to

(27) above.

Energy

The space-time differential

d̄A := Ȧ dt+ ∂αAdq
α = E dt+ p dq, (30)

of the forward action density A plays a similar role as the Poincaré invariant
in classical mechanics. The second term is (forward) momentum. The first
function E is the (forward) energy Ȧ = Hθ/θ. We have

E = −1
2
|p|2 − 1

2
∇†p+ V. (31)

The energy is a stochastic constant of motion in thatDE = 0 whenever V̇ = 0.
See Sect. 6.

Time reflection

For Bernstein diffusions, all that has been said has a backward counterpart.
We do not go into details here but refer to to [KZ1] and references therein.

3 Groups of mappings and their Lie algebras

3.1 Extensions of Diff and Vect

Let M0 and M1 be differentiable manifolds, without any additional structure.
Let f : M1 → M0 and a : M0 → R be C∞. The pair γ := (f, a) induces, by
pullback and multiplication, a mapping C∞(M0) → C∞(M1) by

u→ u · γ := a · u ◦ f, (32)
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cf. [DK].
If we have several manifolds and mappings: f2 : M2 →M1 and f1 : M1 →

M0 and aj are functions on Mj , we get

γ1 · γ2 = (f1 ◦ f2, a2 · a1 ◦ f2). (33)

Now suppose that all manifolds are one and the same, M , and denote by
D := Diff (M) all diffeomorphisms M → M . If fi ∈ D, and the ai are never
zero, the previous identity is the composition in the group

D̃ := D n C∞(M)×, (34)

where n indicates semi-direct product. D̃ is an extension of D, and u→ u · γ
is a right-action of D̃ on C∞(M).

The infinitesimal version of this is as follows. Let V := Vect (M) denote
all vector fields on M , and consider all first-order differential operators

u→ Λu := X(u) + U · u, (35)

where X ∈ V and U is a function on M . Equipped with the natural commu-
tator, this is the Lie algebra

Ṽ := V ⊕ C∞(M), (36)

where the sum is semi-direct. In analogy with the preceding case, Ṽ is a central
extension of V.

We shall write the elements of Ṽ as (X,U) or simply X +U . By definition
X + U = 0 if and only if both components X and U vanish. Explicitly, the
bracket in Ṽ is

[Λ1, Λ2] = [(X1, U1), (X2, U2)] := ([X1, X2], X1(U2)−X2(U1)), (37)

where the first term on the right is the usual commutator of vector fields.
The relation between γ = (a, f) and Λ = (X,U) can be described thus:

Let fε := exp εX denote the (local) flow of X, and assume f = f1. Then, by
Lie’s formula,

a = a1 = exp
∫ 1

0

U ◦ fε dε, (38)

and γ = expΛ (cf. the Feynman-Kac formula).
Conversely, differentiating a local one-parameter group γε = (fε, aε) at

ε = 0, one obtains a first order differential operator Λ = X + U .

3.2 Orbits for PDOs

Consider again the situation in (32). Let Ki be linear partial differential op-
erators on C∞(Mi), i = 0, 1. Assume γ = (f, a) satisfies
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K1(u · γ) = φ · (K0u) · γ, (39)

where in general φ = φγ ∈ C∞(M1)× will depend on γ.
This identity implies that the pullback under γ of solutions to K0u = 0

yield solutions to K1v = 0. Except for the ‘conformal’ factor φ, this is an
intertwining relation.

Composing, as in Sect. 3.1, we obtain the cocycle identities

φγ1γ2 = φγ2(φγ1 · γ2) = φγ2 · φγ1 ◦ f2, (40)
K2(u · γ1γ2) = φγ1γ2 · (K1u) · γ1γ2. (41)

In the group case γ = (f, a) ∈ D̃, with Mi = M and Ki = K, (39) may be
written

(γ−1Kγ)u = φγ ◦ f−1 ·Ku. (42)

Thus, except for the cocycle, K and its conjugation under the inner automor-
phism given by γ are equal. Clearly, this identity defines a group. It may be
seen as a deformed (by the cocycle φ) subgroup of D̃.

Suppose now that in (42) we have a (local) one-parameter group (γε)
with generator Λ = (X,U) as above, and with corresponding cocycle φε =
1 + εΦ+ o(ε). Then, upon differentiating w.r.t. ε at 0 we get

[K,Λ] = Φ ·K, (43)

where the function Φ depends on Λ. The relation between φ and Φ is as in
(38) for a and U . In particular,

KeΛ = exp{
∫ 1

0

Φ ◦ fε dε} · eΛK. (44)

For fixed K, the relation [K,Λ] = Φ ·K defines a Lie algebra:

Proposition 6. Let K be a linear differential operator on M . Then all the
first order linear differential operators Λ = (X,U) such that [K,Λ] = Φ · K
for some function Φ = ΦΛ, form a Lie algebra with the commutator in (38).
We have

Φ[Λ1,Λ2] = X1(Φ2)−X2(Φ1). (45)

Remark 7. Henceforth this Lie algebra will be denoted Lie (K).

Proof (Proposition 6). Assuming (45) holds for Λ1 and Λ2, we must show that
it also holds for their commutator. By the Jacobi identity, and with obvious
notation,

[K, [Λ1, Λ2]] = [Λ1, [K,Λ2]]− [Λ2, [K,Λ1, ]] = [Λ1, Φ2 ·K]− [Λ2, Φ1 ·K]. (46)

We always have
[Λ,Φ ·K] = X(Φ) ·K + Φ · [Λ,K], (47)

from which the conclusion is immediate.
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Remark 8. It is a very general fact that the relation K,Λ] = Φ ·K defines a
Lie algebra. We have only used that the bracket is the natural one, and that
we have a derivation plus a multiplication.

Intertwining of Lie(Ki)

It is obvious that (39) relates the Lie algebras of K0 and K1 to one another.
To makes this more clear, suppose γ = (f, a) satisfies K1γ = φ · γK0, and
suppose Λi are related by

Λ1γ = γΛ0, (48)

i.e.,

X1(a)u ◦ f + aX1(u ◦ f) + a(U1u) ◦ f = aX0(u) ◦ f + a(U0u) ◦ f. (49)

One finds
K1Λ1γ = K1γΛ0 = φγK0Λ0, (50)

and
Λ1K1γ = Λ1(φ · γK0) = X1(φ)γK0 + φγΛ0K0. (51)

Hence
[K1, Λ1]γ = φγ[K0, Λ0] +X1(φ)γK0. (52)

Since φ is never zero, we see that, on the appropriate domains, Λi preserve
the kernels of Ki simultaneously. If Λ0 ∈ LieK0, then

[K1, Λ1]γ = φγΦ0 ·K0 +X1(φ)γK0 = (Φ0 ◦ f +X1(log φ))K1γ. (53)

Similarly, Λ1 ∈ LieK1 implies

γ[K0, Λ0] = (Φ1 −X1(log φ))γK0. (54)

4 Heat and Harmonic Morphisms

4.1 Basic characterisations

Let M̃ and M be two manifolds, and f a map of M̃ into M . Let P and K be
two (scalar) linear differential operators on C∞(M̃) and C∞(M), respectively.

Definition 9. f is a morphism for P and K if for each open set Ω ⊂M and
each u ∈ C∞(Ω),

Ku = 0 on Ω =⇒ P (u ◦ f) = 0 on f−1Ω. (55)
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Suppose now that K̃ and K are differential operators on M̃ and M , and
a : M̃ → R \ 0. Suppose also that γ = (f, a) satisfies (cf. (39))

K̃γ = φ · γK, (56)

i.e.,
K̃(a · u ◦ f) = φa ·Ku ◦ f, (57)

where φ 6= 0. Writing
Pv := a−1K̃(av), (58)

we obtain
P (u ◦ f) = φ ·Ku ◦ f. (59)

Let now Ñ and N be Riemannian manifolds with metric connections ∇̃
and ∇, and corresponding Laplacians ∆̃ (= Tr (∇̃2)) and ∆, respectively. Let
Ĩ and I be time intervals with variables s and t. We shall consider the following
two situations:

(i) Harmonic morphisms: M̃ = Ñ , M = N , K̃ = ∆̃, and K = ∆.
(ii) Heat morphisms: M̃ = Ĩ × Ñ , M = I × N , K̃ = ∂s + 1

2∆̃, and K =
∂t + 1

2∆.

In order not to get a zero-order term we must require

Ka = 0. (G2)

When (G2) holds, we have (assuming without loss of generality a > 0)

P = K̃ + grad log a (60)

in both cases.
The associated diffusion X̃ with generator P is a conjugate of BM(Ñ , g̃, ∇̃)

satisfying

dcX̃s = grad log a(s, X̃s) ds+ dξ̃s,

d[X̃i, X̃j ]s = g̃ij(X̃s) ds, (61)

where only in case (ii) a will depend explicitly on s. The process X corre-
sponding to Q is in both cases BM(N, g,∇). Let us write

f = (f0, fα, 1 ≤ α ≤ n), t = f0,

where f0 does not appear in case (i).

Proposition 10. Let P be as in (58). Then f is a morphism for P and K if
and only if P (u ◦ f) = φ ·Ku ◦ f .
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Proof. Clearly the condition implies that f is a morphism. The converse fol-
lows from Fuglede’s beatiful argument in [F1], Remark 1, p. 129. The only
thing needed is a function w satisfying Qw > 0 on some neighbourhood,
arbitrarily small, of a given point in M , and then we may take

φ :=
P (w ◦ f)
Kw ◦ f

. (62)

This proves our assertion.

We now normalise so that f is time-preserving:

dt

ds
= ḟ0 > 0. (63)

As in [DK] we shall use the following further conditions on γ = (f, a):

df0 = 0; (G1)
1
2
∆̃fα + a−1〈da, dfα〉+

1
2
Γα

βγ ◦ f〈dfβ , dfγ〉 = 0, 1 ≤ α ≤ n; (G3i)

ḟα +
1
2
∆̃fα + a−1〈da, dfα〉+

1
2
Γα

βγ ◦ f〈dfβ , dfγ〉 = 0, 1 ≤ α ≤ n; (G3ii)

〈dfβ , dfγ〉 = λ2gβγ ◦ f ; (G4i)

〈dfβ , dfγ〉 = 2
dt

ds
gβγ ◦ f. (G4ii)

The roman numerals of course refer to the cases defined above.
In [DK] we showed for the heat case that (G1)–(G4) are sufficient for f to

be a morphism for P and K. Following [F1], [F2], [Ish], in the case of harmonic
morphisms, we now show that these conditions are also necessary in the heat
case. We assume the normalisation (63). To this end, let X̃ be the process in
(61), and put Y α

s := fα(s, X̃s), 1 ≤ α ≤ n. By Itô’s formula,

dY α
s = (ḟα +

1
2
∆̃fα + a−1〈da, dfα〉)(s, X̃s) ds+ ∂if

α(s, X̃s)dξ̃i
s. (64)

Thus
d[Y β , Y γ ]s = 〈dfβ , dfγ〉(s, X̃s) ds. (65)

We may write this as

dcY α
s = (ḟα +

1
2
∆̃fα + a−1〈da, dfα〉+

1
2
Γα

βγ ◦ f〈dfβ , dfγ〉)(s, X̃s) ds

+ ∂if
α(s, X̃s)dξ̃i

s. (66)

To start with, Y must be a time shift of X (Sect. 2.2). Since X is a martingale,
we see that condition (G3) is necessary, and then



14 Torbjörn Kolsrud

dcY α
s = ∂if

α(s, X̃s)dξ̃i
s. (67)

The conformality of X requires condition (G4i).
Up to now we have only considered the ‘harmonic’ case under a time-

dependent transformation. To reach the heat equation, and condition (G4ii),
we must study the time-space process f(s, X̃s) = (f0(s), Ys). If u is a (local)
function on M , then

d(u ◦ f(s, X̃s)) =
(
dt

ds
u̇ ◦ f(s, X̃s) +

1
2
λ2∆u ◦ f(s, X̃s)

)
ds+ dξ, (68)

where ξ is a martingale. The coefficient of the first (ds-)term on the right-hand
side must be proportional to (u̇ + (1/2)∆u) ◦ f(s, X̃s). Clearly this requires
(G4ii).

We collect our findings in

Theorem 11. Given γ = (f, a), suppose (63) holds and a > 0. The following
are equivalent
– in case (i):

a) ∆̃(a · u ◦ f) = φa∆u ◦ f , with φ = λ2 = n−1Tr df ⊗ df ;
b) the process f(X̃s) is a time shift of BM(N, g,∇);
c) Eqs. (G2)–(G4) hold.

– in case (ii):

a) (∂s + (1/2)∆̃)(a · u ◦ f) = φa(∂t + (1/2)a∆u) ◦ f , with φ = dt/ds;
b) the process f(s, X̃s) is a time shift of (t,Xt), where X is BM(N, g,∇);
c) Eqs. (G1)–(G4) hold.

Remark 12. Condition (G2) means that martingales are preserved ([D], [Em]).
In case (i), f is a harmonic mapping ([F1], [F2], [Ish]) when a ≡ 1. See also
the discussion on affine maps in [Em]. Condition (G4) means that the map is
horizontally conformal, see [F1]. Together with (G2) we have (in case (ii)) a
characterisation of maps preserving conformal martingales, cf. Proposition 4.

Condition (G4ii) links the time and space scales. It implies that the dilation
w.r.t. the space variable is independent of the space variable, as opposed to
the case of harmonic morphisms.

Remark 13. If φ is a harmonic morphism with constant dilation, and dt/ds =
1
2λ

2, then (t, φ) is a heat harmonic morphism. This case was treated indepen-
dently by Loubeau [Lob].

4.2 Morphisms for conjugate BM

We consider case (ii) of the preceding section, and assume that (f, a) satisfy
(G1)–(G4). Let θ > 0 and V be as in Sect. 2.3 and put
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Ṽ := (dt/ds)V ◦ f. (69)

We write D̃0 := ∂s + 1
2∆̃ − Ṽ and D0 := ∂t + 1

2∆ − V , so that D0θ = 0. By
Theorem 11 and the definition of Ṽ D̃0(au ◦ f) = a(dt/ds)D0u ◦ f . Defining
θ̃ := a · θ ◦ f , also D̃0θ̃ = 0.

We introduce the forward generators D̃ := D̃eθ and D := Dθ as in (19):

D̃ũ := D̃0(θ̃ũ)/θ̃ and Du = D0(θu)/θ. (70)

The following result from [DK] shows that heat harmonic morphisms also
preserve conjugate BM.

Theorem 14. Suppose (f, a) satisfy (G1)–(G4) and the normalisation (63)
in Sect. 4.1. Then f is a morphism for D̃ and D:

D̃(u ◦ f) =
dt

ds
Du ◦ f (71)

for any smooth function u on M .

Proof. By what we have just seen,

D̃(u ◦ f) =
1

θ̃
D̃0(θ̃ · u ◦ f) =

1
aθ ◦ f

D̃0(a · (θu) ◦ f)

=
1

θ ◦ f
dt

ds
D0(θu) ◦ f =

dt

ds
Du ◦ f. (72)

Let Z̃ denote the process associated with θ̃. Then (f(s, Z̃s))s∈eI and
(t, Zt)t∈I , after a time-change, have the same distribution (cf. [Ok] and
Sect. 2.2–2.3).

4.3 Dynamical invariance for conjugate BM

We now give a result already stated in [DK] describing the transformation
properties of the (forward) energy, momenta, Lagrangian and equations of
motion. We only consider the situation when ∇ is the Levi-Civita connection.
We assume that (f, a) satisfy (G1)–(G4) and the normalisation ḟ0 > 0.

In the sequal T ∗f denotes pullback via f w.r.t. the space variables.

Theorem 15. Let Ψ := log a and Ẽ0 := ȧ/a. Then

Ẽ = Ẽ0 +
dt

ds
E ◦ f + ḟαpα◦f, (73)

p̃ = T ∗fp+ dΨ, (74)

L̃ =
dt

ds
L◦f + D̃Ψ, (75)(

D̃ − 1
2
R̃ic

)
p̃ =

dt

ds
T ∗f

(
Dp− 1

2
Ric p

)
. (76)
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Proof. (74) is obvious since p̃i = ∂i log θ̃ = ∂i log a + ∂αθ◦f∂if
α = ∂i log a +

(T ∗fp)i. (73) is obtained similarly.
Squaring and summing (74), (G4) yields

1
2
dt

ds
|p|2◦f =

1
2
λ2(gαβpαpβ)◦f =

1
2
g̃ijpα◦f∂if

αpβ◦f∂if
β

=
1
2
g̃ij

(
p̃i −

∂ia

a

) (
p̃j −

∂ja

a

)
=

1
2
|p̃|2 +

1
2

∣∣∣∣daa
∣∣∣∣2 − 1

a
〈p̃, da〉. (77)

Now D̃a = ∂sa+ 1
2∆a+ 〈p̃, da/a〉 = 〈p̃, da/a〉, so by (23) D̃ log a = 〈p̃, da/a〉−

1
2 |da/a|

2. Hence, using the definition of Ṽ in Sect. 4.2 we obtain (75):

dt

ds
L◦f =

dt

ds
(
1
2
|p|2◦f + V ◦f) =

1
2
|p̃|2 − D̃ log a+ Ṽ = L̃− D̃Ψ. (78)

(76) follows from the Newton equations (29) for the two processes, together
with the definition of Ṽ .

Remark 16. Concerning the extra terms on the right, e.g., in (75), one should
recall that already in the classical case, the equations of motion are not altered
when a total time differential is added to the Lagrangian. (See, e.g., [DNF],
Sect. 31, p. 305.) (75) states the invariance of the Lagrangian time-differential
up to a regularised time derivative: L̃ ds− L ◦ f dt = D̃Ψ ds.

The transformation of the energy in (73) may seem strange. In the example
f = (t, φ) of Remark 13, however, it transforms in a less exotic way: Ẽ =
Ẽ0 + dt

dsE ◦ f .

5 The heat and Laplace Lie algebras

Throughout this chapter, the underlying manifold N is Riemannian with met-
ric g. We shall only consider the Levi-Civita connection.

For a (possibly time-dependent) vector field Q on N , we shall denote by
ω its dual one-form: ωk = gikQ

i, i.e. Q = ω].

5.1 Conformal groups and Lie algebras

For any vector field Q we have

(LQg)ij = ∇jωi +∇jωi = 2(∇ω)(ij), (79)

where LQ denotes the Lie derivative along Q, and the parentheses indicate
symmetrisation.

Definition 17. The conformal Lie algebra conf consists of all vector fields Q
on N such that

LQg = µ · g, (80)

for some function µ depending on Q.
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The corresponding situation for maps, i.e. local flows, is

g ◦ f(df(ξ1), df(ξ2)) = κ · g(ξ1, ξ2), (81)

for some function κ. That conf is a Lie algebra follows from

[LQ1 ,LQ2 ]g = (Q1(µ2)−Q2(µ1)) · g. (82)

Equation (79) implies

µ = − 2
n
d†ω =

2
n
∇†ω, Q ∈ conf. (83)

By, e.g., [Go], Eqs. (3.7.4) and (3.8.4) or [Ko],

1
2
�ω + Ricω −

(1
2
− 1
n

)
dd†ω =

1
2
�ω + Ricω +

n− 2
4

dµ = 0. (84)

Define three Lie algebras:

k := {Q ∈ conf : µ = 0}, (85)
h := {Q ∈ conf : µ = const.}, (86)

confh := {Q ∈ conf : ∆µ = 0}. (87)

Clearly,
k ⊂ h ⊂ confh ⊂ conf. (88)

Here k stands for Killing vector fields, i.e., infinitesimal isometries, and h
indicates that the corresponding flows are homothetic transformations. The
inclusions are obvious, and 5.1.4 shows that k and h are Lie algebras. Clearly
h = k⊕ R globally.

We shall need

Lemma 18. If Q1 ∈ conf and Q2 ∈ confh, then

∆(Q1(µ2)) = −n− 2
2

〈dµ1, dµ2〉. (89)

We assume the lemma momentarily. For Q ∈ conf, let

U :=
n− 2

4
µ =

n− 2
2n

∇†ω, (90)

and
Q := (Q,U) := Q+ U = Q+

n− 2
2n

∇†ω ∈ Ṽ, (91)

where Ṽ was defined in Sect. 3.1. The bracket is (by (38))

[Q1, Q2] = [Q1, Q2]+Q1(U2)−Q2(U1) = [Q1, Q2]+
n− 2
4n

Tr (L[Q1,Q2]g). (92)

This way we get a map

V ⊃ conf 3 Q→ Q ∈ Ṽ. (93)

We note that in dimension n = 2 on V, or on k in any dimension, (93) is the
identity map: Q = (Q, 0).
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Theorem 19. confh is a Lie algebra. The restriction of (10) to confh is a Lie
algebra isomorphism onto its image:

[Q1, Q2] = [Q1, Q2] +
n− 2
2n

∇†[ω1, ω2], X ∈ confh, (94)

where [ω1, ω2] is the one-form dual to [Q1, Q2].

Proof. The first statement follows from Lemma 18 which clearly implies that
∆(Q1(µ2)−Q2(µ1)) = 0 for Qi ∈ confh.

We now show the displayed identity. Up to a multiplicative constant
Q1(µ2) is equal to 〈ω1, (� + Ric )ω2〉 by (84). Hence, by Weitzenböck, the
difference Q1(µ2)−Q2(µ1) is a constant times

〈ω1,∆ω2〉 − 〈ω2,∆ω1〉, (95)

since the Ricci tensor is symmetric. This equals

gij∇j(〈ω1,∇iω2〉 − 〈ω2,∇iω1〉). (96)

Using that ∇ commutes with the duality T ∗N ∼= TN given by g, the expres-
sion in the parentheses is dual to

∇Q1Q2 −∇Q2Q1 = [Q1, Q2], (97)

the connection being torsion free. Checking the constant, one finds (94).

Proof (Lemma 18). Using ∇g = 0 we get

∇2Q1(µ2) = 〈∇2ω1, dµ2〉+ 2〈∇ω1,∇dµ2〉+ 〈ω1,∇2dµ2〉.

To obtain the Laplacian, we must take the trace. Having done this, the second
term on the right is proportional to µ1∆µ2, by (79), (80). By assumption it
vanishes. We get, using the Weitzenböck formula, the identity [d,�] = 0 and
(84),

∆Q1(µ2) =〈∆ω1, dµ2〉+ 〈ω1,∆dµ2〉
=〈(� + Ric )ω1, dµ2〉+ 〈ω1,Ric dµ2〉

=〈(� + 2Ric )ω1, dµ2〉 = −n− 2
2

〈dµ1, dµ2〉.

The claim follows.

5.2 Characterisation of the heat Lie algebra.

We consider the situation in (61), case (ii), with the further requirement that
∆ be the Laplace-Beltrami operator. For Λ = (X,U) we write
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X = T
∂

∂t
+Qi ∂

∂xi
= T

∂

∂t
+Q, (98)

where, at this point, T and the Qi are functions of t ∈ I and x ∈ N .
We now characterise the heat Lie algebra in terms of PDEs. In general, the

system obtained is overdetermined. It should be no surprise that the equations
obtained are completely analogous to Eqs. (G1-G4) in Sect. 4.1.

Theorem 20. Λ = (T,Q,U) ∈ Lie (∂t + 1
2∆− V ) if and only if the following

equations are satisfied:

dT = 0; (A1)

U̇ +
1
2
∆U +

∂

∂t

(
TV

)
+Q(V ) = 0; (A2)

ω̇ +
1
2
�ω + Ricω + dU = 0; (A3)

(∇ω)(ij) =
1
2
Ṫ gij . (A4)

The associated cocycle is Φ = ΦΛ = Ṫ .

Proof. We start with the free case V ≡ 0. With K := ∂t + 1
2∆ we easily find

[K,U ]u = (U̇ +
1
2
∆U)u+ 〈dU, du〉, (99)

and
[∂t, X]u = Ẋu = Ṫ u̇+ 〈ω̇, du〉. (100)

Furthermore,

[∆,X]u = ∆T · u̇+ 2〈dT, du̇〉+ T∆u̇

+ 〈�ω, du〉+ 2Ric (ω, du) + 2〈∇ω,∇du〉. (101)

To see this, note that the left-hand side is

∆(T u̇+ 〈ω, du〉)− T∆u̇− 〈ω, d∆u〉 = ∆T · u̇+ 2〈dT, du̇〉+ T∆u̇

+ 〈∆ω, du〉) + 〈ω,∆du〉+ 2〈∇ω,∇du〉 − T∆u̇− 〈ω, d∆u〉, (102)

and use the identities for Laplacians stated in Sect. 1.
¿From the above equations we now get

[Q,Λ]u = (U̇ +
1
2
∆U)u+ (Ṫ +

1
2
∆T )u̇+ 〈dT, du̇〉

+ 〈ω̇ +
1
2
�ω + Ricω + dU, du〉+ 〈∇ω,∇2u〉. (103)

We want the left-hand side to be a function times Ku. First, no constant
term is allowed, so that U has to satisfy (A2). To avoid terms with mixed
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time and space derivatives we must also require that T only depends on time,
i.e., that (A1) holds. The first-order space derivatives disappear if and only if
(A3) holds.

We now have
[K,Λ]u = Ṫ u̇+ 〈∇ω,∇2u〉. (104)

To get a Laplacian out of the second term, we must require that the symmetric
part of ∇ω is proportional to the inverse metric (gij), ∇2u being symmetric.
(A4), finally, is needed to adjust the scales between time and space derivatives.

The general case, including a potential V , follows from [V,Λ]u = −X(V )·u
and [K − V,Λ] = [K,Λ]− [V,Λ] = Φ(K − V ) = Ṫ (K − V ).

Remark 21. Combining Eqs. (A2), (A4) and (A5), we see that for each t, we
must have ω(t, ·) in h (Sect. 5.1). Hence the heat Lie algebra is trivial (i.e.,
consists only of constants) whenever k = 0. This is different from the Laplace
case where elements in conf \ h may occur, e.g. in one space-dimension. See
also Sect. 5.3 below.

A part of Lie (∆) is always contained in Lie (∂t + 1
2∆), viz., when non-

void, the one corresponding to constant (in time) elements in h. Comparing
with (83) we see that 2c = µ = −(2/n)d†ω, so we may take U constant and
T (t) = µt+µ0. Note that when ω ∈ k, the Killing algebra, time does not enter
explicitly, i.e., T is constant.

Our next result clarifies the relation between Lie (∂t + 1
2∆) and h.

Theorem 22. Lie (∂t + 1
2∆) consists of all Λ = (T,Q,U) with Q ∈ C∞(I →

h) such that its dual one-form ω satisfies

∂2

∂t2
d†ω = 0, (105)

∂

∂t
dω = 0. (106)

T is a polynomial in t of degree at most 2 with Ṫ = −(2/n)d†ω. U = 1
2α−α̇U0,

where α = d†ω = −(n/2)Ṫ , and U0 satisfies ∆U0 = 1.

Proof. Note first that if ω does not depend on time, (105) and (106) are
trivially fulfilled, and we are back in the case discussed in Remark 21.

Let us start from Q ∈ C∞(I → h) satisfying (105) and (106). It is clear
how to obtain T from ω. We shall show how to find U .

We know from (84) that 1
2�ω+Ricω = 0 for each fixed time. Hence, (A3)

becomes
ω̇ + dU = 0. (107)

By (106), this is fulfilled for some U . We must show that we can arrange
so that U satisfies the anti-heat equation (A1). From ω̇ + dU = 0 follows,
invoking (105),
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∆U = d†ω̇ = const. = κ. (108)

If this constant vanishes, we are again back to Remark 21, and may take U
constant.

If not, write U0 = U/κ, so that ∆U0 = 1. (Note that, locally, there are
always such functions.) Without altering this, we may put U = 1

2α − α̇U0,
and then U satisfies (A2).

This proves that (105) and (106) are sufficient. Clearly condition (106), as
well as the expression for T is necessary. It remains to deduce (105), and the
explicit form for U . We may assume that U is non-constant. As above, we get
U(t, ·) = ψ(t) +ϕ(t)U0, for some functions ϕ and ψ, where U0 is independent
of time and ∆U0 = 1. Then (A2) holds if and only if ϕ̇ = 0 and − 1

2 ψ̇ = ϕ.
Since also (A4) must hold we deduce ϕ = d†ω̇, which implies (105).

5.3 Characterisation of the Laplace Lie algebra

We now consider the Lie algebra of the Laplace-Beltrami operator on (N, g),
in which case X = Q (cf. (98)).

As in Sect. 5.2 we get

Theorem 23. Λ = (Q,U) ∈ Lie (∆) if and only if the following equations are
satisfied:

∆U = 0; (a2)
1
2
�ω + Ricω + dU = 0; (a3)

(∇ω)(ij) = c · gij . (a4)

The cocycle is Φ = ΦΛ = c.

¿From Theorem 19 we immediately get

Theorem 24. As Lie algebras Lie (∆) = confh, through the map (93).

6 Constants of Motion, Conservation Laws and
Martingales

6.1 Quantum picture

We start from a self-adjoint Hamiltonian H = − 1
2∆+ V , where V = V (t, q),

and q is the coordinate in N . Let Λ = T∂t + Qi∂i + U = X + U , where X
is a (smooth) vector field on space-time M and U is a (smooth) function on
M . This is the general form for a linear PDO of order ≤ 1 on M . We write
D1(M) for all such operators.

Denote by
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K :=
∂

∂t
−H (109)

the (backward) heat operator. If Λ ∈ Lie (K), i.e., [K,Λ] = Φ · K for some
function Φ, then

KΛu = ([K,Λ] + ΛK)u = (Φ+ Λ)Ku. (110)

Hence,
KΛu = 0 if Ku = 0 and Λ ∈ Lie (K), (111)

i.e., the Lie algebra preserves the kernel of K.
The operator 1 : u → u always belongs to Lie (K). It expresses the con-

servation law
d

dt

∫
N

θθ∗ dvol = 0. (112)

This is a direct consequence of H being self-adjoint: the left-hand side is

〈θ̇, θ∗〉+ 〈θ, θ̇∗〉 = 〈Hθ, θ∗〉+ 〈θ,−Hθ∗〉 = 〈Hθ, θ∗〉 − 〈Hθ, θ∗〉 = 0. (113)

Suppose f is a smooth function on M with appropriate growth conditions.
Then

d

dt

∫
N

f · θθ∗ dvol =
∫

N

Df · θθ∗ dvol =
∫

N

D∗f · θθ∗ dvol (114)

Suppose now that Λ is any element the heat Lie algebra. By definition
D = θ−1Kθ, so that

D(θ−1Λθ) = θ−1KΛθ = θ−1(Φ+ Λ)Kθ = 0, (115)

i.e., along the process, θ−1Λθ is a martingale. This can also be expressed as
the conservation law

d

dt

∫
N

Λθ · θ∗ dvol = 0, (116)

because the LHS is (d/dt)
∫

N
θ−1Λθ · θθ∗ dvol =

∫
N
D(θ−1Λθ) · θθ∗ dvol = 0,

as we just saw.
By repetition of these arguments,

Theorem 25. If Λj ∈ Lie (K), and if sj ≥ 0 are integers, 1 ≤ j ≤ k, then,
along the process, θ−1Λs1

1 · · ·Λsk

k θ is a martingale, and we have the conserva-
tion law

d

dt

∫
N

Λs1
1 · · ·Λsk

k θ · θ
∗ dvol = 0. (117)

We remark that by time-reflection and duality we get corresponding state-
ments for θ∗ and Λ†s1

1 · · ·Λ†sk

k .
Let us now return to the function θ−1Λθ. With the notation p̂i = ∂iθ/θ

and Ê = θ̇/θ, it becomes
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Λθ

θ
= ÊT + p̂iQ

i + U. (118)

p̂i are the momentum densities and Ê the energy density from Sect. 2.5. (We
have added hats in this chapter to distinguish between classical and quantum
objects.)

Hence, by the theorem,

Corollary 26.
D

(
ÊT + 〈p̂, Q〉+ U

)
= 0 (119)

whenever Λ = (T,Q,U) ∈ Lie (K).

We recall that with A = log θ the coefficients p̂i = ∂iθ/θ and Ê = θ̇/θ are
given by

dA = Ê dt+ p̂i dq
i = Ê dt+ p̂dq, (120)

where dA signifies space-time differential. The right-hand side is the restriction
of the first fundamental form ω = Edt + pdq to a Lagrangian manifold: the
second fundamental form Ω = dω = dE ∧ dt+ dp∧ dq vanishes there, because
d
2

= 0.

6.2 Classical picture

M is the configuration space, and the cotangent bundle T ∗M is the (extended)
phase space. The fibre coordinates are (E, p).

Definition 27. The symbol map takes Λ ∈ D1(M) to the function FΛ ∈
C∞(T ∗M) defined by

FΛ(t, q, E, p) := ET (t, q) + 〈p,Q(t, q)〉+ U(t, q). (121)

Using the first fundamental form ω = E dt+p dq, F = ω(π∗X)+U , where
X = (T,Q) and π is the projection TM →M . The second fundamental form
Ω = dω = dE ∧ dt+ dp ∧ dq on T ∗M gives rise to the Poisson bracket

{φ, ψ} =
∂φ

∂E

∂ψ

∂t
− ∂φ

∂t

∂ψ

∂E
+
∂φ

∂pi

∂ψ

∂qi
− ∂φ

∂qi

∂ψ

∂pi
, φ, ψ ∈ C∞(T ∗M). (122)

Theorem 28. The symbol map is 1–1 onto the space of functions in
C∞(T ∗M) which are of order at most one in E and p. It is a Lie algebra
morphism:

{FΛ1 , FΛ2} = F[Λ1,Λ2]. (123)

Given an ‘ordinary’ HamiltonianH = H(t, q, p), we get an extended Hamil-
tonian K defined by

K = K(t, q, E, p) := E −H(t, q, p). (124)
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For any differentiable function F on T ∗M we define

dF

dt
:= {K,F}. (125)

This is equal to
∂F

∂t
− ∂H

∂pi

∂F

∂qi
+
∂H

∂qi

∂F

∂pi
+
∂H

∂t

∂F

∂E
(126)

and leads to
dF

dt
=
∂F

∂t
+ pi

∂F

∂qi
+
∂V

∂qi

∂F

∂pi
+
∂V

∂t

∂F

∂E
(127)

if we choose the Euclidean Hamiltonian

H = −1
2
|p|2 + V, where V = V (t, q). (128)

¿From now on, this is our choice for H. The equations of motion become

q̇ = p],
Dp

dt
= dV, Ė = V̇ , ṫ = 1. (129)

Here, D/dt denotes the covariant derivative.

Definition 29. The classical Lie algebra, Liec(K), consists of all F ∈ C∞(T ∗M)
of order at most one in (E, p) which satisfy

{K,F} = a ·K (130)

for some (local) function a = aF .

By the implicit function theorem, this is equivalent to requiring that
dF/dt = 0 on the set where E = H(t, q, p).

The next point is to determine the classical Lie algebra. We calculate
dFΛ/dt and substitute E = H(t, q, p). The result is a polynomial of order
three in p, with coefficients depending on (t, q). All these coefficients must
vanish.

d

dt
(ET + 〈p,Q〉+ U)

=V̇ T + (− 1
2 |p|

2 + V )(Ṫ + 〈p, dT 〉) + 〈dV,Q〉
+ 〈p, Q̇〉+∇Q(p, p) + U̇ + 〈p, dU〉

=− 1
2 |p|

2〈p, dT 〉+
(
∇Q(ij) − 1

2 Ṫ g
ij

)
pipj

+ 〈p, V dT + ω̇ + dU〉+ U̇ + Ṫ V + T V̇ +Q(V ). (131)

Here, ω is the 1-form dual to Q.
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Theorem 30. Λ = (T,Q,U) belongs to the classical Lie algebra for K =
E −H precisely when the following equations hold:

dT = 0; (C1)

U̇ +
∂

∂t
(TV ) +Q(V ) = 0; (C2)

ω̇ + dU = 0; (C3)

∇ω(ij) = 1
2 Ṫ g

ij . (C4)

We shall now connect our findings with the Noether theorem. We refer to
the presentation in Ibragimov [Ibr2], pp. 236–239.

6.3 The classical case

In general, a classical Lagrangian L = L(t, q, q̇) and a Hamiltonian H =
H(t, q, p) are related by (Euclidean conventions)

L = q̇ipi +H. (132)

For H = − 1
2 |p|

2 + V , the Lagrangian becomes L = 1
2 |q̇|

2 + V . The Euler-
Lagrange equations are

δL

δqi
= 0, i = 1, . . . , n, (133)

where
δL

δqi
=
∂L

∂qi
− d

dt

∂L

∂q̇i
. (134)

Given a vector field X = T∂/∂t+Qi∂/∂qi, we make an infinitesimal variation
of the action

∫
Ldt:

δX

∫
Ldt =

∫ (
X(1)(L) + L

dT

dt

)
dt. (135)

Here, the vector field X is prolonged ([Ibr2], [Or1]) to X(1), so that it can act
also on the variable q̇:

X(1) = X +
(
DQi

dt
− q̇i dT

dt

)
∂

∂q̇i
= X +W i ∂

∂q̇i
. (136)

After some manipulation we get

X(1)(L) + L
dT

dt
=

d

dt

(
TL+W i ∂L

∂q̇i

)
+W i δL

δqi
. (137)

Thus, Noether’s invariance condition (invariance of the Lagrangian differential
Ldt modulo exact differentials)



26 Torbjörn Kolsrud

X(1)(L) + L
dT

dt
= −dU

dt
, (138)

for some function U(t, q), implies that

d

dt

(
TL+W i ∂L

∂q̇i
+ U

)
= 0, (139)

i.e.,
d

dt
(TE + 〈p,Q〉+ U) = 0. (140)

This is exactly the case in Sect. 6.2 and should be compared with Corollary
6.1.7. In both cases we have what perhaps should be termed a Poisson-Noether
algebra. It is a Lie algebra of conserved quantities; in general, only a part of
the Lie algebra of a differential equation gives rise to conserved quantities.

We remark that this case of Noether’s theorem was proved by M. Lévy
already in 1878.

6.4 Quantum case

The Hamiltonian is H = − 1
2∆ + V , and the Hamiltonian field density is

H = 1
2 (Hθ · θ∗ + θHθ∗). This is an equivalent form of 1

2 〈dθ, dθ
∗〉+ V θθ∗.

The Lagrangian field density is

L =
1
2
(θθ̇∗ − θ̇θ∗) + H. (141)

Write (θ, θ∗) = (θ0, θ1), and θa
µ = ∂µθ

a. In general, the Euler-Lagrange equa-
tions, obtained from the space-time variational principle

δ

∫∫
L dt dvol = 0, (142)

are
δL

δθa
= 0, a = 0, 1, (143)

where
δL

δθa
:=

∂L

∂θa
−Dµ

∂L

∂θa
µ

. (144)

In the present case we get

θ̇ −Hθ = 0, θ̇∗ +Hθ∗ = 0. (145)

Write x = (x0, x1, ..., xn) = (t, q1, .., qn). Consider a vector field Λ on the
first order jet bundle over M with variables xµ and θa, 0 ≤ µ ≤ n, a = 0, 1:

Λ = Xµ ∂

∂xµ
+ ηa ∂

∂θa
= Xµ∂µ + ηa ∂

∂θa
. (146)
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Write dx := dt dvol. We get

δΛ

∫
M

L dx =
∫

M

(Λ(2)(L) + LDµX
µ) dx, (147)

where Dµ := d/dxµ denotes the total derivative w.r.t. xµ. Λ is prolonged to
the second-order jet bundle. One finds

Λ(2)(L) + LDµX
µ = Dµ

(
LXµ +W a ∂L

∂θa
µ

)
+W a δL

δθa
, (148)

where
W a = ηa − θa

µX
µ. (149)

Choose a vector field of the form

Λ = T
∂

∂t
+Qi ∂

∂qi
+ U

(
θ∗

∂

∂θ∗
− θ

∂

∂θ

)
. (150)

These vector fields are just another representation of the first order PDOs
T ∂

∂t + Qi ∂
∂qi + U employed above. The Lie algebras are isomorphic. – As

usual, T,Qi and U only depend on t and q. In this general case, Noether’s
theorem states that Λ(2)(L) + LDµX

µ = DµB
µ for some vector field B if

and only if LX0 +W a∂L/∂θ̇a is the density of a conservation law. The latter
quantity is

I = IΛ = T · 1
2
(θ̇θ∗ − θθ̇∗) +Qi · 1

2
(θiθ

∗ − θθ∗i ) + Uθθ∗. (151)

I/θθ∗ is just a symmetric version of the function ÊT + p̂iQ
i + U in (118)

above. The Noether theorem gives the same densities for conservation laws as
we encountered in Sect. 6.1.

6.5 Connecting the classical and the quantum algebras. Examples

The total (i.e., space-time) differential σ := dA of the action density A = log θ
defines a section of T ∗M . If F = FΛ, then

ÊT + p̂iQ
i + U = σ∗F = F ◦ σ =: F̂ . (152)

Write Fj = FΛj
. Theorem 28 implies, with obvious notation,

{F1, F2}̂ = F̂[1,2]. (153)

One readily shows the following commutator formula:

F̂[1,2] = X1(F̂2)−X2(F̂1). (154)

We now characterise the classical Lie algebra for a class of quadratic po-
tentials. The proof is left out.
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Theorem 31. Suppose N = Rn. All potentials on the form

V (t, q) =
1
2
a(t)|q|2 + b(t) · q + c(t), (155)

where a, b and c are smooth functions of t, with a > 0, yield isomorphic
classical Lie algebras for the Hamiltonian H = − 1

2 |p|
2 + V . They can be

represented as
h + b1 + b2, (156)

where h = 〈1, ξi, ηj〉ni,j=0 is a representation of the Heisenberg algebra: {ξi, ηj}
= δij and all other brackets vanish. The centre is generated by 1, h is an ideal
and b1 and b2 commute. b1 = 〈|ξ|2, ξ · η, |η|2〉 is a representation of sl2, and
b2 is a representation of son. The dimension is 2n+ 4 + n(n− 1)/2.

Finally, we shall compare the two Lie algebras in this case, so V (t, q) =
1
2a(t)|q|

2 + b(t) · q + c(t). If we integrate (C3)–(C4), omitting the case when
∇ω is antisymmetric, i.e., the case of infinitesimal rotations, we first find
Q = 1

2 Ṫ q + α, where α is a function of t, and then

U = −1
4
T̈ |q|2 − ȧ · q + β, (157)

where β = β(t). Equation (C2) leads to

−1
4

...
T + 2aṪ + ȧT = 0, α̈− aα =

3
2
Ṫ b+ T ḃ, β̇ = −(Tc)̇ + αb. (158)

Now ∆U = −n
2 T̈ , so the only change caused by the heat equation is that β

must fulfill
β̇ = −(Tc)̇ + αb− n

4
T̈ . (159)

This is the Itô correction. It only concerns one of the elements of the sl2-part.
Changing the representation for this part, in case of the heat equation, one
finds that the classical Lie algebra and the heat Lie algebra are isomorphic.

This is related to Gaussian diffusions, oscillator-like systems and the semi-
classical limit. See Brandão [B1], Brandão-Kolsrud [BK1], [BK2], M. Kolsrud
[K0] and Kolsrud-Zambrini [KZ2].
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