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Summary. We derive estimates for the solutions to differential equations driven
by a Hölder continuous function of order β > 1/2. As an application we deduce the
existence of moments for the solutions to stochastic differential equations driven by
a fractional Brownian motion with Hurst parameter H > 1

2
.

1 Introduction

We are interested in the solutions of differential equations on Rd of the form

xt = x0 +
∫ t

0

f(xr)dyr, (1)

where the driving force y : [0,∞) → Rm is a Hölder continuous function of
order β > 1/2. If the function f : Rd → Rmd has bounded partial derivatives
which are Hölder continuous of order λ > 1

β − 1, then there is a unique
solution x : Rd → R, which has bounded 1

β -variation on any finite interval.
These results have been proved by Lyons in [2] using the p-variation norm
and the technique introduced by Young in [8]. The integral appearing in (1)
is a Riemann-Stieltjes integral.

In [9] Zähle has introduced a generalized Stieltjes integral using the tech-
niques of fractional calculus. This integral is expressed in terms of frac-
tional derivative operators and it coincides with the Riemann-Stieltjes integral∫ T

0
fdg, when the functions f and g are Hölder continuous of orders λ and µ,

respectively and λ + µ > 1 (see Proposition 1 below). Using this formula for
the Riemann-Stieltjes integral, Nualart and Răşcanu have obtained in [3] the
existence of a unique solution for a class of general differential equations that
includes (1). Also they have proved that the solution of (1) is bounded on a
finite interval [0, T ] by C1 exp(C2 ‖y‖κ

0,T,β), where κ > 1
β if f is bounded and

κ > 1
1−2β is f has linear growth. Here ‖y‖0,T,β denotes the β-Hölder norm of y

on the time interval [0, T ]. These estimates are based on a suitable application
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of Gronwall’s lemma. It turns out that the estimate in the linear growth case
is unsatisfactory because κ tends to infinity as β tends to 1/2.

The main purpose of this paper is to obtain sharper estimates for the
solution xt in the case where f is bounded or has linear growth using a direct
approach based on formula (8). In the case where f is bounded we estimate
sup0≤t≤T |xt| by

C

(
1 + ‖y‖

1
β

0,T,β

)
and if f has linear growth we obtain the estimate

C1 exp
(

C2‖y‖
1
β

0,T,β

)
.

In Theorem 2 we provide explicit dependence on f and T for the constants C,
C1 and C2. We also establish estimates for the solution of a linear equation
with rough time dependent coefficient (Theorem 3.2).

Another novelty of this paper is that we establish stability type of results
for the solution xt to (1) on the initial condition x0, the driving control y and
the coefficient f (Theorem 3.2).

As an application we deduce the existence of moments for the solutions to
stochastic differential equations driven by a fractional Brownian motion with
Hurst parameter H > 1

2 . We also discuss the regularity of the solution in the
sense of Malliavin Calculus, improving the results of Nualart and Saussereau
[4], and we apply the techniques of the Malliavin calculus to establish the
smoothness of the density of the solution under suitable non-degeneracy con-
ditions. More precisely, Theorem 3.2 allows us to show that the solution of a
stochastic differential equation

2 Fractional integrals and derivatives

Let a, b ∈ R with a < b. Let f ∈ L1 (a, b) and α > 0. The left-sided and
right-sided fractional Riemann-Liouville integrals of f of order α are defined
for almost all x ∈ (a, b) by

Iα
a+f (t) =

1
Γ (α)

∫ t

a

(t− s)α−1
f (s) ds

and

Iα
b−f (t) =

(−1)−α

Γ (α)

∫ b

t

(s− t)α−1
f (s) ds,

respectively, where (−1)−α = e−iπα and Γ (α) =
∫∞
0

rα−1e−rdr is the Euler
gamma function. Let Iα

a+(Lp) (resp. Iα
b−(Lp)) be the image of Lp(a, b) by the

operator Iα
a+ (resp. Iα

b−). If f ∈ Iα
a+ (Lp) (resp. f ∈ Iα

b− (Lp)) and 0 < α < 1
then the Weyl derivatives are defined as
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Dα
a+f (t) =

1
Γ (1− α)

(
f (t)

(t− a)α + α

∫ t

a

f (t)− f (s)
(t− s)α+1 ds

)
(1)

and

Dα
b−f (t) =

(−1)α

Γ (1− α)

(
f (t)

(b− t)α + α

∫ b

t

f (t)− f (s)
(s− t)α+1 ds

)
(2)

where a ≤ t ≤ b (the convergence of the integrals at the singularity s = t
holds point-wise for almost all t ∈ (a, b) if p = 1 and moreover in Lp-sense if
1 < p < ∞).

For any λ ∈ (0, 1), we denote by Cλ(a, b) the space of λ-Hölder continuous
functions on the interval [a, b]. We will make use of the notation

‖x‖a,b,β = sup
a≤θ<r≤b

|xr − xθ|
|r − θ|β

,

and
‖x||a,b,∞ = sup

a≤r≤b
|xr|,

where x : Rd → R is a given continuous function.
Recall from [6] that we have:

• If α < 1
p and q = p

1−αp then

Iα
a+ (Lp) = Iα

b− (Lp) ⊂ Lq (a, b) .

• If α > 1
p then

Iα
a+ (Lp) ∪ Iα

b− (Lp) ⊂ Cα− 1
p (a, b) .

The following inversion formulas hold:

Iα
a+

(
Dα

a+f
)

= f, ∀f ∈ Iα
a+ (Lp) (3)

Iα
a−
(
Dα

a−f
)

= f, ∀f ∈ Iα
a− (Lp) (4)

and
Dα

a+

(
Iα
a+f

)
= f, Dα

a−
(
Iα
a−f

)
= f, ∀f ∈ L1 (a, b) . (5)

On the other hand, for any f, g ∈ L1(a, b) we have∫ b

a

Iα
a+f(t)g(t)dt = (−1)α

∫ b

a

f(t)Iα
b−g(t)dt , (6)

and for f ∈ Iα
a+ (Lp) and g ∈ Iα

a− (Lp) we have∫ b

a

Dα
a+f(t)g(t)dt = (−1)−α

∫ b

a

f(t)Dα
b−g(t)dt. (7)
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Suppose that f ∈ Cλ(a, b) and g ∈ Cµ(a, b) with λ + µ > 1. Then, from
the classical paper by Young [8], the Riemann-Stieltjes integral

∫ b

a
fdg exists.

The following proposition can be regarded as a fractional integration by parts
formula, and provides an explicit expression for the integral

∫ b

a
fdg in terms

of fractional derivatives (see [9]).

Proposition 1. Suppose that f ∈ Cλ(a, b) and g ∈ Cµ(a, b) with λ + µ > 1.
Let λ > α and µ > 1 − α. Then the Riemann Stieltjes integral

∫ b

a
fdg exists

and it can be expressed as∫ b

a

fdg = (−1)α

∫ b

a

Dα
a+f (t) D1−α

b− gb− (t) dt, (8)

where gb− (t) = g (t)− g (b).

3 Estimates for the solutions of differential equations

Suppose that y : [0,∞) → Rm is a Hölder continuous function of order β >
1/2. Fix an initial condition x0 ∈ Rd and consider the following differential
equation

xt = x0 +
∫ t

0

f(xr)dyr, (1)

where f : Rd → Rmd is given function. Lyons has proved in [2] that Equation
(1) has a unique solution if f is continuously differentiable and it has a deriva-
tive f ′ which is bounded and locally Hölder continuous of order λ > 1

β − 1.
Our aim is to obtain estimates on xt which are better than those given by

Nualart and Răşcanu in [3].

Theorem 2. Let f be a continuously differentiable function such that f ′ is
bounded and locally Hölder continuous of order λ > 1

β − 1.

(i) Assume ‖f ′‖∞ > 0. There is a constant k depending only on β, such that
for all T ,

sup
0≤t≤T

|xt| ≤ 21+kT [‖f ′‖∞∨|f(0)|]1/β‖y‖1/β
0,T,β (|x0|+ 1) . (2)

(ii) Assume that f is bounded. Then, there is a constant k, which depends
only on β, such that for all T ,

sup
0≤t≤T

|xt| ≤ |x0|+ k‖f‖∞
(

T β‖y‖0,T,β ∨ T‖f ′‖
1−β

β
∞ ‖y‖

1
β

0,T,β

)
. (3)
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Proof. Without loss of generality we assume that d = m = 1. Set ‖y‖β =
‖y‖0,T,β . We can assume that ‖y‖β > 0, otherwise the inequalities are obvious.
Let α < 1/2 such that α > 1−β. Henceforth k will denote a generic constant
depending only on β.

Step 1. Assume first that f is bounded. It suffices to assume that ‖f ′‖∞ >
0. First we use the fractional integration by parts formula given in Proposition
1 to obtain for all s, t ∈ [0, T ],

|
∫ t

s

f(xr)dyr| ≤
∫ t

s

|Dα
s+f(xr) D1−α

t− yt−(r)|dr.

From (1) and (2) it is easy to see

|D1−α
t− yt−(r)| ≤ k‖y‖r,t,β(t− r)α+β−1 ≤ k‖y‖β(t− r)α+β−1 (4)

and

|Dα
s+f(xr)| ≤ k

[
‖f‖∞ (r − s)−α + ‖f ′‖∞ ‖x‖s,t,β(r − s)β−α

]
. (5)

Therefore

|
∫ t

s

f(xr)dyr| ≤ k‖y‖β

∫ t

s

[
‖f‖∞ (r − s)−α(t− r)α+β−1

+ ‖f ′‖∞ ‖x‖s,t,β(r − s)β−α(t− r)α+β−1
]
dr

≤ k‖y‖β

[
‖f‖∞ (t− s)β + ‖f ′‖∞ ‖x‖s,t,β(t− s)2β

]
.

Consequently, we have

‖x‖s,t,β ≤ k‖y‖β

[
‖f‖∞ + ‖f ′‖∞ ‖x‖s,t,β(t− s)β

]
.

Choose ∆ such that

∆ =
(

1
2k ‖f ′‖∞ ‖y‖β

) 1
β

.

Then, for all s and t such that t− s ≤ ∆ we have

‖x‖s,t,β ≤ 2k‖y‖β ‖f‖∞ . (6)

Therefore,

‖x||s,t,∞ ≤ |xs|+ ‖x‖s,t,β(t− s)β ≤ |xs|+ 2k‖y‖β ‖f‖∞ ∆β . (7)

If ∆ ≥ T we obtain the estimate

‖x||0,T,∞ ≤ |x0|+ 2k‖y‖β ‖f‖∞ T β . (8)

Assume ∆ < T . Then, from (7) we get

‖x||s,t,∞ ≤ |xs|+ ‖f‖∞ ‖f ′‖−1
∞ . (9)
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Divide the interval [0, T ] into n = [T/∆] + 1 subintervals (where [a] denotes
the largest integer bounded by a). Applying the inequality (9) for s = 0 and
t = ∆ we obtain

sup
0≤t≤∆

|xt| ≤ |x0|+ ‖f‖∞ ‖f ′‖−1
∞ .

Then, applying the inequality (9) on the intervals [∆, 2∆], . . . , [(n−1)∆, n∆]
recursively, we obtain

sup
0≤t≤T

|xt| ≤ |x0|+ n ‖f‖∞ ‖f ′‖−1
∞ ≤ |x0|+ ∆−1(T + ∆) ‖f‖∞ ‖f ′‖−1

∞

≤ |x0|+ Tk ‖f‖∞ ‖f ′‖
1−β

β
∞ ‖y‖

1
β

β . (10)

The inequality (3) follows from (8) and (10).
Step 2. In the general case, assuming ‖f ′‖∞ > 0, instead of (5) we have

|Dα
s+f(xr)| ≤ k

[
(|f(0)|+ ‖f ′‖∞|xr|) (r − s)−α + ‖f ′‖∞ ‖x‖s,t,β(r − s)β−α

]
.

As a consequence,

‖x‖s,t,β ≤ k‖y‖β

[
|f(0)|+ ‖f ′‖∞ ‖x‖s,t,∞ + ‖f ′‖∞ ‖x‖s,t,β(t− s)β

]
.

Suppose that ∆ satisfies

∆ ≤
(

1
3k ‖f ′‖∞ ‖y‖β

) 1
β

. (11)

Then, for all s and t such that t− s ≤ ∆ we have

‖x‖s,t,β ≤
3
2
k‖y‖β

(
|f(0)|+ ‖f ′‖∞ ‖x‖s,t,∞

)
.

Therefore,

|xt| ≤ |xs|+
3
2
k‖y‖β

(
|f(0)|+ ‖f ′‖∞ ‖x‖s,t,∞

)
∆β ,

and
‖x‖s,t,∞ ≤ |xs|+

3
2
k‖y‖β

(
|f(0)|+ ‖f ′‖∞ ‖x‖s,t,∞

)
∆β .

Using again (11) we get

‖x‖s,t,∞ ≤ 2|xs|+ 2k‖y‖β |f(0)|∆β .

Assume also that

∆ ≤
(

1
k |f(0)| ‖y‖β

) 1
β

. (12)

Then
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‖x‖s,t,∞ ≤ 2 (|xs|+ 1) .

Hence,

sup
0≤r≤t

|xr| ≤ 2
(

sup
0≤r≤s

|xr|+ 1
)

. (13)

As before, divide the interval [0, T ] into n = [T/∆] + 1 subintervals, and use
the estimate (13) in every interval to obtain

sup
0≤t≤T

|xt| ≤ 2n (|x0|+ 1) . (14)

Choose
∆ = (k‖y‖β (‖f ′‖∞ ∨ |f(0)|))−

1
β ,

in such a way that (11) and (12) hold. Then, (14) implies

sup
0≤t≤T

|xt| ≤ 21+kT [‖f ′‖∞∨|f(0)|]1/β‖y‖1/β
β (|x0|+ 1) .

The proof of the theorem is now complete.

Consider now the following system of equations

xt = x0 +
∫ t

0

f(xr)dyr,

zt = z0 +
∫ t

0

g(xr)zrdyr,

where y : [0,∞) → Rm is a Hölder continuous function of order β > 1/2.
f : Rd → Rmd and g : Rd → RM2d are given functions and x0 ∈ Rm, z0 ∈ RM .
We make the following assumptions:

H1) f is bounded with a bounded derivative f ′ which is locally Hölder contin-
uous of order λ > 1

β − 1.
H2) g is bounded with bounded derivative.

Theorem 3. Assume conditions H1) and H2). Then, there is a constant k
depending only on β, such that for all T ,

sup
0≤t≤T

|zt| ≤ 21+kT
h
‖f ′‖∞∨

“
‖g‖∞+

√
‖g′‖∞‖f‖∞

”i1/β
‖y‖1/β

0,T,β |z0| . (15)

Proof. Without loss of generality we assume that d = m = M = 1. Set
‖y‖β = ‖y‖0,T,β . We can assume that ‖y‖β > 0, otherwise the inequality is
obvious. Let α < 1/2 such that α > 1− β.

If we choose ∆ such that
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∆β ≤ 1
2k ‖f ′‖∞ ‖y‖β

,

by (6) for all s and t such that t− s ≤ ∆ we have

‖x‖s,t,β ≤ 2k‖y‖β ‖f‖∞ . (16)

On the other hand, using the fractional integration by parts formula we
obtain for all s, t ∈ [0, T ],

|
∫ t

s

g(xr)zrdyr| ≤
∫ t

s

|Dα
s+ (g(xr)zr) D1−α

t− yt−(r)|dr. (17)

From (1) we get∣∣Dα
s+ (g(xr)zr)

∣∣ ≤ k

(
‖g‖∞ ‖z‖s,r,∞(r − s)−α +

∫ r

s

|g(xr)zr − g(xθ)zθ|
|r − θ|α+1

dθ

)
.

Now if 0 ≤ s ≤ r ≤ t ≤ T , then∫ r

s

|g(xr)zr − g(xθ)zθ|
|r − θ|α+1

dθ ≤ k ‖g‖∞
∫ r

s

‖z‖s,r,β |r − θ|β−α−1dθ

+ k ‖g′‖∞
∫ r

s

‖z‖s,r,∞‖x‖s,r,β |r − θ|β−α−1dθ

≤ k (‖g‖∞ ‖z‖s,t,β + ‖g′‖∞ ‖z‖s,r,∞‖x‖s,r,β) |r − s|β−α.

Therefore ∣∣Dα
s+ (g(xr)zr)

∣∣ ≤ k(‖g‖∞ ‖z‖s,r,∞(r − s)−α

+(‖g‖∞ ‖z‖s,t,β + ‖g′‖∞ ‖z‖s,r,∞‖x‖s,r,β) |r − s|β−α). (18)

Substituting (18) and (4) into (17) yields

|
∫ t

s

g(xr)zrdyr| ≤ k‖y‖β

(
‖g‖∞ ‖z‖s,t,∞(t− s)β

+(‖g‖∞ ‖z‖s,t,β + ‖g′‖∞ ‖z‖s,t,∞‖x‖s,t,β) (t− s)2β

)
.

Consequently, is t− s ≤ ∆, applying (16) yields

‖z‖s,t,β ≤ k‖y‖β

{
‖g‖∞ ‖z‖s,t,∞

+(‖g‖∞ ‖z‖s,t,β + ‖g′‖∞ ‖z‖s,t,∞‖x‖s,t,β) ∆β

}
≤ k‖y‖β

{
‖g‖∞ ‖z‖s,t,∞

+(‖g‖∞ ‖z‖s,t,β + ‖g′‖∞ ‖f‖∞ ‖y‖β‖z‖s,t,∞) ∆β

}
.
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Supposse that ∆ is sufficiently small such that

∆ ≤
(

1
2k‖g‖∞‖y‖β

) 1
β

. (19)

Then we have

‖z‖s,t,β ≤ 2k‖y‖β‖z‖s,t,∞
(
‖g‖∞ + ‖g′‖∞ ‖f‖∞ ‖y‖β∆β

)
.

This implies that

‖z‖s,t,∞ ≤ |zs|+ k‖y‖β∆β‖z‖s,t,∞
(
‖g‖∞ + ‖g′‖∞ ‖f‖∞ ‖y‖β∆β

)
.

If ∆ satisfies

‖g‖∞∆β + ‖g′‖∞‖f‖∞‖y‖β∆2β ≤ 1
2k‖y‖β

(20)

then we have
‖z‖s,t,∞ ≤ 2|zs|

Hence,
sup

0≤r≤t
|zr| ≤ 2 sup

0≤r≤s
|zr|. (21)

As before, divide the interval [0, T ] into n = [T/∆] + 1 subintervals, and use
the estimate (21) in every interval to obtain

‖z‖0,T,∞ ≤ 2n|z0| . (22)

Notice that for (20) to hold it suffices that

∆β‖y‖β ≤

√
‖g‖2∞ + 2

k‖g′‖∞‖f‖∞ − ‖g‖∞
2‖g′‖∞‖f‖∞

=
1

k
(√

‖g‖2∞ + 2
k‖g′‖∞‖f‖∞ + ‖g‖∞

) .

If we choose

∆ =
[
k‖y‖β max

(
‖f ′‖∞ , ‖g‖∞ +

√
‖g′‖∞ ‖f‖∞

)]− 1
β

,

then (22) yields

‖z‖0,T,∞ ≤ 21+kT
h
‖f ′‖∞∨

“
‖g‖∞+

√
‖g′‖∞‖f‖∞

”i1/β
‖y‖1/β

0,T,β |z0| .

The proof is now complete.
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Suppose now that we have two differential equations of the form

xt = x0 +
∫ t

0

f(xs)dys,

and

x̃t = x̃0 +
∫ t

0

f̃(x̃s)ỹs ,

where y and ỹ are Hölder continuous functions of order β > 1/2, and f

and f̃ are two functions which are continuously differentiable with locally
Hölder continuous derivatives of order λ > 1

β −1. Then, we have the following
estimate.

Theorem 4. Suppose in addition that f is twice continuously differentiable
and f ′′ is bounded. Then there is a constant k such that

sup
0≤r≤T

|xr − x̃r| ≤ k2kD1/β‖y‖1/β
0,T,βT

×

{
|x0 − x̃0|+ ‖y‖0,T,β

[
‖f − f̃‖∞ + ‖x‖0,T,β‖f ′ − f̃ ′‖∞

]
+
[
‖f̃‖∞ + ‖f̃ ′‖∞‖x‖0,T,∞

]
‖y − ỹ‖0,T,β

}
,

where

D = ‖f ′‖∞ ∨
(
‖f ′‖∞ + ‖f ′′‖∞(‖x‖0,T,β + ‖x̃‖0,T,β)T β

)
.

Remark 5. The above inequality is valid only when each term appeared on the
right hand side is finite.

Proof. Fix s, t ∈ [0, T ]. Set

xt − x̃t − (xs − x̃s) = I1 + I2 + I3,

where

I1 =
∫ t

s

[f(xr)− f(x̃r)] dyr

I2 =
∫ t

s

[
f(x̃r)− f̃(x̃r)

]
dyr

I3 =
∫ t

s

f̃(x̃r)d [yr − ỹr] .

The terms I2 and I3 can be estimated easily. In fact, we have

|I2| ≤ k‖y‖β

[
‖f − f̃‖∞(t− s)β + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β(t− s)2β

]
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and
|I3| ≤ k‖y − ỹ‖β

[
‖f̃‖∞(t− s)β + ‖f̃ ′‖∞‖x̃‖s,t,β(t− s)2β

]
,

where ‖y‖β = ‖y‖0,T,β and ‖y − ỹ‖β = ‖y − ỹ‖0,T,β . The term I1 is a little
more complicated.

|I1| ≤
∫ t

s

|Dα
s+ [f(xr)− f(x̃r)] ||D1−α

t− yt−(r)|dr

≤ k

∫ t

s

‖y‖s,t,β(t− r)α+β−1
[
|f(xr)− f(x̃r)|(r − s)−α

+‖f ′‖∞‖x− x̃‖s,r,β(r − s)β−α

+‖f ′′‖∞‖x− x̃‖s,r,∞ [‖x‖s,r,β + ‖x̃‖s,r,β ] (r − s)β−α
]
dr

≤ k‖y‖β

{
‖f ′‖∞‖x− x̃‖s,t,∞(t− s)β + ‖f ′‖∞‖x− x̃‖s,t,β(t− s)2β

+‖f ′′‖∞‖x− x̃‖s,t,∞ [‖x‖s,t,β + ‖x̃‖s,t,β ] (t− s)2β
}

.

Therefore

‖x− x̃‖s,t,β ≤ k‖y‖β

{
‖f ′‖∞‖x− x̃‖s,t,∞ + ‖f ′‖∞‖x− x̃‖s,t,β(t− s)β

+‖f ′′‖∞‖x− x̃‖s,t,∞ [‖x‖s,t,β + ‖x̃‖s,t,β ] (t− s)β

+‖f − f̃‖∞ + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β(t− s)β
}

+k‖y − ỹ‖β

[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖s,t,β(t− s)β

]
.

Rearrange it to obtain

‖x− x̃‖s,t,β ≤ k(1− k‖f ′‖∞‖y‖β(t− s)β)−1

{
‖y‖β

[
‖f ′‖∞‖x− x̃‖s,t,∞

+‖f ′′‖∞‖x− x̃‖s,t,∞ [‖x‖s,t,β + ‖x̃‖s,t,β ] (t− s)β

+‖f − f̃‖∞ + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β(t− s)β

]

+k‖y − ỹ‖β

[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖s,t,β(t− s)β

]}
.

Set ∆ = t− s, and A = k‖f ′‖∞‖y‖β . Then
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‖x− x̃‖s,t,∞ ≤ |xs − x̃s|+ ‖x− x̃‖s,t,β(t− s)β

≤ |xs − x̃s|+ k(1−A∆β)−1∆β

{
‖y‖β

[
‖f ′‖∞‖x− x̃‖s,t,∞

+‖f ′′‖∞‖x− x̃‖s,t,∞ [‖x‖s,t,β + ‖x̃‖s,t,β ]∆β

+‖f − f̃‖∞ + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β∆β

]

+k‖y − ỹ‖β

[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖s,t,β∆β

]}
.

Denote

B = k‖y‖β

(
‖f ′‖∞ + ‖f ′′‖∞(‖x‖0,T,β + ‖x̃‖0,T,β)T β

)
.

Then

‖x− x̃‖s,t,∞ ≤
(
1− (1−A∆β)−1∆βB

)−1

×

{
|xs − x̃s|+ k(1−A∆β)−1∆β

×

[
‖y‖β

[
‖f − f̃‖∞ + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β∆β

]
+‖y − ỹ‖β

[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖s,t,β∆β

] ]}
.

Let ∆ satisfy
A∆β ≤ 1/3 , B∆β ≤ 1/3

Namely, we take

∆ =
(

1
3 (A ∨B)

)1/β

.

Then
‖x− x̃‖s,t,∞ ≤ 2

[
|xs − x̃s|+ C∆β

]
,

where

C =
3
2
k

[
‖y‖β

[
‖f − f̃‖∞ + ‖f ′ − f̃ ′‖∞‖x̃‖s,t,β∆β

]
+‖y − ỹ‖β

[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖s,t,β∆β

] ]
.

Applying the above estimate recursively we obtain
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sup
0≤r≤T

|xr − x̃r| ≤ 2n
[
|x0 − x̃0|+ C∆β

]
,

where n = [T/∆] + 1. Or we have

sup
0≤r≤T

|xr − x̃r| ≤ k2k(‖f ′‖∞∨(‖f ′‖∞+‖f ′′‖∞(‖x‖0,T,β+‖x̃‖0,T,β)T β))1/β‖y‖1/β
0,T,βT

×

{
|x0 − x̃0|+ ‖y‖0,T,β

[
‖f − f̃‖∞ + ‖x̃‖0,T,β‖f ′ − f̃ ′‖∞

]
+
[
‖f̃‖∞ + ‖f̃ ′‖∞‖x̃‖0,T,∞

]
‖y − ỹ‖0,T,β

}
.

4 Stochastic differential equations driven by a fBm

Let B = {Bt, t ≥ 0} be an m-dimensional fractional Brownian motion (fBm)
with Hurst parameter H > 1/2. That is, B is a Gaussian centered process
with the covariance function E(Bi

tB
j
s) = RH(t, s)δij , where

RH(t, s) =
1
2
(
t2H + s2H − |t− s|2H

)
.

Consider the stochastic differential equation on Rd

Xt = X0 +
∫ t

0

σ(Xs)dBs, (1)

where X0 is a fixed d-dimensional random variable and the stochastic integral
is is a path-wise Riemann-Stieltjes integral. ([1]). This equation has a unique
solution (see [2] and [3]) provided σ is continuously differentiable, and σ′ is
bounded and Hölder continuous of order λ > 1

H − 1.
Then, using the estimate (2) in Theorem 2 we obtain the following estimate

for the solution of Equation (1), if we choose β ∈
(

1
2 ,H

)
. Notice that 1

β < 2.

sup
0≤t≤T

|Xt| ≤ 21+kT(‖σ′‖∞∨|σ(0)|)‖B‖1/β
0,T,β (|X0|+ 1) . (2)

If σ is bounded and ‖σ′‖ 6= 0 we can make use of the estimate (3) and we
obtain

sup
0≤t≤T

|Xt| ≤ |X0|+ k‖σ‖∞
(

T β‖B‖
1
β

0,T,β ∨ T‖σ′‖
1−β

β
∞ ‖B‖

1
β

0,T,β

)
. (3)

These estimates improve those obtained by Nualart and Răşcanu in [3]
based on a suitable version of Gronwall’s lemma. The estimates (2) and (3)
allow us to establish the following integrability properties for the solution of
Equation (1).



14 Yaozhong Hu and David Nualart

Theorem 6. Consider the stochastic differential equation (1), and assume
that E(|X0|p) < ∞ for all p ≥ 2. If σ′ is bounded and Hölder continuous of
order λ > 1

H − 1, then

E

(
sup

0≤t≤T
|Xt|p

)
< ∞ (4)

for all p ≥ 2. If furthermore σ is bounded and E (exp(λ|X0|γ)) < ∞ for any
λ > 0 and γ < 2H, then

E

(
expλ

(
sup

0≤t≤T
|Xt|γ

))
< ∞ (5)

for any λ > 0 and γ < 2H.

In [4] Nualart and Saussereau have proved that the random variable Xt

belongs locally to the space D∞ if the function σ is infinitely differentiable
and bounded together with all its partial derivatives. As a consequence, they
have derived the absolute continuity of the law of Xt for any t > 0 assum-
ing that the initial condition is constant and the vector space spanned by
{(σij(x0))1≤i≤d, 1 ≤ j ≤ m} is Rd.

Applying Theorem 3.2 we can show that the derivatives of Xt possess
moments of all orders, and we can then derive the C∞ property of the density.
Define the matrix

α(x) =

(
m∑

l=1

σil(x)σjl(x)

)
1≤i,j≤d

.

Theorem 7. Consider the stochastic differential equation (1), with constant
initial condition x0. Suppose that σ(x) is bounded infinitely differentiable with
bounded derivatives of all orders, and α(x) is uniformly elliptic. Then, for any
t > 0 the probability law of Xt has an C∞ density.

Proof. Let us first show that Xt belongs to the space D∞. From Equation
(34) of [4] we have

Dj
rX

i
t = σij(Xr) +

d∑
k=1

∫ t

0

m∑
l=1

∂kσil(Xu)Dj
rX

k
udBl

u. (6)

As a consequence, (15) applied to the system formed by the equations (1)
and (6) yields

∣∣Dj
rX

i
t

∣∣ ≤ 21+kT
h
‖σ‖∞∨

“
‖σ′‖∞+

√
‖σ′′‖∞‖σ‖∞

”i 1
β ‖B‖1/β

0,T,β‖σ‖∞.

This implies that for all p ≥ 2

E

∣∣∣∣∣∣
m∑

j=1

∫ t

0

∫ t

0

Dj
sX

i
tD

j
rX

i
t |r − s|2H−2dsdr

∣∣∣∣∣∣
p < ∞,
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and the random variable Xi
t belongs to the Sobolev space D1,p for all p ≥ 2.

In a similar way, writing down the linear equations satisfied by the iterated
derivatives, one can show that Xi

t belongs to the Sobolev space Dk,p for all
p ≥ 2 and k ≥ 2.

In order to show the nongeneracy of the density we use the notation of [4]
and follow the idea of [7]. By Itô’s formula we have

Dj
rX

i
tD

j
r′X

i′

t = σij(Xr)σi′j(Xr′) +
d∑

k=1

m∑
l=1

∫ t

0

∂kσi′l(Xu)Dj
rX

i
uDj

r′X
k
udBl

u

+
d∑

k=1

m∑
l=1

∫ t

0

∂kσil(Xu)Dj
r′X

i′

u Dj
rX

k
udBl

u .

Denote

βl(Xu) =
(
∂kσi′l(Xu)

)
1≤i′,k≤d

Γt =

 m∑
j=1

∫ t

0

∫ t

0

|r − r′2H−2Dj
rX

i
tD

j
r′X

i′

t drdr′


1≤i,i′≤d

.

Then H(2H − 1)Γt is the Malliavin covariance matrix of the random vector
Xt, and we need to show that Γ−1

t is in Lp for any p ≥ 1 and for all t > 0.
We have

Γt = α0 +
m∑

l=0

∫ t

0

(
βl(Xu)Γu + ΓuβT

l (Xu)
)
dBl

u,

where

α0 =
m∑

j=1

∫ t

0

∫ t

0

|r − r′|2H−2σij(Xr)σi′j(Xr′)drdr′.

By using Itô formula again we have

Γ−1
t = α−1

0 −
m∑

l=0

∫ t

0

(
Γ−1

u βl(Xu) + βT
l (Xu)Γ−1

u

)
dBl

u. (7)

By the estimate (15) applied to the equations (1) and (7) , we see that Γ−1
t

is in Lp for any p ≥ 1. This proves the theorem (see [5]).
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