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Summary. Barndorff-Nielsen and Shephard [3] investigate supOU processes as
volatility models. Empirical volatility has tails heavier than normal, long mem-
ory in the sense that the empirical autocorrelation function decreases slower than
exponential, and exhibits volatility clusters on high levels. We investigate supOU
processes with respect to these stylized facts. The class of supOU processes is vast
and can be distinguished by its underlying driving Lévy process. Within the class of
convolution equivalent distributions we shall show that extremal clusters and long
range dependence only occur for supOU processes, whose underlying driving Lévy
process has regularly varying increments. The results on the extremal behavior of
supOU processes correspond to the results of classical Lévy-driven OU processes.
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1 Introduction

We investigate the extremal behavior of stationary supOU processes (super-
position of Ornstein-Uhlenbeck processes) of the form

Vt =
∫

R+×R
e−r(t−s)1[0,∞)(t− s) dΛ(r, λs) for t ≥ 0, (1)

where λ > 0 and Λ is an infinitely divisible independently scattered random
measure (i. d. i. s. r. m.). Such models coincide under weak regularity conditions
with models introduced under the same acronym by Barndorff-Nielsen [1]
aiming at volatility modelling. They allow for non-trivial extensions of OU
(Ornstein-Uhlenbeck) type processes of the form
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Vt =
∫ t

−∞
e−λ(t−s)dLλs for t ≥ 0, (2)

where λ > 0 and L is a Lévy process. The time-change by λ yields marginal
distributions independent of λ. To guarantee that the volatility process V is
positive, the Lévy process L is chosen as subordinator. The resulting price
process has martingale term dSt =

√
Vt dBt, where Bt is a Brownian mo-

tion, independent of the volatility driving Lévy process. This model has been
analyzed by Barndorff-Nielsen and Shephard [3].

An alternative continuous-time model has been suggested by Klüppelberg,
Lindner and Maller [14]. In the COGARCH(1, 1) model, which is a continuous-
time version of the GARCH(1, 1) process, the price process has martingale
term dSt =

√
Vt dLt, where L is some arbitrary Lévy process and the volatility

is given as solution of the SDE

dVt+ = (b− aVt) dt+ cVt d[L,L](d)
t (3)

for parameters a, b > 0 and c ≥ 0, where ([L,L](d)
t )t≥0 is the discrete part of

the quadratic variation process of L.
Interestingly, although the two types of models seem at first sight to be

quite different, they share many properties; see Klüppelberg, Lindner and
Maller [15]. The models differ, however, in their extreme behavior. Whereas
the large fluctuations in terms of the tail behavior of the volatility in the
Barndorff-Nielsen and Shephard model (2) is inherited from the tail behavior
of the increments of the Lévy process, the COGARCH model (3) exhibits
under weak regularity conditions always Pareto-like tails. It has also been
shown in Fasen, Klüppelberg and Lindner [12] that both models can only
model volatility clusters, if they have Pareto-like tails; i. e. the COGARCH
model always does (under weak regularity conditions), and the OU-type model
does, if the Lévy process has Pareto-like increments.

Besides volatility clustering, another issue in volatility modelling is the fact
that many financial time series exhibit zero autocorrelation in the data, but a
long range dependence effect in the volatility. Despite the ongoing debate for
the origins of this effect, the modelling issue cannot just be ignored. Unfor-
tunately, the autocovariance functions of both volatility models, the OU-type
model and the COGARCH(1, 1) decrease exponentially fast.

Barndorff-Nielsen [1] suggests as a remedy the generalization of V to a
supOU process. In this paper we want to investigate the extremal behavior of
model (1) with respect to volatility clustering. As empirical findings indicate
and economic reasoning supports, financial data can be modelled by a normal
mixture model with tails ranging from exponential to Pareto. Consequently,
it is indeed interesting to identify models with such tail behavior, long range
dependence effect and volatility clusters in the extremes.

Our paper is organized as follows. We start in Section 2 with an introduc-
tion into supOU processes as given in (1) including necessary and sufficient
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conditions for the existence of a stationary version of (1). Moreover, we com-
pare our definition with Barndorff-Nielsen’s [1] slightly different definition
and show that they coincide. In the context of extreme value theory we prefer
working with representation (1) as it allows us to apply results for mixed MA
processes as derived in Fasen [10, 11]. As we shall show in Section 2.2 supOU
processes can model a wide range of correlation functions from exponential to
polynomial decrease. Poisson shot noise processes as introduced in Section 2.3
present the basic structure for studying the extremal behavior. In Section 2.4
we present the class of convolution equivalent distributions, which will serve
as models for the Lévy increments of supOU processes.

The extremal behavior of a supOU process, whose underlying driving Lévy
process is in the class of convolution equivalent distributions, is classified by
the tail behavior of the random variable L1 = Λ(R+ × [0, 1]), so that we have
to distinguish between different regimes for L1. In Section 3 we investigate the
link between the tail behavior of the Lévy increments in the class of convo-
lution equivalent distributions, represented by L1, the stationary distribution
V0 of the supOU process, and sup0≤t≤1 Vt. In Section 4 we study the extremal
behavior of V via marked point processes, which characterize the distributions
of the locations of extremes on high levels. Moreover, we derive the distribu-
tion of cluster sizes of high level extremes and the normalizing constants of
running maxima. Our findings are summarized in Section 5.

As not to disturb the flow of arguments we postpone classical definitions
and concepts to an Appendix.

Throughout the paper we shall use the following notation. We abbreviate
distribution function by d. f. and random variable by r. v. For any d. f. F we
denote its tail F = 1−F and F ∗G for the convolution of F with the d. f. G.
For two r. v. s X and Y with d. f. s F and G we write X d= Y if F = G, and
by n→∞=⇒ we denote weak convergence for n → ∞. For two functions f and g
we write f(x) ∼ g(x) as x → ∞, if limx→∞ f(x)/g(x) = 1. We also denote
R+ = (0,∞). For x ∈ R, we define x+ = max{x, 0}.

2 The model

Let T be a σ-ring on R+ × R (i. e. countable unions of sets in T belong to T
and if A,B ∈ T with A ⊂ B then B\A ∈ T ) and let Λ = {Λ(A) : A ∈ T } be
an i. d. i. s. r.m., which means by definition that all finite dimensional distribu-
tions are infinitely divisible and for all disjoint sets (An)n∈N in T we have that
(Λ(An))n∈N is an independent sequence and Λ (

⋃∞
n=1An) =

∑∞
n=1 Λ(An) al-

most surely (a. s.). We work with i. d. i. s. r.m. s, whose characteristic function
can be written in the form

E exp(iuΛ(A)) = exp(ψ(u)Π(A)) for u ∈ R, (4)

whereΠ is a measure on R+×R, which is the product of a probability measure
π on R+ and the Lebesgue measure on R, and
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ψ(u) = ium− 1
2
u2σ2 +

∫
R

(
eiux − 1− iuκ(x)

)
ν(dx) for u ∈ R

with κ(x) = 1[−1,1](x). The function ψ is the cumulant generating function
of an infinitely divisible r. v. with generating triplet (m,σ2, ν), where m ∈
R, σ2 ≥ 0, and ν is a measure on R, called Lévy measure, satisfying ν({0}) = 0
and

∫
R(1∧|x|2) ν(dx) <∞. The generating quadruple (m,σ2, ν, π) determines

completely the distribution of Λ.
The underlying driving Lévy process

Lt = Λ(R+ × [0, t]) for t ≥ 0 (5)

has generating triplet (m,σ2, ν).

2.1 Existence and stationarity of the model

The following result guarantees existence, infinite divisibility and stationarity
of the model and ensures the equivalence of (1) and the supOU model as de-
fined in Barndorff-Nielsen [1]. For the comparison we recall first that integrals
of the form

∫
R+×R e−r(t−s)1[0,∞)(t − s) dΛ(r, λs) are defined for each fixed

t ≥ 0 as limit in probability of simple functions (cf. Rajput and Rosinski [16],
Theorem 2.7). Hence, Vt is defined a. s. for each fixed t.

Proposition 1. Let (m,σ2, ν) be the generating triplet of an infinitely divis-
ible distribution with ∫

|x|>1

log(1 + |x|) ν(dx) <∞ . (6)

Define T : R+ ×R → R+ ×R by T (r, s) = (r, r−1s). Then the following hold:

(a) Let π̃ be a probability measure on R+ with λ :=
∫

R+
r π̃(dr) < ∞ and

Λ̃ be an i. d. i. s. r.m. with generating quadruple (m̃, σ̃2, ν̃, π̃). Then Λ =
Λ̃ ◦ T−1 is an i. d. i. s. r.m. with generating quadruple (λm̃, λσ̃2, λν̃, π),
where π(dr) = λ−1rπ̃(dr).

(b)Let π be a probability measure on R+ with λ−1 :=
∫

R+
r−1 π(dr) <∞ and

Λ be an i. d. i. s. r.m. with generating quadruple (m,σ2, ν, π). Then Λ̃ =
Λ◦T is an i. d. i. s. r.m. with generating quadruple (λ−1m,λ−1σ2, λ−1ν, π̃),
where π̃(dr) = λr−1π(dr).

(c) For Λ and Λ̃ as in (a) and (b) define for t ≥ 0,

Vt =
∫

R+×R
e−r(t−s)1[0,∞)(t− s) dΛ(r, λs),

Xt =
∫ ∞

−∞
e−rt

∫ rt

−∞
es dΛ̃(r, λs) .
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Then, Vt = Xt a. s. for t ≥ 0 and, hence, V is a version of X and vice
versa. Furthermore, V (and hence X) has a stationary version. For d ∈
N let −∞ = t0 < t1 < . . . < td < ∞ and u1, . . . , ud ∈ R. The finite
dimensional distributions of the stationary process V have the cumulant
generating function

log E exp(i(u1Vt1 + . . .+ udVtd
))

=
d∑

m=1

∫ ∞

0

∫ tm

tm−1

λψ
( d∑

j=m

uje−r(tj−s)
)
ds π(dr). (7)

The results (a) and (b) follow by simple calculations of the characteristic
functions of the finite dimensional distributions of Λ and Λ̃. Statement (c) is
the consequence of the change of variables in (a) and (b), respectively, and
Barndorff-Nielsen [1], Theorem 3.1 (cf. Rajput and Rosinski [16], Proposi-
tion 2.6). Condition (6) and

∫
R+
r−1 π(dr) < ∞ are necessary and sufficient

for the existence of a stationary version of V (and hence X).
Throughout this paper we shall assume that V is a measurable, separable

and stationary version of the supOU process as given in (1) and that P(|Vt| <
∞ for all t ≥ 0) = 1.

Remark 2. (i) By (7) the cumulant generating function of the stationary dis-
tribution is given by

log E exp(iuV0) =
∫ ∞

0

∫ 0

−∞
λψ (uers) ds π(dr)

=
∫ 0

−∞
ψ (ues) ds for u ∈ R.

(8)

This is the cumulant generating function of a stationary OU-type process (2)
driven by the underlying driving Lévy process L as given in (5). Then, V0 has
absolutely continuous Lévy measure νV with

νV (dx) = x−1ν [x,∞) dx for x > 0, (9)

and is selfdecomposable (Proposition A.5). Note that the stationary distribu-
tion of V0 is independent of π.

(ii) Positivity of V , which is needed for volatility processes, can be guaran-
teed by choosing L as a subordinator; i. e. ν has only support on R+ with∫
(0,∞)

(1 ∧ x) ν(dx) <∞, σ2 = 0 and m =
∫∞
0
κ(x) ν(dx).

The following examples serve as motivation.

Example 3. (a) If π has only support in some λ > 0, i. e. π({λ}) = 1, then (7)
reduces to the cumulant generating function of the d-dimensional distribution
of an OU-type process. Thus, (1) defines the usual OU-type process (2).
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(b) Let π be a discrete probability measure with π({λk}) = pk for k ∈ N
and λk > 0. Then the assumption λ−1 :=

∫
R+
r−1 π(dr) < ∞ is equivalent

to
∑∞

k=1 pkλ
−1
k < ∞. By (7) the cumulant generating function of the d-

dimensional distribution is given by

log E exp(i(u1Vt1 + . . .+ udVtd
)) =

∞∑
k=1

d∑
m=1

∫ tm

tm−1

λpkψ
( d∑

j=m

uje−λk(tj−s)
)
ds.

Consequently, V has the same distribution as the superposition of independent
OU processes,

∞∑
k=1

∫ t

−∞
e−λk(t−s) dL

(k)
λs for t ≥ 0 ,

where (L(k))k∈N are independent Lévy processes with characteristic triplets
(pkm, pkσ

2, pkν).

2.2 Dependence structure

Provided the underlying driving Lévy process has finite second moment the
autocorrelation function ρ of the stationary supOU process (1) can be calcu-
lated taking derivatives with respect to u1 and u2 in (7) and taking the limit
for u1, u2 → 0. We obtain

ρ(h) = λ

∫ ∞

0

r−1e−hr π(dr) for h ≥ 0. (10)

For a discrete probability measure π as given in Example 3 we obtain

ρ(h) = λ

∞∑
k=1

pkλ
−1
k e−hλk for h ≥ 0. (11)

Remark 4. On the one hand the correlation function (10) of a supOU process
depends only on the probability measure π and is independent of the gener-
ating triplet (m,σ2, ν) of the underlying driving Lévy process. On the other
hand the stationary distribution V0 depends only on (m,σ2, ν) and is inde-
pendent of π, represented by the cumulant generating function given in (8).
Thus, supOU processes can model the stationary distribution and the correla-
tion function independently. This opens the way to a simple statistical fitting
of such models. More about supOU models and applications to financial data
can be found in Barndorff-Nielsen and Shephard [2, 3].

There are various notions of long range dependence, all having in common
that the correlation function should decrease slower than exponential. We
shall work with the following definition.
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Definition 5. A stationary process with correlation function ρ exhibits long
range dependence, if there exists a H ∈ (0, 1/2) and l is a slowly varying
function (see Definition A.2), such that

ρ(h) ∼ l(h)h−2H for h→∞.

We observe that long range dependence implies that
∫∞
0
ρ(h) dh = ∞.

The following result explains how long range dependence can be introduced
into supOU models. Essentially, the measure π needs sufficient mass near 0.
We write π(r) for π((0, r]).

Proposition 6. Let V be a stationary supOU process as in (1) and L be as
in (5) with EL2

1 = 1. We denote by ρ the correlation function of V . Suppose
l is slowly varying and H > 0. Then

π̃(r) ∼ (2H)−1l(r−1)r2H for r → 0, (12)

if and only if

ρ(h) ∼ Γ (2H)l(h)h−2H for h→∞. (13)

If

π(r) ∼ λ−1(2H + 1)−1l(r−1)r2H+1 for r → 0, (14)

then (12) and, hence, (13) follow. The converse, i. e. (13) implies (14) holds,
provided that π is absolutely continuous with density π′, and r−1π′(r) is mono-
tone on (0, r0) for some r0 > 0.

Proof. The equivalence of (12) and (13) is a consequence of Karamata’s
Tauberian theorem (Theorem 1.7.1’ in Bingham, Goldie and Teugels [4]) and
ρ(h) =

∫∞
0

e−hr π̃(dr); cf. (10). Furthermore, if (14) holds, then by Propo-
sition 1 (b) and π̃(dr) = λr−1π(dr), Karamata’s theorem (Theorem 1.5.11
in [4]) yields

π̃(r) = λ

∫ r

0

s−1 π(ds) = λr−1π(r) + λ

∫ ∞

r−1
π(s−1) ds

∼ λ(2H + 1)(2H)−1r−1π(r)

for r → 0. Hence, statements (12) and (13) follow.

If r−1π′(r) is monotone on (0, r0) for some r0 > 0, and invoking the monotone
density theorem (Theorem 1.7.2b in [4]), we get from (12)

r−1π′(r) ∼ λ−1l(r−1)r2H−1 for r → 0.

Hence, Theorem 1.6.1 in [4] yields π(r) ∼ λ−1(2H + 1)−1l(r−1)r2H+1 for
r → 0. �
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Example 7. A typical example for π to generate long range dependence in
a supOU process is a gamma distribution with density π(dr) = Γ (2H +
1)−1r2He−r dr for r > 0 and H > 0. Then λ = 2H and

ρ(h) = Γ (2H)−1

∫ ∞

0

r2H−1e−r(h+1) dr = (h+ 1)−2H for h ≥ 0.

Remark 8. CARMA processes as reviewed by Brockwell [5] can be interpreted
as a superposition of OU-type processes. These models correspond to linear
combinations of OU processes driven by one single Lévy process. This mech-
anism creates only processes with asymptotically exponentially decreasing
correlation functions.

2.3 Positive shot noise process

The structure of a supOU process can be well understood when considering
the following example.

Let Λ be a positive compound Poisson random measure in the sense that
it has generating quadruple (µPF ((0, 1]), 0, µPF , π), where µ > 0, PF is a
probability measure on R+ with corresponding d. f. F , and π is a probability
measure on R+ with λ−1 :=

∫
R+
r−1 π(dr) < ∞. Then Λ has the representa-

tion

Λ(A) =
∞∑

k=−∞

Zk1{(Rk,Γk)∈A} for A ∈ T , (15)

where (Γk)k∈Z constitute the jump times of a Poisson process N = (Nt)t∈R on
R with intensity µ > 0. The process N is independent of the i. i. d. sequence of
positive r. v. s (Zk)k∈Z with d. f. F . Finally, the i. i. d. sequence (Rk)k∈Z with
distribution π is independent of all other quantities.

The resulting supOU process is then the positive shot noise process

Vt =
∫

R+×R
e−r(t−s)1[0,∞)(t− s) dΛ(r, λs)

=
Nλt∑

k=−∞

e−Rk(t−Γk/λ)Zk for t ≥ 0,
(16)

and from (9) we get, if E log(1 + Z1) < ∞ (which is the analogue of (6) in
this model),

νV [x,∞) = µ

∫ ∞

x

y−1F (y) dy for x > 0

and a stationary version of V exists.
The qualitative extreme behavior of this supOU process can be seen in

Figure 1 in detail. The supOU process jumps upwards, whenever (Nλt)t≥0
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Fig. 1. Sample path of a supOU process Vt =
PNλt

k=−∞ e−Rk(t−Γk/λ)Zk as in Sec-

tion 2.3 and, for comparison, the OU-type process Vt =
PNλt

k=−∞ e−λt+ΓkZk for

0 ≤ t ≤ 400, with λ = 1/3, µ = 1/3, F (x) = 1 − exp(−x1/2) for x > 0 and
π(r) = r3/2 for r ∈ (0, 1). In the first plot we show the increments of the underlying
driving Lévy process Lλt =

PNλt
k=1 Zk for 0 ≤ t ≤ 400.

jumps and decreases continuously between two jumps. This means in partic-
ular that V has local suprema exactly at the jump times Γk/λ (and t = 0).
Consequently, it is the discrete-time skeleton of V at points Γk/λ that deter-
mines the extreme behavior of the shot noise process. Although the underlying
driving Lévy process L of the supOU process as given in (2) and the driving
Lévy process of the OU-type process are the same, we see the influence of
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(Rk)k∈N on the exponential decrease of V for the simple OU-type process,
which governs the memory of the supOU process.

2.4 Convolution equivalent distributions

We aim at an extreme value analysis of supOU processes, where a first step
always concerns the tail behavior of the model. To relate the tail behavior of
the underlying driving Lévy process, represented by the tail of L1 as in (2),
and the tail of the stationary process given by V0 we shall invoke relation (9)
between the Lévy measures.

The convolution equivalent distributions play a prominent role here, where
we distinguish different classes.

Definition 9.
(a) A d. f. F on R with F (x) < 1 for all x ∈ R belongs to the class of
convolution equivalent distributions denoted by S(γ) for some γ ≥ 0, if the
following conditions hold:

(i) F belongs to the class L(γ), i. e. for all y ∈ R locally uniformly

lim
x→∞

F (x+ y)/F (x) = exp(−γy).

(ii) limx→∞ F ∗ F (x)/F (x) exists and is finite.

If Z is a r. v. with d. f. F ∈ S(γ), then we also write Z ∈ S(γ).

(b) The class S(0) = S is called subexponential distributions.

Most of the literature on this topic is formulated for positive r. v. s, which
extend to r. v. s on R, when considering Z ∈ S(γ) if and only if Z+ ∈ S(γ).
Important properties of S(γ) can be found in Theorem A.3.

Subexponential distributions are heavy-tailed in the sense that no expo-
nential moments exist. S contains all d. f. s F with regularly varying tails
(Definition A.2), denoted by F ∈ R−α for some α > 0, but is much larger.
Distribution functions in S(γ) for some γ > 0 have exponential tails, hence
are lighter tailed than subexponential distributions.

Next we present two different regimes governed by extreme value theory,
which classifies distributions according to their maximum domain of attrac-
tion. The maximum domain of attraction condition is an assumption on the
tail behavior of a d. f. F . Suppose we can find sequences of real numbers an > 0
and bn ∈ R such that

lim
n→∞

nF (anx+ bn) = − logG(x) for x ∈ R ,

for some non-degenerate d. f. G. Then we say F is in the maximum domain
of attraction of G (F ∈ MDA(G)). The Fisher-Tippett Theorem A.1 says
that G is either a Fréchet (Φα, α > 0), Gumbel (Λ) or Weibull (Ψα, α > 0)
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distribution. Convolution equivalent distributions can be in two different max-
imum domains of attraction, since they have unbounded support to the right
(thus excluding the Weibull distribution). All d. f. s such that F ∈ R−α for
some α > 0 are subexponential and belong to MDA(Φα). Other convolution
equivalent distributions may belong to MDA(Λ).

Example 10. Typical examples for d. f. s in S∩MDA(Λ) have density functions

g(x) ∼ const.xβe−xα

as x→∞

for some β ∈ R, α ∈ (0, 1), like the heavy-tailed Weibull distributions. Distri-
bution functions, whose probability density satisfies

g(x) ∼ const.xβ−1e−γx as x→∞ (17)

for β < 0 are an important subclass of S(γ)∩MDA(Λ). The papers of Cline [7]
and Goldie and Resnick [13] investigate criteria for d. f. s to be in S(γ) ∩
MDA(Λ).

We present here some important examples satisfying (17), which are also
used for financial modelling; we refer to Schoutens [20] for an overview of these
d. f. s.

(a) GIG(β, δ, γ) (generalized inverse Gaussian distribution) with β < 0, δ > 0
and γ ≥ 0, is in S(γ2/2) with probability density

g(x) = const.xβ−1 exp
(
−

(
δ2x−1 + γ2x

)
/2

)
for x > 0.

A special case is for β = −1/2 the inverse Gaussian distribution IG(δ, γ).

(b) NIG(α, β, δ, µ) (normal inverse Gaussian distribution) is for β, δ, µ ∈ R
and α > |β| in S(α− β) and

g(x) ∼ const.x−3/2 exp(−x(α− β)) as x→∞.

(c) GH(α, β, δ, µ, γ) (generalized hyperbolic distribution) is for β, δ, µ ∈ R,
α > |β|, γ < 0 in S(α− β) and

g(x) ∼ const.xγ−1 exp(−x(α− β)) as x→∞.

For γ = −1/2 the GH distribution is the NIG distribution, while the hyper-
bolic distribution occurs for γ = 1.

(d) CGMY (C,G,M, Y ) for C,M,G > 0, Y ∈ (−∞, 2], introduced by Carr,
Geman, Madan and Yor [6]. For 0 < Y < 2 it belongs to S(M) with Lévy
density

ν(dx) = C|x|−1−Y exp
(
G−M

2
x− G+M

2
|x|

)
for x ∈ R\{0}.

All these distributions are selfdecomposable, which means that they are pos-
sible stationary distributions of OU-type processes and, hence, also of supOU
processes. We summarize in Proposition A.5 necessary and sufficient condi-
tions of d. f. s to be selfdecomposable.
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3 Tail behavior

We use extensively the fact that for every infinitely divisible convolution equiv-
alent distribution the tail of the distribution function and the tail of its Lévy
measure are asymptotically equivalent; see Theorem A.3 (i).

Proposition 11 (Tail behavior of V ).
Let V be a stationary supOU process as in (1) and L be the underlying driving
Lévy process (5).

(a) Then L1 ∈ R−α if and only if V0 ∈ R−α. In this case

P(V0 > x) ∼ α−1P(L1 > x) for x→∞.

(b) If L1 ∈ S(γ) ∩ MDA(Λ) with tail representation as given in (A.1), then
also V0 ∈ S(γ) ∩MDA(Λ),

P(V0 > x) ∼ a(x)
x

EeγV0

EeγL1
P(L1 > x) for x→∞,

and P(V0 > x) = o(P(L1 > x)) for x→∞.

Proof. Recall from Remark 2 that the stationary distribution of a supOU
process driven by an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π) co-
incides with the stationary distribution of an OU-type process (2) driven by
the Lévy process L with generating triplet (m,σ2, ν). Thus, applying Proposi-
tion 3.2 and Proposition 3.9 in Fasen et al. [12] we obtain sufficiency in (a) and
(b). To prove the converse of (a) assume that V0 ∈ R−α. Since νV (x,∞) =∫∞

x
y−1ν (y,∞) dy for x > 0, and νV (x,∞) ∼ P(V0 > x) for x → ∞, we

obtain by Bingham et al. [4], Theorem 1.7.2, that ν(x,∞) ∼ ανV (x,∞) for
x→∞. Hence, by Theorem A.3 (i) we conclude

P(L1 > x) ∼ αP(V0 > x) for x→∞. �

Lemma 12. Let V be a stationary supOU process as in (1) with absolutely
continuous Lévy density νV (dx) = u(x) dx, where

u(x) ∼ const.xβ−1e−γx for x→∞

for γ > 0, and let L be the underlying driving Lévy process (5). Then V0 ∈
S(γ)∩MDA(Λ) if and only if β < 0, and L1 ∈ S(γ)∩MDA(Λ) if and only if
β < −1.

Proof. Using (9) we obtain ν(x,∞) = xu(x) for x > 0. Thus,

ν(dx)
dx

= −u(x)− xu′(x) ∼ const. γ xβe−γx for x→∞.

The result follows then from Rootzén [18], Lemma 7.1, and Theorem A.3 (i).
�

The next proposition follows from Fasen [11], Proposition 3.3, and [10], The-
orem 3.3.
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Proposition 13 (Tail behavior of M(h)).
Let V be a supOU process and define M(h) = sup0≤t≤h Vt for h > 0.

(a) If L1 ∈ R−α, then also M(h) ∈ R−α and

P(M(h) > x) ∼
(
λh+ α−1

)
P(L1 > x) for x→∞.

(b) If L1 ∈ S(γ) ∩MDA(Λ), then also M(h) ∈ S(γ) ∩MDA(Λ) and

P(M(h) > x) ∼ λh
EeγV0

EeγL1
P(L1 > x) for x→∞.

Remark 14. (i) From Lemma 12 follows immediately that for β ∈ [−1, 0),
V0 ∈ S(γ) ∩MDA(Λ) but L1 /∈ S(γ).

(ii) Proposition 13 implies that the tail of the maximum of a supOU process
driven by an i. d. i. s. r. m. with generating quadruple (m,σ2, ν, π) behaves like
the tail of the maximum of an OU-type process driven by a Lévy process with
generating triplet (m,σ2, ν). From this we conclude immediately that the
long memory property of supOU processes does not affect the tail behavior of
M(h).

4 Extremal behavior of supOU processes

For a general i. d. i. s. r. m. Λ we decompose

Λ = Λ(1) + Λ(2) (18)

into two independent i. d. i. s. r.m. s.
Λ(1) has only jumps greater than 1; i.e. it has generating quadruple

(0, 0, ν1, π) with ν1(x,∞) = ν(1∨ x,∞) for x > 0 and ν1 (−∞, 1] = 0. Conse-
quently, Λ(1) is a positive compound Poisson random measure with represen-
tation (15) whose underlying driving Lévy process L(1) is a compound Poisson
process with intensity ν(1,∞), jump times −∞ < · · · < Γ−1 < Γ0 < 0 < Γ1 <
· · · <∞ and jump sizes Zk with probability measure ν1/ν(1,∞).

Λ(2) summarizes all other features of the model; i.e. it has generating
quadruple (m,σ2, ν2, π) with ν2(−∞,−x) = ν (−∞,−x) and ν2(x,∞) =
ν (1 ∧ x, 1] for x > 0. This means that all the small positive jumps, the nega-
tive jumps, the Gaussian component and the drift are summarized in Λ(2).

For d ∈ N0 let t1, . . . , td ≥ 0, and define

Mk = sup
t∈[Γk/λ,Γk+1/λ)

Vt and V(Γk) = (VΓk+t1 , . . . , VΓk+td
) for k ∈ N.

For a Radon measure ϑ we write PRM(ϑ) for a Poisson random measure
with intensity measure ϑ, see Definition A.7. In our set-up ϑ will be a Radon
measure on either of the spaces SF = [0,∞) × (0,∞] × [−∞,∞]d or SG =
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[0,∞) × (−∞,∞] × [−∞,∞]d, and MP (SF ) and MP (SG) will denote the
spaces of all point measures on SF and SG, respectively. For details on point
processes see Resnick [17].

The following proposition is a consequence of Fasen [9], Theorem 2.5.1
and [10], Theorem 4.1.

Proposition 15 (Point process behavior).
Let V be a stationary supOU process as in (1) and L be the underlying driving
Lévy process (5). Decompose Λ as in (18).

(a) Let L1 ∈ R−α with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aTx) = x−α for x > 0.

Suppose
∑∞

k=1 ε(sk,Pk) is a PRM(ϑ) with

ϑ(dt× dx) = dt× αx−α−1 dx

independent of the i. i. d. sequences (Γk,j)j∈N for k ∈ N with (Γk,j)j∈N
d=

(Γj)j∈N and independent of the i. i. d. sequence (Rk)k∈N with probability
distribution π. Define Γk,0 = 0 for k ∈ N. Then, in the space MP (SF ),

∞∑
k=1

ε(Γk/(λn),a−1
λnMk,a−1

λnV(Γk/λ))

n→∞=⇒
∞∑

k=1

∞∑
j=0

ε
(sk,Pke−RkΓk,j/λ,Pk(e−Rk(Γk,j/λ+t1),...,e−Rk(Γk,j/λ+td)))

.

(b) Let L1 ∈ S(γ)∩MDA(Λ) with norming constants aT > 0 and bT ∈ R such
that

lim
T→∞

TP(L1 > aTx+ bT ) = exp (−x) for x ∈ R.

Suppose
∑∞

k=1 ε(sk,Pk) is a PRM(ϑ) with

ϑ(dt× dx) = dt× [EeγL1 ]−1EeγV0e−x dx

independent of the i. i. d. sequence (Rk)k∈N with probability distribution π.
Then, in the space MP (SG),

∞∑
k=1

ε(Γk/(λn),a−1
λn(Mk−bλn),b−1

λnV(Γk/λ))

n→∞=⇒
∞∑

k=1

ε(sk,Pk,(e−Rkt1 ,...,e−Rktd )).

We give an interpretation of the point process results. In both parts of
Proposition 15 the limit relations of the first two components show that the
local suprema Mk of V around Γk/λ, normalized by the constants determined
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via L1, converge weakly to the same extreme value distribution as L1. The
third vector component indicates that for instance for d = 1 and t1 = 0 that
the second and third component have the same limiting behavior; i. e. the Mk

behave like VΓk/λ. The results show also that local extremes of V on high levels
happen at the jump times Γ/λ of the Lévy process (L(1)

λt )t≥0. Thus, the various
features of L, which are modelled in Λ2, have no influence on the location of
local extremes on high levels. Moreover, the third vector component indicates
that, if the supOU process has an exceedance over a high threshold, then it
decreases after this event exponentially fast with a random rate Rk and the
distribution π of Rk governs the short/long range dependence of the model.

As for OU-type processes there is an essential difference between the mod-
els (a) and (b). In the second component and the third vector component of
the limit point process in (a) all points Γk,j/λ influence the limit, whereas
in (b) only Γk,0 = 0 does. This phenomenon certainly originates in the very
large jumps caused by regular variation of the underlying driving Lévy process.
Even though the behavior of the supOU process between the large jumps has
the tendency to decrease exponentially fast (this comes from the shot-noise
process generated by Λ(1) and may be overlaid by small positive jumps, neg-
ative jumps, a drift and a Gaussian component), huge positive jumps can
have a long lasting influence on excursions above high thresholds. This is in
contrast to the semi-heavy tailed case in (b).

Result (b) can be interpreted that local extremes of models in S(γ) ∩
MDA(Λ) show no extremal clusters. The constant [EeγL1 ]−1EeγV0 in the in-
tensity of the Poisson random measure, which is 1 for γ = 0, reflects that for
γ > 0 the small jumps of L have a certain influence on the size of the local ex-
tremes of V , which is in contrast to subexponential models in (a) and (b) with
γ = 0. Although (VΓk/λ)k∈N is not a stationary sequence VΓk/λ

k→∞=⇒ V0 + Z1

(recall that Z1 has d. f. ν1/ν(1,∞)). Furthermore,

ν(1,∞)P(V0 + Z1 > x) ∼ [EeγL1 ]−1EeγV0P(L1 > x) for x→∞.

Thus (b) implies that the exceedances of (VΓk/λ)k∈N at times (Γk/λ)k∈N be-
have like those of an i. i. d. sequence with distribution V0 + Z1. We have seen
this constant [EeγL1 ]−1EeγV0 already earlier in Proposition 13.

Corollary 16 (Point process of exceedances).
Let V satisfy the assumptions of Proposition 15 and decompose Λ as in (18).

(a) Let L1 ∈ R−α. Suppose (sk)k∈N are the jump times of a Poisson process
with intensity x−α for fixed x > 0. Let (ζk)k∈N be i. i. d. discrete r. v. s,
independent of (sk)k∈N, with probability distribution

qk = P(ζ1 = k) = E exp(−αR0Γk/λ)− E exp(−αR0Γk+1/λ) for k ∈ N.

Then
∞∑

k=1

ε(Γk/(λn),a−1
λnMk)(· × (x,∞)) n→∞=⇒

∞∑
k=1

ζkεsk
in MP ([0,∞)).
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(b) Let L1 ∈ S(γ)∩MDA(Λ). Suppose (sk)k∈N are the jump times of a Poisson
process with intensity [EeγL1 ]−1EeγV0 e−x for fixed x ∈ R. Then

∞∑
k=1

ε(Γk/(λn),a−1
λn(Mk−bλn))(· × (x,∞)) n→∞=⇒

∞∑
k=1

εsk
in MP ([0,∞)).

Again the qualitative difference of the two regimes is visible. For a regularly
varying underlying driving Lévy process L the limiting process is a compound
Poisson process, where at each Poisson point a cluster appears, whose size is
random with distribution (qk)k∈N. In contrast to this, in the MDA(Λ) case,
the limit process is simply a homogeneous Poisson process; no clusters appear
in the limit.

The next proposition follows immediately from Proposition 15.

Proposition 17 (Running maxima). Let V be a stationary supOU process
as in (1) and L the underlying driving Lévy process (2). Define M(T ) =
sup0≤t≤T Vt for T > 0.

(a) Let L1 ∈ R−α with norming constants aT > 0 such that

lim
T→∞

TP(L1 > aTx) = x−α for x > 0.

Then

lim
T→∞

P(a−1
λTM(T ) ≤ x) = exp(−x−α) for x > 0.

(b) Let L1 ∈ S(γ) ∩ MDA(Λ) with norming constants aT > 0 and bT ∈ R,
such that

lim
T→∞

TP(L1 > aTx+ bT ) = exp(−x) for x ∈ R.

Then

lim
T→∞

P(a−1
λT (M(T )− bλT ) ≤ x) = exp(−[EeγL1 ]−1EeγV0e−x) for x ∈ R.

Definition 18 (Extremal index function). Let (Vt)t≥0 be a stationary pro-
cess. Define the sequence Mk(h) = sup(k−1)h≤t≤kh Vt for k ∈ N, h > 0. Let
θ(h) be the extremal index (Definition A.8) of the sequence (Mk(h))k∈N. Then
we call the function θ : (0,∞) → [0, 1] extremal index function.

The idea is to divide the positive real line into blocks of length h. By taking
local suprema of the process over these blocks the natural dependence of
the continuous-time process is weakened, in certain cases it even disappears.
However, for fixed h the extremal index function is a measure for the expected
cluster sizes among these blocks. For an extended discussion on the extremal
index in the context of discrete- and continuous-time processes see Fasen [9],
pp. 83.
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Corollary 19 (Extremal index function). Let V be a stationary supOU
process as in (1) and L the underlying driving Lévy process (2).

(a) If L1 ∈ R−α, then θ(h) = λhα/(λhα+ 1) for h > 0.
(b) If L1 ∈ S(γ) ∩MDA(Λ), then θ(h) = 1 for h > 0.

Regularly varying supOU processes exhibit clusters among blocks, since
θ(h) < 1. So they have the potential to model both features: heavy tails and
high level clusters. This is in contrast to supOU processes in S(γ)∩MDA(Λ),
where no extremal clusters occur.

5 Conclusion

In this paper we have investigated the extremal behavior of supOU processes,
whose underlying driving Lévy process is in the class of convolution equiva-
lent distributions. In contrast to OU-type and COGARCH processes (cf. [14]),
regardless of the driving Lévy process they can model long memory. We have
concentrated on models with tails ranging from exponential to regularly vary-
ing; i. e. tails as they are found in empirical volatility. The stochastic quantities
characterizing the extreme behavior for such models, which we have derived
in this paper, include

• the tail of the stationary distribution of the supOU process V0 and M(h) =
sup0≤t≤h Vt, and the relation to the tail of the distribution governing the
extreme behavior,

• the asymptotic distribution of the running maxima, i. e. their MDA and
the norming constants,

• the cluster behavior of the model on high levels.

We want to indicate that long memory of a supOU process represented by π
has no influence on the existence of extremal clusters, only on the cluster sizes.
SupOU processes in S(γ) ∩MDA(Λ) cannot model clusters on high levels. In
contrast to that, regularly varying supOU processes exhibit extremal clusters,
which can be described quite precisely by the distribution of the cluster sizes,
which depends on π; see Corollary 16. In terms of the tail behavior of V0,
M(h) and the running maxima the results for a supOU process coincide with
the results of an OU-type process. Again they are not affected by the long
memory property.

Appendix

A Basic notation and definition

We summarize some definitions and concepts used throughout the paper. For
details and further references see Embrechts, Klüppelberg and Mikosch [8].

The following is the fundamental theorem in extreme value theory.
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Theorem A.1 (Fisher-Tippett Theorem).
Let (Xn)n∈N be an i. i. d. sequence with d. f. F and denote

Mn = max
k=1,...,n

Xk.

Suppose we can find sequences of real numbers an > 0, bn ∈ R such that

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = lim

n→∞
Fn(anx+ bn) = G(x) for x ∈ R

and some non-degenerate d. f. G (we say F is in the maximum domain of
attraction of G and write F ∈ MDA(G)). Then there are a > 0, b ∈ R such
that x 7→ G(ax+ b) is one of the following three extreme value d. f. s:

• Fréchet: Φα(x) = G(ax+ b) =
{

0, x ≤ 0,
exp (−x−α) , x > 0, for α > 0.

• Gumbel: Λ(x) = G(ax+ b) = exp (−e−x) , x ∈ R .

• Weibull: Ψα(x) = G(ax+ b) =
{

exp (− (−x)α) , x ≤ 0,
1, x > 0, for α > 0 .

Definition A.2. A positive measurable function u : R → R+ is called regu-
larly varying with index α, denoted by u ∈ Rα for α ∈ R, if

lim
t→∞

u(tx)
u(t)

= xα for x > 0 .

The function u is said to be slowly varying if α = 0.

Theorem A.3. Let F be a d. f. with F (x) < 1 for all x ∈ R and f̂(γ) =∫∞
−∞ eγx F (dx).

(i) Let F be infinitely divisible with Lévy measure ν and γ ≥ 0. Then

F ∈ S(γ) ⇐⇒ ν(1, · ]/ν(1,∞) ∈ S(γ).

(ii) Suppose F ∈ S(γ), limx→∞G(x)/F (x) = q ≥ 0 and f̂G(γ) <∞. Then

lim
x→∞

F ∗G(x)
F (x)

= f̂2(γ) + qf̂1(γ)

and F ∗G ∈ S(γ). If q > 0, then also G ∈ S(γ).
(iii) F ∈ L(γ), γ ≥ 0, has the representation

F (x) = c(x) exp
[
−

∫ x

0

1
a(y)

dy

]
for x > 0, (A.1)

where a, c : R+ → R+ and limx→∞ c(x) = c > 0 and a is absolutely
continuous with limx→∞ a(x) = γ−1 and limx→∞ a′(x) = 0.
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The following concept has proved useful in comparing tails.

Definition A.4 (Tail-equivalence).
Two d. f. s F and G (or two measures µ and ν) are called tail-equivalent if
both have support unbounded to the right and there exists some c > 0 such
that

lim
x→∞

F (x)/G(x) = c or lim
x→∞

ν(x,∞)/µ(x,∞) = c .

For two tail-equivalent d. f. s in MDA(G) for some G one can choose the same
norming constants.

Proposition A.5. Let X be a r. v. The following conditions are equivalent:

(a)X is selfdecomposable.
(b) There exists a Lévy process L such that X d=

∫∞
0

e−s dLs.
(c)X is infinitely divisible with absolutely continuous Lévy measure given by

ν(dx) =
k(x)
|x|

dx for x ∈ R\{0},

k(x) ≥ 0, and k(x) is increasing on (−∞, 0) and decreasing on (0,∞).

Remark A.6. The integral in (b) exists if and only if (6) holds. The above
proposition is presented and discussed in Barndorff-Nielsen and Shephard [2],
where also further references can be found. It can also be found e.g. in
Sato [19], Cor. 15.11 and Theorem 17.5.

Definition A.7 (Poisson random measure).
Let (A,A, ϑ) be a measurable space, where ϑ is σ-finite, and (Ω,F ,P) be
a probability space. A Poisson random measure N with intensity measure
ϑ, denoted by PRM(ϑ), is a collection of r. v. s (N(A))A∈A, where N(A) :
(Ω,F ,P) → (N0,B(N0)), with N(∅) = 0, such that:

(a)Given any sequence (An)n∈N of mutually disjoint sets in A:

N
( ⋃

n∈N
An

)
=

∑
n∈N

N(An) a. s.

(b)N(A) is Poisson distributed with intensity ϑ(A) for every A ∈ A.
(c) For mutually disjoint sets A1, . . . , An ∈ A, n ∈ N, the r. v. s N(A1), . . . ,

N(An) are independent.

Definition A.8 (Extremal index).
Let X = (Xn)n∈Z be a strictly stationary sequence and θ ≥ 0. If for every
x > 0 there exists a sequence un(x) with

lim
n→∞

nP(X1 > un(x)) = x and lim
n→∞

P( max
k=1,...,n

Xn ≤ un(x)) = exp(−θx),

then θ is called the extremal index of X and has value in [0, 1].
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Acknowledgement

We thank Ole Barndorff-Nielsen for various remarks on a former version of
the paper, which corrected some errors and improved the presentation. Fi-
nancial support of V.F. by the Deutsche Forschungsgemeinschaft through the
graduate program “Angewandte Algorithmische Mathematik” at the Munich
University of Technology is gratefully acknowledged.

References

1. O. E. Barndorff-Nielsen. Superposition of Ornstein–Uhlenbeck type processes.
Theory Probab. Appl., 45(2):175–194, 2001.

2. O. E. Barndorff-Nielsen and N. Shephard. Modelling by Lévy processes for
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