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Abstract: In this paper, we discuss asymptotics for certain Banach space-
valued Itô functionals of Brownian rough paths based on the results of
Inahama-Kawabi [10] and Inahama [9]. Our main tool is the Banach space-
valued rough path theory of T. Lyons. As examples, we deal with heat pro-
cesses on loop spaces and solutions of the stochastic differential equations
(SDEs) on M-type 2 Banach spaces.

1 Introduction

Let (X,H, µ) be an abstract Wiener space, i.e., X is a real separable Banach
space, H is the Cameron-Martin space and µ is the Wiener measure on X.
Let Y be another real separable Banach space and w := (wt)0≤t≤1 be the X-
valued Brownian motion on a completed probability space (Ω,F ,P) associated
with µ. We denote by L(X,Y ) the space of bounded linear operators from
X to Y . In this paper, we consider a class of Y -valued Wiener functionals
Xε := (Xε

t )0≤t≤1 defined through the following formal Stratonovich type
stochastic differential equation (SDE) on Y :

dXε
t = σ(Xε

t ) ◦ εdwt + b(ε,Xε
t )dt, Xε

0 = 0, (1)

where the coefficients σ and b take values in L(X,Y ) and Y , respectively,
with a suitable regularity condition. Here, we note that the equation (1)
cannot be discussed through the usual theory of SDEs when X and Y are
infinite dimensional Banach spaces, because the diffusion coefficient σ takes
values in L(X,Y ). See Section 3 for the precise formulation of our Wiener
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functionals Xε. The main objective of this paper is to discuss the Freidlin-
Wentzell type large deviation principle for Xε and the asymptotic behavior
of the Laplace type functional integral E

[
exp(−F (Xε)/ε2)

]
as ε ↘ 0, which

is called Laplace’s method. For a class of continuous loop space-valued diffu-
sion processes called heat processes, these asymptotics were studied in earlier
papers Inahama-Kawabi [10] and Inahama [9], respectively. In this paper, we
interpret our Wiener functionals Xε as Itô functionals of Brownian rough
paths, and show that these asymptotics hold for wider classes of (infinite di-
mensional) Banach space-valued Wiener functionals by using the fact that the
rough path theory of T. Lyons works on any Banach space.

To establish the large deviation principle for Xε, due to the lack of the
continuity of the Itô map w 7→ Xε, Schilder’s theorem and the contraction
principle may not be used directly. To overcome this difficulty, Freidlin and
Wentzell developed refined techniques involving the exponential continuity
(see Deuschel-Stroock [7]). On the other hand, recently, Ledoux-Qian-Zhang
[16] gave a new proof for the large deviation principle by using the rough
path theory. The basic idea in [16] is summarized as follows: First, they show
that the laws of Brownian rough paths satisfy the large deviation principle.
Next, they use the contraction principle since the Itô map is continuous in
the framework of the rough path theory. Hence their approach seems straight-
forward and much simpler than conventional proofs. In [10], it is shown that
their approach is also applicable to a class of stochastic processes on infinite
dimensional spaces.

As an application of the large deviation principle, Laplace’s method is
investigated in many research fields of probability theory and mathematical
physics. In finite dimensional settings, Schilder [19] initiated the study in the
case of Xε = εw and Azencott [2] and Ben Arous [3] continued this study
for (1). (For results concerning with more general Wiener functionals, see
Kusuoka-Stroock [13], [14] and Takanobu-Watanabe [20].) In these papers,
the stochastic Taylor expansion for Xε plays an important role. The prob-
lem of [19] is rather easier because each term of the expansion is continuous,
which comes from the fact that Xε is nothing but the scaled Brownian mo-
tion. So, there is no ambiguity in the formulation. However, in general, it is
very complicated to give a precise interpretation on each term of this expan-
sion through conventional stochastic analysis because the Itô map is not a
continuous Wiener functional. On the other hand, Aida [1] proposed a new
approach with the rough path theory for this problem recently. In [1], he ob-
tained the stochastic Taylor expansion with respect to the topology of the
space of geometric rough paths for finite dimensional cases. Since the Itô map
is continuous in the rough path sense, each term of the expansion is continu-
ous. Hence we do not need to face the difficulty mentioned above. Based on
the idea of [1], the first author [9] showed the stochastic Taylor expansion in
an infinite dimensional setting.

The organization of this paper is as follows: In Section 2, we give a simple
review of the rough path theory and review the Cameron-Martin theorem and
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Fernique’s theorem in the framework of Brownian rough paths. In Section 3,
we give a framework and state our results. In Section 4, we give an outline of
the proof of our results based on [10] and [9]. Finally, in Section 5, we give
two examples to which our results are applicable. The first example is a class
of heat processes described above and the second one comes from the SDE
theory on M-type 2 Banach spaces.

2 Preliminaries from the rough path theory

In this section we set notations and review some basic results of the rough
path theory.

First we recall the definition of spaces of geometric rough paths. Let B
be a real separable Banach space. The algebraic tensor product is denoted by
B ⊗a B. We consider a norm | · | on B ⊗a B such that |x ⊗ y| ≤ |x|B · |y|B
holds for all x, y ∈ B. We denote by B ⊗B the completion of B ⊗a B by this
norm. We often suppress the subscripts of Banach norms when there is no
fear of confusion.

Let 2 < p < 3 be the roughness and fix it throughout this paper. A
continuous map x = (1, x1, x2) from the simplex ∆ := {(s, t)| 0 ≤ s ≤ t ≤ 1}
to the truncated tensor algebra T (2)(B) := R ⊕ B ⊕ (B ⊗ B) is said to be a
B-valued rough path of roughness p if it satisfies that, for every s ≤ u ≤ t,

x1(s, t) = x1(s, u) + x1(u, t),
x2(s, t) = x2(s, u) + x2(u, t) + x1(s, u)⊗ x1(u, t)

and

‖xj‖p/j :=
(
sup
D

n∑
l=1

|xj(tl−1, tl)|p/j
)j/p

<∞ for j = 1, 2,

where D = {0 = t0 < t1 < · · · < tn = 1} runs over all finite partition of [0, 1].
For two rough paths x and y, p-variation distance is defined by

dp(x, y) = ‖x1 − y1‖p + ‖x2 − y2‖p/2.

Let P (B) := {x ∈ C([0, 1], B) | x0 = 0}. For x ∈ P (B), we denote
by ‖x‖P (B) := sup0≤t≤1 |xt|B and sometimes write x(t) for xt. Moreover we
often write x1(·) for x1(0, ·) ∈ P (B) for simplicity. We denote by BV(B) :=
{γ ∈ P (B) | ‖γ‖1 < ∞}, where ‖γ‖1 denotes the total variation norm of γ.
For γ ∈ BV(B), we set γ = (1, γ1, γ2) by

γ1(s, t) := γt − γs, γ2(s, t) :=
∫ t

s

(γu − γs)⊗ dγu, 0 ≤ s ≤ t ≤ 1,

where the right-hand side of γ2 is the Riemann-Stieltjes integral. A rough
path obtained in this way is called the smooth rough path lying above γ. A
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rough path obtained as the dp-limit of a sequence of smooth rough paths is
called a geometric rough path and the set of all the geometric rough paths is
denoted by GΩp(B). It is well-known that GΩp(B) is a complete separable
metric space.

We set

H(B) :=
{
y ∈ P (B)

∣∣ yt =
∫ t

0

y′sds with ‖y‖2H(B) :=
∫ 1

0

|y′t|2Bdt <∞
}
.

Clearly, there are natural continuous injections H(B) ↪→ BV(B) ↪→ GΩp(B).
Note that H(B) is dense in GΩp(B) and has a natural Hilbert structure in
the case when B is a Hilbert space.

Next we introduce Brownian rough paths on an abstract Wiener space
(X,H, µ). Let w = (wt)t≥0 be the X-valued Brownian motion introduced in
the previous section. For ε > 0, the law of εw on P (X) is denoted by P′ε. Then
(P (X),H(H),P′1) is also an abstract Wiener space. We write H := H(H) for
simplicity. When | · |X⊗X and µ satisfy the exactness condition (see Definition
1 in Ledoux-Lyons-Qian [15]), the Brownian rough path exists (see Theorem
3 in [15]). Let w = (1, w1, w2) be the Brownian rough path. It is the P-almost
sure limit of the w(m) as m → ∞ in GΩp(X) with respect to dp-topology,
where w(m) is the m-th dyadic polygonal approximation of w. Note that
w1(s, t) = wt−ws for P-almost surely. We denote by Pε, ε > 0, the law of the
scaled Brownian rough path εw = (1, εw1, ε

2w2).
Now we present a theorem of Fernique for Brownian rough paths. We set

ξ(x) := ‖x1‖p + ‖x2‖1/2
p/2. The following theorem is taken from Theorem 2.2 in

[9].

Theorem 2.1 There exists a positive constant β such that

E
[
exp

(
β ξ2

)]
=

∫
GΩp(X)

exp
(
β ξ(w)2

)
P1(dw) <∞.

Finally, we give a theorem for absolute continuity of the laws of shifted
Brownian rough paths. It is similar to the well-known Cameron-Martin the-
orem. For x ∈ GΩp(X) and γ ∈ BV(X), we define the shifted rough path
x+ γ ∈ GΩp(X) by

(x+ γ)1(s, t) = x1(s, t) + γt − γs,

(x+ γ)2(s, t) = x2(s, t) +
∫ t

s

x1(s, u)⊗ dγu

+
∫ t

s

(γu − γs)⊗ x1(s, du) + γ2(s, t).

Here the second and the third terms on the right-hand side are Young in-
tegrals. It is well-known that the map (x, γ) 7→ x±γ is continuous from
GΩp(X) × BV(X) to GΩp(X) (see Theorem 3.3.2 in [17]). The following
theorem is taken from Lemma 2.3 in [9].
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Theorem 2.2 Let ε > 0 and h ∈ H. Then for every bounded measurable
function F on GΩp(X), it holds that∫

GΩp(X)

F (w + h)Pε(dw)

=
∫

GΩp(X)

F (w) exp
( 1
ε2

∫ 1

0

h′(t)dw1(t)−
1

2ε2
‖h‖2H

)
Pε(dw),

where
∫ 1

0
h′(t)dw1(t) is the stochastic integral with respect to the scaled Brow-

nian motion (w1(0, t))0≤t≤1 defined on the probability space (GΩp(X),Pε).
(Hereafter we denote it by [h](w) for simplicity.)

3 Framework and results

In this section, we set notations, introduce our Wiener functionals through
the Itô map in the rough path sense and state our results. Throughout this
paper, we only consider the projective norm on the tensor product of any pair
of Banach spaces, and we always assume the exactness condition for | · |X⊗X

and µ to treat Brownian rough paths.
First, we set notations for coefficients. Let σ ∈ C4

b (Y, L(X,Y )) and b1, b2 ∈
C4

b (Y, Y ). We set X̃ := X ⊕ R2 and define σ̃ ∈ C4
b (Y, L(X̃, Y )) by

σ̃(y)
[
(x, u)

]
X̃

:= σ(y)x+b1(y)u1 +b2(y)u2, y ∈ Y, x ∈ X,u = (u1, u2) ∈ R2.

Next, we consider the following differential equation in the rough path
sense:

dyt = σ̃(yt)dx̃t, y0 = 0. (2)

Then for any x̃ ∈ GΩp(X̃), there exists a unique solution z ∈ GΩp(X̃ ⊕ Y )
in the rough path sense. Note that the natural projection of z onto the first
component is x̃. Projection of z onto the second component is denoted by
y ∈ GΩp(Y ). We write y = Φ(x̃) and call it a (unique) solution of (2). The
map Φ : GΩp(X̃) → GΩp(Y ) is called the Itô map and is locally Lipschitz
continuous in the sense of Theorem 6.2.2 in [17]. If x̃t = (γt, λ

(1)
t , λ

(2)
t ) is a

X̃-valued continuous path of finite variation, the map t 7→ Φ(x̃)1(0, t) is the
solution of

dyt = σ(yt)dγt + b1(yt)dλ
(1)
t + b2(yt)dλ

(2)
t , y0 = 0

in the usual sense and z is the smooth rough path lying above
(
x̃, Φ(x̃)1(0, ·)

)
.

For λ = (λ(1), λ(2)) ∈ BV(R2) and x ∈ GΩp(X), we set ι(x, λ) ∈ GΩp(X̃)
by ι(x, λ)1(s, t) =

(
x1(s, t), λt − λs

)
and

ι(x, λ)2(s, t) =
(
x2(s, t),

∫ t

s

x1(s, u)⊗ dλu,∫ t

s

(λu − λs)⊗ x1(s, du),
∫ t

s

(λu − λs)⊗ dλu

)
.
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Here the second and the third component are Young integrals. If h is a smooth
rough path lying above h ∈ BV(X), then ι(h, λ) is a smooth rough path lying
above (h, λ) ∈ BV(X̃). Note that the map ι : GΩp(X)× BV(R2) → GΩp(X̃)
is continuous. Here we also regard the Itô map defined above as a map from
H(X) to H(Y ). We define Ψε : H(X) → H(Y ) by Ψε(h)t := Φ

(
ι(h, λε)

)
1
(0, t)

for 0 ≤ t ≤ 1. That is, y := Ψε(h) is the unique solution of

dyt = σ(yt)dht + b1(yt)ε2dt+ b2(yt)dt, y0 = 0. (3)

For the X-valued Brownian motion w, let w be the Brownian rough path
over X. For ε ≥ 0, we define a Wiener functional Xε ∈ P (Y ) by

Xε
t := Φ

(
ι(εw, λε)

)
1
(0, t), 0 ≤ t ≤ 1.

We investigate the asymptotic behavior of the law of Xε as ε ↘ 0. First, we
state a large deviation principle which is essentially shown in Theorem 4.9 of
Inahama-Kawabi [10].

Theorem 3.1 For ε > 0, we denote by Vε the law of the process Xε. Then,
{Vε}ε>0 satisfies a large deviation principle as ε↘ 0 with the good rate func-
tion I, where

I(φ) =

{
1
2 inf

{
‖γ‖2H| φ = Ψ0(γ)

}
, if φ = Ψ0(γ) for some γ ∈ H,

∞, otherwise.

More precisely, for any measurable set K ⊂ P (Y ), it holds that

− inf
φ∈K◦

I(φ) ≤ lim inf
ε↘0

ε2 logVε(K) ≤ lim sup
ε↘0

ε2 logVε(K) ≤ − inf
φ∈K

I(φ).

As a consequence of Theorem 3.1, we have the following asymptotics for
every bounded continuous function F on P (Y ):

lim
ε↘0

ε2log E
[
exp

(
− F (Xε)/ε2

)]
= −inf

{
F (φ) + I(φ) | φ ∈ P (Y )

}
.

This is Varadhan’s integral lemma. See [7] for example. Our next concern is
to investigate the exact asymptotics of the integral on the left-hand side of
above quality, i.e., to find the asymptotics behavior of E

[
exp

(
−F (Xε)/ε2

)]
as ε↘ 0.

In this paper, we impose the following assumptions on the function F . In
what follows, we especially denote by D the Fréchet derivatives on H(X) and
P (Y ).

(F1): F is a real-valued bounded continuous function defined on P (Y ).

(F2): The function F ◦ Ψ0 + ‖ · ‖2H/2 defined on H attains its minimum 0 at
a unique point γ0 ∈ H. For this γ0, we write φ0 := Ψ0(γ0).

(F3): F is three times Fréchet differentiable on a neighborhood B(φ0) of φ0,
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and DiF, i = 1, 2, 3, are bounded on B(φ0) ⊂ P (Y ).

(F4): We consider the Hessian A := D2(F ◦Ψ0)(γ0)|H×H at the point γ0 ∈ H.
As a bounded self-adjoint operator on H, the operator A is strictly larger than
−IdH in the form sense. (By the min-max principle, it is equivalent to assume
that all eigenvalues of A are strictly larger than −1.)

Now we are in a position to state our main result which is essentially due
to Inahama [9]. The explicit value of α0 will be given later (Theorem 4.9)
since we need to introduce a few more notations which we cannot introduce
briefly.

Theorem 3.2 Let Xε be as above and assume (F1), (F2), (F3) and (F4).
Then there exists a positive constant α0 such that

lim
ε↘0

E
[
exp

(
− F (Xε)/ε2

)]
= α0.

Remark 3.3 As a continuation of this paper, we have already established the
following asymptotic expansion formula:

E
[
exp

(
− F (Xε)/ε2

)]
= α0 + α1ε+ · · ·+ αnε

n +O(εn+1), n ∈ N. (4)

The reader is referred to Inahama-Kawabi [11] for details.

4 Proof of results

In this section, we show Theorems 3.1 and 3.2. Since the Itô map Φ :
GΩp(X̃) → GΩp(Y ) is continuous, Theorem 3.1 is easily obtained by combin-
ing the contraction principle with the following Schilder type large deviations
for the scaled Brownian rough path εw. The following result is taken from
Theorem 3.2 in [10].

Theorem 4.1 For ε > 0, we denote by Pε the law of the scaled Brownian
rough path εw on GΩp(X). Then, {Pε}ε>0 satisfies a large deviation principle
as ε↘ 0 with the good rate function I0, where

I0(x) =

{
1
2‖h‖

2
H, if x = h for some h ∈ H,

∞, otherwise.

More precisely, for any measurable set K ⊂ GΩp(X), it holds that

− inf
x∈K◦

I0(x) ≤ lim inf
ε↘0

ε2 log Pε(K)

≤ lim sup
ε↘0

ε2 log Pε(K) ≤ − inf
x∈K

I0(x).

In the sequel, we give an outline of the proof of Theorem 3.2 based on the
arguments in [9]. We divide into several subsections.
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4.1 Stochastic Taylor expansion in the sense of rough paths

In this subsection, we introduce the stochastic Taylor expansion for the dif-
ferential equation (3) in the sense of rough paths. We remark that it is deter-
ministic in this case. Hence the term “stochastic Taylor expansion ” may not
be appropriate anymore. In the sequel, we denote by ∇ the Fréchet derivative
on Y .

Let γ ∈ H(X) and φ := Ψ0(γ). For each h ∈ H(X), we define χt = χ(h)t

and ψt = ψ(h, h)t by

dχt − (∇σ)(φt)[χt, dγt]− (∇b2)(φt)[χt]dt = σ(φt)dht, χ0 = 0, (5)

and

dψt − (∇σ)(φt)[ψt, dγt]− (∇b2)(φt)[ψt]dt
= 2(∇σ)(φt)[χt, dht] + (∇2σ)(φt)[χt, χt, dγt] + (∇2b2)(φt)[χt, χt]dt, ψ0 = 0,

(6)

where ∇iσ : Y → Li(Y, . . . , Y ;L(X,Y )), ∇ib2 : Y → Li(Y, . . . , Y ;Y ) for
i = 1, 2. Here Li(B1, . . . , Bi;Bi+1) denotes the space of bounded multi-linear
maps from the product of Banach spaces B1×· · ·×Bi to another Banach space
Bi+1. All Fréchet derivatives on (5) and (6) exist and bounded. We should note
that χ = DΨ0(γ)[h] and ψ = D2Ψ0(γ)[h, h] hold, where Ψ0 : H(X) → H(Y )
is defined in Section 3.

At the beginning, we give a simple lemma to deal with differential equa-
tions such as (5) and (6). See Lemma 3.1 in [9] for details.

Lemma 4.2 Fix γ ∈ H(X) and φ = Ψ0(γ). Let M : [0, 1] → L(Y, Y ) be the
solution of the differential equation

dMt = dΩtMt, M0 = IdY ,

where

dΩt := (∇σ)(φt)[ · , dγt] + (∇b2)(φt)[ · ]dt ∈ L(Y, Y ), t ≥ 0.

Then Mt is invertible for all t ≥ 0.
Moreover, for each k ∈ H(Y ), we define Γ (k) = Γγ(k) ∈ H(Y ) by

Γ (k)t := Mt

∫ t

0

M−1
s dks, t ≥ 0.

Then Γ (k) is the unique solution of the differential equation

dΓ (k)t − dΩtΓ (k)t = dkt, Γ (k)0 = 0,

and the operator Γ : H(Y ) → H(Y ) can be extended to a bounded linear
operator from P (Y ) to P (Y ).
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By using Lemma 4.2, we have the following expressions for the solutions of
the equations (5) and (6):

χ(h)t = Γ
( ∫ ·

0

σ(φs)dhs

)
t
, ψ(h, h)t = Γ

( ∫ ·

0

dCh,h(s)
)

t
, (7)

where

dCh,ĥ(s) = (∇σ)(φs)[χ(h)s, dĥs] + (∇σ)(φs)[χ(ĥ)s, dhs]

+(∇2σ)(φs)[χ(h)s, χ(ĥ)s, dγs]

+(∇2b2)(φs)[χ(h)s, χ(ĥ)s]ds for h, ĥ ∈ H(X). (8)

Next we give estimates of sup0≤t≤1 |χ(h)|Y and sup0≤t≤1 |ψ(h, h)t|Y in
terms of the function ξ. See Lemmas 5.1 and 5.3 in [9] for the proof.

Lemma 4.3 Let χt = χ(h)t and ψt = ψ(h, h)t. Let r0, r1 be any positive
constants. Then, there exists a positive constant c = c(r0, r1) such that

sup
0≤t≤1

|χ(h)t|Y ≤ c ξ(h),

sup
0≤t≤1

|ψ(h, h)t|Y ≤ c ξ(h)2

hold for all h ∈ H(X) with ξ(h) ≤ r0 and for all γ ∈ H(X) with ‖γ‖H(X) ≤ r1.
Moreover the maps h ∈ H(X) 7→ χ(h) and h ∈ H(X) 7→ ψ(h, h) can be
extended to continuous maps from GΩp(X) to P (Y ).

By the above lemma, we can define χ(w) and ψ(w,w) by the continuous
extensions of χ(h) and ψ(h, h), respectively. From now, we aim to give an ex-
plicit representation of ψ(w,w). We set some notations. For K ∈ L2(X,X;Y ),
we define the trace of K by

Tr(K) :=
∫

X

K[x, x]µ(dx).

By virtue of Fernique’s theorem (Theorem 3.1 in Kuo [12]), it holds that

|Tr(K)|Y ≤ ‖K‖L2(X,X;Y ) ·
∫

X

|x|2Xµ(dw) <∞.

This means that Tr : L2(X,X;Y ) → Y is a bounded linear map. By recalling
Itô-Nisio’s theorem, we have

lim
n→∞

∣∣Tr(K)−
n∑

i=1

K[ei, ei]
∣∣
Y

= 0,

where {ei}∞i=1 ⊂ X∗ is a C.O.N.S. of H. We denote Q2(φs) ∈ L(X,X;Y ),
0 ≤ s ≤ 1, by
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Q2(φs)
[
x1, x2

]
:=

1
2
(∇σ)(φs)

[
σ(φs)x1, x2

]
Y×X

, x1, x2 ∈ X.

For α ∈ Y ∗, 0 ≤ t ≤ 1 and (u, s) ∈ ∆t := {(u, s)| 0 ≤ u ≤ s ≤ t}, we
define a continuous map K(α)t(u, s) : ∆t → L2(X,X; R) by

K(α)t(u, s)[x1, x2]X×X

:= α
(
MtM

−1
s (∇σ)(φs)

[
MsM

−1
u σ(φu)x1, x2

]
Y×X

)
, x1, x2 ∈ X.

Then we have

Lemma 4.4 Let ψ = ψ(w,w) be the continuous extension of ψ = ψ(h, h) as
in Lemma 4.3. Then for any α ∈ Y ∗ and t ∈ [0, 1],

α(ψ(w,w)t)

= 2
∫ t

0

∫ s

0

K(α)t(u, s)[dw1(u), dw1(s)] + 2α
(
Γ

( ∫ ·

0

Tr(Q2)(φs)ds
)
t

)
+α

(
Γ

( ∫ ·

0

(∇2σ)(φs)[χ(w)s, χ(w)s, dγs] + (∇2b2)(φs)[χ(w)s, χ(w)s]ds
)
t

)
holds P1-almost surely w, where the first term on the right-hand side is a usual
stochastic iterated integral with respect to the Brownian motion (w1(0, t))0≤t≤1

on the probability space (GΩp(X),P1).

Proof. By (7) and (8), we have the following expression for every h ∈ H(X):

ψ(h, h)t

= 2Γ
( ∫ ·

0

(∇σ)(φs)[χ(h)s, dhs]
)

t

+Γ
( ∫ ·

0

(∇2σ)(φs)[χ(h)s, χ(h)s, dγs] + (∇2b2)(φs)[χ(h)s, χ(h)s]ds
)

t

= 2
∫ t

0

∫ s

0

MtM
−1
s (∇σ)(φs)

[
MsM

−1
u σ(φu)dhu, dhs

]
Y×X

+Γ
( ∫ ·

0

(∇2σ)(φs)[χ(h)s, χ(h)s, dγs] + (∇2b2)(φs)[χ(h)s, χ(h)s]ds
)

t
.

(9)

Then for α ∈ Y ∗, (9) leads us that

α
(
ψ(w(m), w(m))t

)
= 2

∫ t

0

∫ s

0

K(α)t(u, s)
[
dw(m)(u), dw(m)(s)

]
+α

(
Γ

( ∫ ·

0

(∇2σ)(φs)
[
χ(w(m))s, χ(w(m))s, dγs

]
+(∇2b2)(φs)

[
χ(w(m))s, χ(w(m))s

]
ds

)
t

)
. (10)
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Here we have the convergence

lim
m→∞

E
[ ∣∣∣ ∫ t

0

∫ s

0

K(α)t(u, s)
[
dw(m)(u), dw(m)(s)

]
−

{∫ t

0

∫ s

0

K(α)t(u, s)[dwu, dws] +
1
2

∫ t

0

Tr
(
K(α)t(s, s)

)
ds

}∣∣∣ ]
= 0,

(11)

and the equality∫ t

0

Tr
(
K(α)t(s, s)

)
ds

= α
(
Mt

∫ t

0

M−1
s Tr(Q2)(φs)ds

)
= α

(
Γ

( ∫ ·

0

Tr(Q2)(φs)ds
)
t

)
. (12)

Hence by letting m → ∞ on both sides of (10) and by recalling Lemma
4.3, (11) and (12), we obtain the desired assertion.

Now we are in a position to give the stochastic Taylor expansion up to the
order 2. For fixed γ ∈ H(Y ), we recall that φ ∈ H(X) is defined by φ = Ψ0(γ).
For 0 < ε ≤ 1 and h ∈ H(X), Ri

ε = Ri
ε(h), i = 1, 2, 3, are defined as follows:

R1
ε(t) := Ψε(h+ γ)t − φt,

R2
ε(t) := Ψε(h+ γ)t − φt − χ(h)t,

R3
ε(t) := Ψε(h+ γ)t − φt − χ(h)t −

1
2
ψ(h, h)t − ε2Γ

( ∫ ·

0

b1(φs)ds
)

t
.

Then we have the following estimates for the remainder terms of the stochastic
Taylor expansion. See Lemma 6.1 in [9] for details.

Lemma 4.5 For 0 < ε ≤ 1, let R1
ε(t), R

2
ε(t) and R3

ε(t) be as above. Let r0 and
r1 be any positive constants. Then, there exists a positive constant c = c(r0, r1)
such that

sup
0≤t≤1

|Ri
ε(t)|Y ≤ c

(
ξ(h) + ε

)i
, i = 1, 2, 3,

hold for all h ∈ H(X) with ξ(h) ≤ r0 and γ ∈ H(X) with ‖γ‖H(X) ≤ r1.
Moreover, for each fixed ε and γ the map h ∈ H(X) 7→ Ri

ε = Ri
ε(h) ∈

H(Y ), i = 1, 2, 3, can be extended to continuous maps from GΩp(X) to P (Y ).

4.2 Computation of the Hessian

In this subsection, we present some fundamental properties on the Hessian A
defined in Section 2. First, we give an explicit representation of A. We recall
the equations (5), (6) and use Lemma 4.2. Then, for h, ĥ ∈ H, we obtain
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Ah, ĥ

)
H

= DF (φ0)
[
D2Ψ0(γ0)[h, ĥ]

]
+D2F (φ0)

[
DΨ0(γ0)[h], DΨ0(γ0)[ĥ]

]
= DF (φ0)

[
M·

∫ ·

0

M−1
s dCh,ĥ(s)

]
+D2F (φ0)

[
χ(h), χ(ĥ)

]
. (13)

Here we set

V (h, ĥ)t := Mt

∫ t

0

M−1
s

{
(∇σ)

(
φ0(s)

)[
χ(h)s, dĥs

]
+(∇σ)

(
φ0(s)

)[
χ(ĥ)s, dhs

]}
, t ≥ 0, (14)

and define a bounded self-adjoint operator Ã on H by

(Ãh, ĥ)H := DF (φ0)[V (h, ĥ)] for h, ĥ ∈ H. (15)

Then by (13), (14) and (15), we obtain(
(A− Ã)h, ĥ

)
H

= DF (φ0)
[
Γ

( ∫ ·

0

(∇2σ)
(
φ0(s)

)
[χ(h)s, χ(ĥ)s, dγ0(s)]

+(∇2b2)
(
φ0(s)

)
[χ(h)s, χ(ĥ)s]ds

)]
+D2F (φ0)

[
χ(h), χ(ĥ)

]
and it implies that∣∣((A− Ã)h, ĥ

)
H

∣∣ ≤ c‖χ(h)‖P (Y ) · ‖χ(ĥ)‖P (Y ) ≤ c‖h‖P (X) · ‖ĥ‖P (X)

holds for some constant c > 0. Then by applying Theorem 4.6 in [12] to an
abstract Wiener space (P (X),H,P′1), we can see that A − Ã is a trace class
operator on H.

Moreover, we have the following properties on the operators A and Ã:

Lemma 4.6 (1) A and Ã are self-adjoint Hilbert-Schmidt operators on H.
(2) The continuous extension of the quadratic form defined by A − Ã is rep-
resented as

〈(A− Ã)w,w〉 = D2F (φ0)
[
χ(w), χ(w)

]
+DF (φ0)

[
Γ

( ∫ ·

0

(∇2σ)
(
φ0(s)

)
[χ(w)s, χ(w)s, dγ0(s)]

+(∇2b2)
(
φ0(s)

)
[χ(w)s, χ(w)s]ds

)]
.

Proof. Firstly, we note that the unitary isometryH ∼= L2([0, 1],R)⊗H, where
⊗ denotes the Hilbert-Schmidt tensor product. Let {v′j}∞j=0 be a C.O.N.S.
of L2([0, 1],R) defined by v′0(t) = 1, v′2j−1(t) =

√
2 sin(2πjt) and v′2j(t) =√

2 cos(2πjt) for j ∈ N. Secondly, let {el}∞l=1 be a C.O.N.S. of H such that
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l=1 |el|2X <∞. (See Theorem 3.5.10 in Bogachev [4].) Then {vj ⊗ el}∞j,l=1 is

a C.O.N.S. of H. Hence by noting
∑∞

l=1 |el|2X <∞ and following the proof of
Lemma 7.2 and Corollary 7.5 in [9], we can show the items (1) and (2).

Next, we consider the stochastic integration of the kernel associated with
Ã. Recall any self-adjoint Hilbert-Schmidt operator S on H corresponds to a
kernel functionKS ∈ L2([0, 1]×[0, 1],H⊗H) withKS(u, s) = KS(s, u)∗ for al-
most all (u, s) since H ∼= L2([0, 1],H) ∼= L2([0, 1],R)⊗H. The correspondence
S 7→ KS is isometric. Then for the X-valued Brownian motion w = (wt)0≤t≤1,
an iterated stochastic integral K̂S(w) := 2

∫ 1

0

∫ s

0
KS(u, s)[dwu, dws] is well-

defined. Clearly, this random variable is in L2(P′1) with expectation 0. The
correspondence S 7→ K̂S ∈ L2(P′1) is isometric. The following lemma is essen-
tially shown in Corollary 7.3 and Lemma 7.4 in [9].

Lemma 4.7 (1) For each α ∈ P (Y )∗, α ◦ V is a Hilbert-Schmidt symmetric
bilinear form on H. (We also denote by α ◦V the self-adjoint Hilbert-Schmidt
operator on H associated with this bilinear form.)
(2) For any α ∈ P (Y )∗, it holds that

α(Θ(w)) = K̂α◦V (w1), P1-almost surely,

where

Θ(w) := ψ(w,w)− Γ
( ∫ ·

0

Tr(Q2)
(
φ0(s)

)
ds

)
−Γ

( ∫ ·

0

(∇2σ)
(
φ0(s)

)
[χ(w)s, χ(w)s, dγ0(s)]

+(∇2b2)
(
φ0(s)

)
[χ(w)s, χ(w)s]ds

)
.

In particular, DF (φ)[Θ(w)] = K̂Ã(w1) holds P1-almost surely.

Before closing this subsection, we present an integral formula to compute
the quantity α0. See the proof of Lemma 8.3 in [9] for details.

Lemma 4.8 It holds that∫
GΩp(X)

exp
{
− 1

2

(
K̂Ã(w1)− 〈(A− Ã)w,w〉

)}
P1(dw)

= e−
1
2Tr(A−Ã) · det2(IdH +A)−1/2,

where det2 denotes the Carleman-Fredholm determinant.

4.3 Outline of the proof of Theorem 3.2

In this subsection, we explain about the outline of the proof of Theorem 3.2
briefly. Besides we give the explicit value of α0. For details, the reader is
referred to Section 8 in [9].



14 Yuzuru Inahama and Hiroshi Kawabi

We proceed with the following steps. First, we denote a neighborhood of
γ0 and its exterior in GΩp(X) by U(γ0) and U(γ0)c, respectively. We divide
our functional integral into

E
[
exp(−F (Xε)/ε2)

]
=

∫
U(γ0)

+
∫

U(γ0)c

exp
{
− 1
ε2
F

(
Φ(ι(w, λε))1

)}
Pε(dw) =: I1(ε) + I2(ε).

For the integral I2(ε), we can neglect as ε↘ 0 by the large deviation principle
for Brownian rough paths (Theorem 4.1). For the integral I1(ε), we regard
Φ(ι(w, λε))1 as the perturbation of a quadratic function on U(γ0).

Next, we put φ = φ0, γ = γ0 and consider

g1
ε(h) := χ(h), (16)

g2
ε(h) := ψ(h, h) + 2ε2Γ

( ∫ ·

0

b1
(
φ0(s)

)
ds

)
, (17)

R3
ε(h− γ0) := Ψε(h)− φ0 − g1

ε(h− γ0)−
1
2
g2

ε(h− γ0) (18)

for ε > 0 and h ∈ H(X). Note that w ∈ GΩp(X) 7→ Φ
(
ι(w, λε)

)
1
∈ P (Y ) is

the continuous extension of h ∈ H(X) 7→ Ψε(h) ∈ H(Y ). By recalling Lemmas
4.3 and 4.5, all functions on (18) can be extended to continuous functions on
GΩp(X), which will be denoted by the same symbols. (For example, we write
g1

ε(w − γ0), etc.)
Then by combining the Taylor expansion for F and (18), we obtain that

F (Φ(ι(w, λε))1)− F (φ0)
= DF (φ0)

[
g1

ε(w − γ0)
]

+
1
2
DF (φ0)

[
g2

ε(w − γ0)
]
+

1
2
D2F (φ0)

[
g1

ε(w − γ0), g1
ε(w − γ0)

]
+R3

ε(F )(w − γ0), (19)

where R3
ε(F )(w − γ0) is the remainder term and all the functions above are

continuous on GΩp(X).
On the other hand, by Assumption (F2), the function h ∈ H 7→ F (Ψ0(h))+

‖h‖2H/2 attains minimum 0 at γ0 ∈ H. Hence for any h ∈ H,

0 =
(
γ0, h

)
H +DF (φ0)[χ(h)]

holds. As the continuous extension of the above equality, it holds that

DF (φ0)[g1
ε(w − γ0)] = ‖γ0‖2H − [γ0](w), Pε-almost surely. (20)

Then by combining (19) with (20), and by using Lemmas 2.2, 4.6, 4.7, 4.8,
we obtain



On asymptotics of Itô functionals of Brownian rough paths 15

lim
ε↘0

I1(ε)

=
∫

GΩp(X)

exp
{
− 1

2

(
DF (φ0)

[
g2
1(w)

]
+D2F (φ0)

[
g1
1(w), g1

1(w)
])}

P1(dw)

= exp
{
− 1

2
Tr(A− Ã)−DF (φ0)

[
Γ

( ∫ ·

0

b1(φ0(s)) + Tr(Q2)(φ0(s))ds
)]}

×det2(IdH +A)−1/2. (21)

Finally, by summarizing the above arguments, we can present the following
theorem:

Theorem 4.9 Let α0 be denoted in Theorem 3.2. Then we have

α0 = exp
{
− 1

2
Tr(A− Ã)−DF (φ0)

[
Γ

( ∫ ·

0

b1(φ0(s)) + Tr(Q2)(φ0(s))ds
)]}

×det2(IdH +A)−1/2.

5 Examples

5.1 Heat processes on loop spaces

In this subsection, we consider a class of stochastic processes on continuous
loop spaces and show that the theory of rough paths is applicable to them.
The processes are usually called heat processes on loop spaces and are de-
fined by a collection of finite-dimensional SDEs. Processes of this kind were
first introduced by Malliavin [18] in the case of loop groups and then were
generalized by many authors.

Let s > 1/2 and L0(Rd) := {x ∈ C([0, 1],Rd)| x(0) = x(1) = 0}. For
h ∈ L0(Rd) of the form

h(τ) =
∑
n 6=0

ĥ(n)(e2π
√
−1nτ − 1),

we set
‖h‖2Hs

0 (Rd) :=
∑
n 6=0

|2πn|2s|ĥ(n)|2

and Hs
0(Rd) := {h ∈ L0(Rd) | ‖h‖Hs

0 (Rd) < ∞}. It is well-known that Hs
0(Rd)

is a Hilbert space embedded in L0(Rd) and that there exists a Gaussian
measure µs such that the triplet (L0(Rd),Hs

0(Rd), µs) becomes an abstract
Wiener space. When s = 1, µ1 is the usual d-dimensional pinned Wiener
measure and is of particular importance. For τ ∈ [0, 1] and j = 1, 2, . . . , d,
we denote by δj

τ the element in L0(Rd)∗ defined by 〈δj
τ , x〉 = xj(τ) and set

x(τ) := (x1(τ), . . . , xd(τ)). Let (wt)t≥0 be a L0(Rd)-valued Brownian motion
associated with µs. We set wj

t (τ) := 〈δj
τ , wt〉 and wt(τ) := (w1

t (τ), . . . , wd
t (τ)).
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Now we give heat processes in a slightly generalized form. Let

Aj(x) =
r∑

i=1

aij(x)
∂

∂xi
, A0(x) =

r∑
i=1

bi(x)
∂

∂xi
, V0(x) =

r∑
i=1

βi(x)
∂

∂xi

be vector fields on Rr, j = 1, . . . , d. We assume the following regularities on
the coefficients:

aij , bi, βi ∈ C4
b (Rr,R) for 1 ≤ i ≤ r, 1 ≤ j ≤ d. (22)

We write a for the r × d-matrix {aij}1≤i≤r,1≤j≤d and write b and β for the
column vectors (b1, . . . , br)T and (β1, . . . , βr)T, respectively.

For each fixed space parameter τ ∈ [0, 1] and ε > 0, we consider the
following (finite dimensional) SDE:

dtX
ε
t (τ) =

r∑
j=1

Aj(Xε
t (τ)) ◦ εdtw

j
t (τ) +A0(Xε

t (τ))ε2dt+ V0(Xε
t (τ))dt

= a(Xε
t (τ)) ◦ εdtwt(τ) + b(Xε

t (τ))ε2dt+ β(Xε
t (τ))dt. (23)

with the initial data Xε
0(τ) = 0. We will often write Xε(t, τ) := Xε

t (τ). In
Proposition 5.1 below, we will prove that Xε(t, τ) has a bi-continuous modi-
fication. We call Xε = (Xε(t, ·))0≤t≤1 the heat process. Xε can be regarded
as a random variable in P (L0(Rd)).

Next we recall that (L0(Rd), µs) satisfies the exactness condition for all
tensor norms (including the projective tensor norm) on L0(Rd) ⊗ L0(Rd).
(See Lemma 4.1 in [10] for the proof.) Therefore the Brownian rough path
w ∈ GΩp(L0(Rd)) defined by (wt)t≥0 exists and we can deal with our heat
process Xε defined by (23) from the viewpoint of rough paths.

We define a Nemytski map σ̃ : L0(Rr) → L
(
L0(Rd)⊕ R2,L0(Rr)

)
by

σ̃(y)[(x, u1, u2)](τ) := a
(
y(τ)

)
x(τ)+b

(
y(τ)

)
u1+β

(
y(τ)

)
u2, τ ∈ [0, 1]. (24)

for (x, u1, u2) ∈ L0(Rd)⊕ R2 and y ∈ L0(Rr). Note that the assumption (22)
implies σ̃ ∈ C4

b

(
L0(Rr), L

(
L0(Rd)⊕R2,L0(Rr)

))
. Then we can consider a ran-

dom element Φ(ι(εw, λε)) in GΩp(L0(Rr)) through the differential equation
in the rough path sense (2). The following proposition is taken from Lemma
4.8 in [10]. By this proposition, we can obtain a dynamics on L0(Rr) In the
proof, the Wong-Zakai approximation theorem plays a crucial role.

Proposition 5.1 For each ε > 0, (t, τ) 7→ Φ(ι(εw, λε))1(0, t)(τ) is a bi-
continuous modification of the two-parameter process (Xε(t, τ))0≤t≤1,0≤τ≤1

defined in (23).

Remark 5.2 In [18], Kolmogorov’s criterion is used for the proof of the ex-
istence of continuous modifications. Hence Proposition 5.1 is regarded as a
revisit via the rough path theory. In this paper we assume that the starting
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loop is the constant loop at 0 for simplicity. However it is easy to modify
the proof for general starting elements in L0(Rr) since the initial conditions
may be arbitrary in the rough path theory. In other words, we do not need a
Hölder-like condition on the starting loops.

We define the heat kernel measure νt to be the law of X1(t, ·) in the case
of V0 = 0. This measure νt is supported in L0(Rr). As a consequence of
Theorem 3.1, we easily have a large deviation principle for νt by noting that
(Xε(t, · ))t≥0 and (X1(ε2t, · ))t≥0 have the same law under V0 = 0. See the
second item of Theorem 4.9 in [10] for details.

Theorem 5.3 Let V0 = 0. Then the heat kernel measure νt satisfies a large
deviation principle as t↘ 0 with the good rate function Ĩ, where

Ĩ(y) =


1
2 inf

{
‖γ‖2H(Hs

0 (Rd)) | y = Ψ0(γ)1
}
,

if y = Ψ0(γ)1 for some γ ∈ H(Hs
0(Rd)),

∞, otherwise.

More precisely, for any measurable set K ⊂ L0(Rr), it holds that

− inf
y∈K◦

Ĩ(y) ≤ lim inf
t↘0

t log νt(K) ≤ lim sup
t↘0

t log νt(K) ≤ − inf
y∈K

Ĩ(y).

Remark 5.4 Fang-Zhang [8] showed the large deviation principle for for heat
processes and heat kernel measures on loop groups. Our Theorems 3.1 and 5.3
are regarded as generalizations of their results.

5.2 SDEs on M-type 2 Banach spaces

The theory of SDEs in infinite dimensional Hilbert spaces has been developed
and is well understood. However, for general separable Banach spaces, there
exist difficulties in defining a meaningful Itô’s integral. Recently, Brzeźniak
and Elworthy developed a theory of SDEs for a certain class of Banach spaces
called M-type 2 Banach spaces. In this subsection, we consider SDEs on M-
type 2 Banach spaces. For detailed explanations and further references, we
refer the reader to see Brzeźniak-Carroll [5] and Brzeźniak-Elworthy [6].

Let (X,H, µ) be an abstract Wiener space and w = (wt)t≥0 be the X-
valued Brownian motion. We assume that (X,µ) satisfies the exactness con-
dition for the project tensor norm on X ⊗ X. Let Y be a M-type 2 Ba-
nach space (see Definition 2.1 in [6] for the definition). For a progressively
measurable process ξ = (ξt)0≤t≤1 which takes values in L(X,Y ) and satis-
fies E

[ ∫ 1

0
|ξs|pL(X,Y )ds

]
< ∞, p > 1, we can define the stochastic integral

I(t) :=
∫ t

0
ξsdws, 0 ≤ t ≤ 1, as a continuous Y -valued martingale. Moreover

there exists a constant cp, independent of ξ, such that

E
[

sup
0≤t≤1

∣∣ ∫ t

0

ξsdws

∣∣p
Y

]
≤ cp

( ∫ 1

0

E
[
|ξs|2L(X,Y )

]
ds

)p/2

.
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See Theorem 2.9 and Remark 2.11 in [6] for details.
Let σ ∈ C4

b (X,L(X,Y )) and b1, b2 ∈ C4
b (Y, Y ). We consider the following

Stratonovich type SDE on Y :

dXε
t = σ(Xε

t ) ◦ εdwt + b1(Xε
t )ε2dt+ b2(Xε

t )dt, Xε
t = 0. (25)

Here we call (Xε
t )0≤t≤1 is a solution to (25) if and only if it satisfies for each

0 ≤ t ≤ 1,

Xε
t =

∫ t

0

σ(Xε
s )εdws +

∫ t

0

Tr(Q2)(Xε
s )ε2ds

+
∫ t

0

b1(Xε
s )ε2ds+

∫ t

0

b2(Xε
s )ds, a.s..

Under our conditions for the coefficients, there exists a unique solution
(Xε

t )0≤t≤1 to the SDE (25). See Theorem 2.26 in [6] and Theorem 2 in [5]
for the detail. Moreover they have already established the Wong-Zakai ap-
proximation theorem (Theorem 3 in [5]) for the SDE (25). Then by the same
argument as in the previous subsection, we can obtain

Proposition 5.5 For each ε > 0, t 7→ Φ(ι(εw, λε))1(0, t) is almost surely
equal to (Xε

t )0≤t≤1 defined in (25).

Remark 5.6 Here we explain why we do not consider heat processes in
the previous subsection on the Sobolev-Slobodetski space W θ,p(S1). Note that
W θ,p(S1) is an M-type 2 Banach space and is continuously embedded in the
space of continuous loops if p > 1 and 1/p < θ < 1. (See Section 5 of [6] for
details.) In Section 6 of [6] and Section 4 of [5], it is proved that (Xε

t )t≥0 de-
fined by the SDE (23) can be considered as the solution of a W θ,p(S1)-valued
SDE (25) if p > 2 and 1/p < θ < 1/2 (at least for the case s = 1).

For general s > 1/2, under a suitable condition on p and θ, we see by
straightforward computation that the Gaussian measure µs is supported on
W θ,p(S1) and see from inequality (6.8) in page 575 of [15] that W θ,p(S1) ⊗
W θ,p(S1) is exact with respect to µs.

Hence, one may wonder why we do not work on the Sobolev-Slobodetski
space W θ,p(S1). The main reason why we avoided W θ,p(S1) is that the map σ
in (24) is not bounded with respect to the topology of W θ,p(S1). (See Section 5
of [6].) Since we would not like to treat the Itô maps or ODEs with unbounded
coefficients, we choose to work on the space of continuous loops.
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15. M. Ledoux, T. Lyons and Z. Qian, Lévy area of Wiener processes in Banach
spaces, Ann. Probab. 30 (2002), no. 2, pp. 546-578.

16. M. Ledoux, Z. Qian and T.S. Zhang, Large deviations and support theorem for
diffusion processes via rough paths, Stochastic Process. Appl. 102 (2002), no. 2,
pp.265-283.

17. T. Lyons and Z. Qian, System control and rough paths, Oxford University Press,
Oxford, 2002.

18. P. Malliavin, Hypoellipticity in infinite dimensions, Diffusion processes and
related problems in analysis, Vol. I (Evanston, IL, 1989), pp. 17–31, Progr.
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