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Summary. First, we shall quickly explain why and how the space of generalized
white noise functionals has been introduced. The space has big advantages to carry
on the analysis of nonlinear functionals of white noise (or of Brownian motion) and
to apply the theory to various fields. It should be noted that the introduction of
generalized functionals was motivated by the Ito formula for Brownian functionals.
Using this space we discuss the following two topics.

1. Path integrals. To formulate Lagrangian path integrals, we have to concretize
the expressions of the Lagrangian in terms of paths. We propose that quantum
mechanical paths (trajectories) are expressed as a sum of the classical paths and
fluctuation which is taken to be a Brownian bridge. It is possible to give a plausible
reason why a Brownian bridge is fitting in this case. With this choice of possible
trajectories, there arises a difficulty that the kinetic energy becomes a generalized
functional of a Brownian motion. It is now possible to overcome this difficulty to
take our favorable space of generalized white noise functionals. Then follows the
integration. Our method can be applied to a wider class of dynamics, for instance,
to those cases with singular potentials and to some fields over non-euclidean space.

2. Infinite dimensional rotation group and unitary group.
It is well known that the ”infinite dimensional rotation group” has naturally been

introduced in connection with white noise, and the group describes certain invariance
of the white noise measure. Hence, we may say that the white noise analysis should
have an aspect of an infinite dimensional harmonic analysis. It seems natural, in
fact by many reasons, to complexify the rotation group to have ”infinite dimensional
unitary group”. Thus complexified group has various interesting applications to the
analysis of nonlinear functionals of complex white noise. In addition, we can find
good connections with Lie group theory and theory of quantum dynamics, to which
we can give new interpretations.

1 Introduction

We are interested in essentially infinite dimensional analysis and discuss func-
tionals of the form
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f(B(s), s ∈ T, t) → ϕ(Ḃ(s), s ∈ T, t),

where {Ḃ(t)} is a white noise and is a system of idealized elemental random
variables.

Flow Diagram

1. Start with the Itô formula, the simplest case:

(dB(t))2 = dt.

Magnify (dB(t))2 − E[(dB(t)2] (multiply by 1
(dt)2 to have : Ḃ(t)2 :).

Generally, renormalized monomials in Ḃ(t)’s.

2. Space of generalized white noise functionals by using

i) Wiener-Itô Decomposition of (L2),

ii) S-transform.

3. Analysis

Harmonic Analytsis arising from rotation group.

4. Two proposed directions

i) Path integrals,

ii) Infinite dimensional unitary group.

2 Our idea of white noise analysis

The idea to discuss random complex systems is based on the ”Reduction-
ism”. Actual implementation is to construct the innovation by extracting
necessary and sufficient information from the given random complex system.
This is the first step of our mathematical approach to the study of random
complex systems. The standard innovation can be obtained as the time deriva-
tive of a Lévy process. We are thus given an elemental random system. This
choice is quite reasonable for our purpose.
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Then, follows the next step ”Synthesis”. There the given random com-
plex system should be expressed as a functional (which is non-random and, in
general, nonlinear functional) of the innovation that has just been obtained in
the step of the reduction. Thus, we have an analytic representation of the ran-
dom complex phenomenon in question by using functions known in functional
analysis.

Finally, we are ready to study the ”Analysis” of the functionals, in fact,
nonlinear functionals of the innovation. It can be proceeded having been sug-
gested by the ordinary functional analysis. Further various applications can
be discussed, and even one can see beautiful interplay between our theory and
the studies of actual problems in various fields of science.

To be added, there are interesting applications in various fields of science,
some of which will be presented in the present notes.

We are sure that the innovation approach is one of the most efficient
and legitimate directions to the study of stochastic processes and random
fields, or more generally to random complex systems. See [7].

We now focus our attention on the case, where the innovation is Gaussian.

2. Generalized white noise functionals.

Having had the system of variables to be {Ḃ(t)}, we are naturally led to
introduce basic functions of the Ḃ(t)’s. We had a naive observation on the
square of Ḃ(t). A particular case of the Itô formula (dB(t))2 = dt derives
renormalized variable : Ḃ(t)2 :. It makes sense as a generalized functional of
white noise.

Remark L. Accardi has done profound research on powers of Ḃ(t)’s.

With these facts in mind we define classes of generalized white noise func-
tionals, which are the most important concepts in white noise theory.

Our starting point is the Fock space for (L2), that involves ordinary white
noise functionals with finite variance,

(L2) =
∞∑
0

⊕
Hn,

where Hn is the space of multiple Wiener integrals in Itô sense of degree n.

There are two typical ways of introducing generalized white noise func-
tionals.

I. Use of the Sobolev spaces Km(Rn) over Rn of degree m.
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K̂m(Rn) ⊂ L̂2(Rn) ⊂ ̂K−m(Rn),

where the both inclusions are continuous injections.

Our favorable choice of the degree m of the Sobolev space is (n + 1)/2.
For one thing, members in K(n+1)/2(Rn) are continuous and the restriction of

them to an (n−1)-dimensional hyperplane belongs to the space ̂Kn/2(Rn−1),
namely the degree decreases by 1/2 when the restriction is made to a subspace
of one dimension lower.

Let m = (n+1)/2 in the above triple involving symmetric Sobolev spaces.
We have

̂K(n+1)/2(Rn) ⊂ L̂2(Rn) ⊂ ̂K−(n+1)/2(Rn),

and we form
H(n)

n ⊂ Hn ⊂ H(−n)
n ,

each space of this triple is isomorphic to the corresponding symmetric Sobolev
space. The norms in those spaces are denoted by ‖ ·‖n, ‖ ·‖, and ‖ ·‖−n. Thus,
we have a Hilbert space H

(−n)
n of generalized white noise functionals of degree

n.

There remains a freedom on how to sum up the spaces H
(−n)
n , n ≥ 0.

Choose an increasing sequence cn > 0, and form a Hilbert space (L2)+ by the
direct sum

(L2)+ =
⊕

cnH(n)
n .

The direct sum forms a Hilbert space and its dual space is expressed in the
form

(L2)− =
⊕

c−1
n H(−n)

n .

Naturally, we are given a triple

(L2)+ ⊂ (L2) ⊂ (L2)−.

The space (L2)+ consists of test functionals, while (L2)− is the space of
generalized white noise functionals (For details, see [8], Chap.2).

II. An analogue of the Schwartz space.

Take the parameter space R and an operator A:

A = − d2

du2
+ u2 + 1
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acting on L2(R). Then, apply the second quantization technique to introduce
the operator Γ (A) acting on the space

⊕
L̂2(Rn). By using the isomorphism

π defined in I:
π : Hn −→ L̂2(Rn),

we can easily define the operator Γ̃ (A) = π−1Γ (A)π. It is proved, as in I, that
for ϕ ∈ Hn

‖ϕ‖ =
√

n!‖πϕ‖L2(Rn).

Unless no confusion occurs, Γ̃ (A) is also denoted by Γ (A). It acts on (L2).

Set (S)n = D(Γ (A)n) and set

(S) =
⋂
n

(S)n.

The projective limit topology is introduced to (S).

The dual space of (S)n is denoted by (S)−n and its inductive limit:

(S)∗ = lim(S)−n

is formed. The (S)∗ is the space of generalized white noise functionals. It is
often called the space of white noise distributions.

Remind the T -transform for ϕ ∈ (L2):

(Tϕ)(ξ) =
∫

E∗
exp[i < x, ξ >]ϕ(x)dµ(x),

and the S-transform

(Sϕ)(ξ) = C(ξ)
∫

E∗
exp[< x, ξ >]ϕ(x)dµ(x).

They give us visualized and convenient representations of generalized white
noise functiuonals.

3 White noise approach to path integrals

Our method for path integrals in quantum dynamics is to take white noise
measure to define average (or expectation) of functionals, and to take gen-
eralized functionals in the integrand to have visualized expression. The path
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integral method has been originated by R. Feynman, with some motivation
due to Dirac’s idea, and it is viewed as a third method of quantization dif-
ferent from those by W. Heisenberg and E. Schrödinger. Our method of path
integrals follows mainly the Feynman’s idea in methodology, however, some
new techniques are introduced.

In quantum dynamics there are many possible paths (trajectories) of a
particle, and each of them is viewed as a sum of the classical trajectory and
fluctuation. We assert that the amount of the fluctuation is expressed as a
Brownian bridge.

First, we need to give a characterization of a Brownian bridge X(t), t ∈
[0, 1], over the unit time interval, since it plays a key role in our setup. A
Brownian bridge is a Gaussian Markov process with mean 0 and covariance
function E(X(t)X(s)) = Γ (t, s) = (t ∧ s)(1− t ∨ s), s, t ∈ [0, 1].

Heuristically speaking, it was 1981 when we proposed a white noise ap-
proach to path integrals to have quantum mechanical propagators (see [13]
appeared later in 1983). We had, at that time, some idea in mind for the use
of a Brownian bridge and had many good examples that have quite wider
class of potentials, and we obtained various satisfactory results.

Now it is time to recall the original idea by characterizing the Brownian
bridge taking some physical intuition (see e.g. [13]) into account, so that we
can explain why a Brownian bridge is fitting for describing the fluctuation
around the classical path. We now have a theorem :

Theorem The Brownian bridge X(t) over the interval [0, 1] is charcaterized
(up to constant) by the conditions

i) X(t) is a Gaussian Markov process that has the canonical representation,

ii) X(0) = X(1) = 0 (bridged), and E(X(t)) ≡ 0,

iii) the normalized process Y (t) enjoys the projective invariance,

iv) the local continuity of Y (t) as t → 0 in terms of covariance function is
the same as that of the normalized Brownian motion B(t)/

√
t.

Proof. Assumptions i) - iii) proves that the covariance function Γ (t, s) of the
process to be determined has to be of the form

Γ (t, s) = f(
s

1− s
)/f(

t

1− t
). (1)

The assumption iv) asserts that f is the square root of a variable. Thus, the
theorem is proved.
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The Brownian bridge determined above has a canonical representation
that is expressed in the form (up to constant):

X(t) = (1− t)
∫ t

0

1
(1− u)

Ḃ(u)du.

The covariance function Γ (t, s) of the normalized process Y (t) = X(t)/√
E(X(t)2) is of the form

Γ (t, s) =
√

(0, 1; s, t),

where (0, 1; s, t) denotes the anharmonic ratio, that is (1−t)/t
(1−s)/s .

By observing the expression of the covariance function, it is obvious that
a Brownian bridge is reversible in time, and further the theorem implies, as
was announced before, that the Brownian bridge is fitting for describing the
amount of fluctuation of a classical trajectory when we formulate a rigorous
Feynman path integral following the idea due to Dirac and Feynman. This
fact is illustrated probabilistically in what follows.

The actual expression and computations of the propagator are given suc-
cessively as follows:

We follow the Lagrangian dynamics. The possible trajectories are sample
paths y(s), s ∈ [0, 1], expressed in the form

y(s) = x(s) +

√
~
m

B(s),

where B(t) is an ordinary Brownian motion. Hence the action S is expressed
in the form

S =
∫ t

0

L(y(s), ẏ(s))ds.

Note that the bridged effect is done by putting the delta-function δ0(y(t)−y2),
where y2 = x(t).

We have

Theorem The quantum mechanical propagator G(0, t; y1, y2) is given by the
following average

G(0, t; y1, y2) =
〈

N exp
[

i

~

∫ t

0

L(y, ẏ)ds +
1
2

∫ t

0

Ḃ(s)2ds

]
δo(y(t)− y2)

〉
,

(2)

where N is the normalizing constant.
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Actual computations for given potentials (including those have some sin-
gularity at the boundary) give us the propagator.

It should be noted that there are generalized white noise functionals in
the above expectation. Namely, they are delta functions, in fact the Donsker’s
delta function δo(y(t) − y2) and Gauss kernels, one of which implicitly ap-
pears in the action and the other is exp[12

∫ t

0
Ḃ(s)2ds] with a multiplicative

renormalizing constant. This generalized functional serves for flattening effect
of the white noise measure. One may ask why the latter functional is so. An
intuitive answer to this question is as follows: If we write a Lebesgue mea-
sure (exists only virtually) on E∗ by dL, the white noise measure µ may be
expressed in the form exp[− 1

2

∫ t

0
Ḃ(s)2ds]dL. Hence, the factor in question is

put to make the measure µ to be the flat measure dL. In fact, this makes
sense eventually.

Returning to the formula (2), it is important to note that the integrand (inside
the angular bracket) is integrable, in other words, to see that it is a bilinear
form of a generalized functional and a test functional.

In general, the integrand is expressed as a product of a test functional and
a functional of the form ϕ(x) · δ(〈x, f〉 − a), f ∈ L2(R), a ∈ R. To this end,
we have to prepare some notes.

The first one is short. Since a sample function x is a genealized function,
so the canonical bilinear form 〈x, ξ〉 is defined for ξ ∈ E (pointwise in x and
ξ). For our purpose it is necessary to extend the bilinear form to 〈x, f〉, where
f is in L2(R). This can be defined as a stochastic bilinear form, although it
is no more continuous in f .

The next note is important. In general, the formula involves a product
of functionals of the form ϕ(x) · δ(〈x, f〉 − a), f ∈ L2(R), a ∈ C. To give a
correct interpretation to the expectation (2), it should be checked that it can
be regarded as a bilinear form of a test functional and a generalized functional.
The following assertion answers this question.

Proposition (Streit et al [14]) Let ϕ(x) be a generalized white noise func-
tional. Assume that the T -transform (Tϕ)(ξ), ξ ∈ E, of ϕ is extended to a
functional on L2(R), in particular function of ξ + λf , and that (Tϕ)(ξ − λf)
is an integrable function of λ for any fixed ξ and λ. If the Fourier transform of
(Tϕ)(ξ−λf) is a U -functional, then the pointwise product ϕ(x) · δ(〈x, f〉−a)
is defined and is a generalized white noise functional.

Proof. First a formula for the δ-function is provided.

δa(t) = δ(t− a) =
1
2π

∫
eiaλe−iλxdλ
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(in distribution sense).

Hence, for ϕ ∈ (S)∗ and f ∈ L2(R) we have

T (ϕ(x)δ(〈x, f〉 − a))ξ) =
1
2π

∫
eiaλe−iλ〈x,f〉ei〈x,ξ〉ϕ(x)dµ(x)dΛ

=
1
2π

∫
eiaλ(Tϕ)(ξλf)dλ.

By assumption this determines a U -functional, which means the product
ϕ(x) · δ(〈x, f〉 − a) makes sense and it is a generalized white noise functional.

Example A Gauss kernel ϕc(x) = N exp[c
∫

x(t)2dt].

The following cases are fitting.

i) The case c is real and c < 0.

ii) The case c = 1
2 + ia, a ∈ R.

The same expression as in i), and it is shown that Proposition is applied.

Recent developments. Now we should like to mention that there are many
successful computations of various propagators. It is easy to see that in the
cases i) free particle, ii) simple harmonic oscillator, iii) the Albeverio-Hoegh-
Krohn potential which is the Fourier transform of a measure, the results ob-
tained by our method are in agreement with the known propagators, respec-
tively. In addition, some more interesting cases, including those with much
singular potentials and time depending potentials, we have satisfactory re-
sults in the recent developments.

Example 1. Kuna, Streit and Westerkampf [14] obtained explicit formulae
in the cases:

1) A time depending Lagrangian of the form

L(x(t), ẋ(t), t) =
1
2
m(t)ẋ(t)2 − k(t)2x(t)2 − f(t)x(t),

where m(t), k(t) and f(t) are smooth funtions.

2) A singular potential V (x) of the form

V (x) =
∑

n

c−n2
δn(x), c > 0,

and others.
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Example 2. C. Bernidos’ results [15] on polymer entanglements.

Chern-Simons functional integral See Albeverio-Sengupta [2].

The paper [2] gives us an interesting problem, where white noise analysis is
applied. Namely, the authors propose a 3-dimensional gauge theory based on
the Chern-Simons action CS(A), where A is a connection over a 3-manifold
that runs through A. Namely, there appears a functional integral of the form∫

A
exp[iCS(A)φ(A)DA.

Under various assumptions, A can be expressed in the form

A = a0dx0 + a1dx1 + a2dx2,

where ai is a Lie algebra-valued function on R3.
The problem, if we understand correctly, is to define the integral

1
N

∫
eiκ/(2π)〈a0,f1〉φ(a0, f1)Da0Df1,

where f1 = ∂2a1.
Now it is interesting to consider a functional ec〈a0,f1〉. It has some similarity

to the Gauss kernel discussed before, but it poses a new problem regarding
the inner product of two independent white noises. We note that this problem
can be discussed within our framework.

4 Infinite dimensional rotation group

This section is devoted to the harmonic analysis that comes from the infinite
dimensional rotation group, which is one of our favorite tools in white noise
analysis.

Definition A continuous linear homeomorphism g acting on E is called a
rotation of E if the following equality holds for every ξ ∈ E;

‖gξ‖ = ‖ξ‖.

The collection of all rotations forms a group under the usual product, and
is denoted by O(E).

Definition Introduce compact-open topology to O(E) to have infinite di-
mensional rotation group.
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The adjoint transformation g∗ on E∗ is defined, and the collection O∗(E∗)
= {g∗; g ∈ O(E)} forms a group and isomorphic to O(E). We know that the
white noise measure is invariant under g∗ ∈ O∗(E∗).

We are now ready to discuss harmonic analysis arising from O∗(E∗).
Since our infinite dimensional rotation group is quite big, indeed it is nei-

ther compact nor locally compact, it seems useful to take two subclasses of
significant subgroups and investigate their roles. We are particularly inter-
ested in essentially infinite dimensional rotations. There is a criterion for this
property.

We define average power a.p.(gπ) of a rotation gπ which comes from a
permutation π:

a.p.(gπ)(x) = lim sup
N→∞

1
N

N∑
1

〈x, ξπ(n) − ξn〉2.

Definition If a.p.(g)(x) is positive µ-a.e., then we call gπ essentialy infinite
dimensional. Contrary to this case, if a.p.(gπ)(x) = 0 almost surely, then gπ

is said to be approximated by finite dimensional rotations.

We can see that there are many members in the Lévy group (see Example
below) that are essentially infinite dimensional.

Example Pairwise permutation of the coordinates. The average power is
equal to 2.

It is interesting to note that there should be an intimate connection be-
tween the Lévy group and the Lévy Laplacian (e.g. the forthcoming paper by
Si Si and the author).

The Windmill subgroup.

There is another subgroup of O(E) that contains essentially infinite di-
mensional transformation. It is a windmill subgroup W, which is defined in
the following manner. Take E to be the Schwartz space S and take a sequence
n(k) of positive integers satisfying the condition

(n(k + 1)− n(k))
n(k + 1)

n(k)
≤ K, (K > 1).

Let ξn, n ≥ 0, be the complete orthonormal system in L2(R) such that ξn

is the eigenfunction of A as defined before: Aξn = 2(n + 1)ξn. Denote by
Ek the (n(k + 1) − n(k))-dimensional subspace of E = S that is spanned by
{ξn(k)+1, ξn(k)+2, · · · , ξn(k+1)}. Let Gk be the rotation group acting on Ek.
Then, W = W({n(k)}) is defined by
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W = ⊗kGk.

Definition The subgroup W is called a windmill subgroup.

We can show that W describes interesting properties of our harmonic
analysis.

5 Infinite dimensional unitary group

We may assume that a complexification of white noise (E∗
c , ν) is known. Let

z ∈ E∗
c be of the form:

z = x + iy, x, y ∈ E.

The complex white noise measure ν is the product of white noise measures µ1

and µ2 with variance 1/2:
ν = µ1 × µ2.

Now the unitary group U(Ec) is defined. It is a collection of all transfor-
mations g on Ec such that

1. g is a linear homeomorphism of Ec,

2. g preserves the complex L2(R)-norm:

‖gη‖ = ‖η‖, ζ ∈ Ec.

Definition The topological group U(Ec) is called the infinite dimensional
unitary group.

The adjoint g∗ of g in U(Ec) is defined and we see that

g∗ν = ν.

Hence, we are given a unitary operator Ug defined by

Ugϕ(z) = ϕ(g∗z), ϕ ∈ (L2
c).

Under the usual product the collection of Ug’s forms a topological group
that is isomorphic to the group U(Ec).

It is noted that the infinite dimensional rotation group O(E) may be iden-
tified with a subgroup of U(Ec).
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Subgroups of U(Ec).

Many results below are known, but reviews or rephrasements are useful.

1) Conformal group.

In the Rd-parameter case, if the basic nuclear space is taken to be D0,c,
then we are given the conformal group C(d) which is a subgroup of O(E)
as was briefly mentioned before. Hence, the complex form of C(d), denote it
by Cc(D0), acting on the space D0,c, is a subgroup of U(D0,c). We call it a
complex conformal group. It is locally isomorphic to the (real) linear group
SO(d + 1, 1) and is generated by one-parameter groups including whiskers as
many as (d+1)(d+2)

2 . Their generators are as follows:

s = − d

dui
, i = 1, 2, ..., d,

τ = r
d

dr
+

d

2
, r = |u|,

rj,k = uj
d

duk
− uk

d

duj
, 1 ≤ j 6= k ≤ d,

κj = u2
j

d

duj
+ uj , j = 1, 2, ..., d.

They correspond to the shifts, isotopic dilation, rotations on Rd and special
conformal transformations, respectively.

2) Heisenberg group.

From now on, one can see the effective use of complex white noise. Now
take Ec to be Sc = S + iS, S being the Schwartz space.

2.1) The gauge transformation It is defined by

It : ζ(u) −→ Itζ(u) = eitζ(u).

Obviously It is a member of U(Ec), and {It} forms a continuous one parameter
subgroup, periodic with period 2π. Let I be the identity.

ItIs = It+s, t, s ∈ R,

It+2π = It,

It → I as t → 0.

The group {It, t ∈ R} is called the gauge group. Let Ut be defined by UIt . This
unitary group has only point spectrum on the subspace Hn. The eigenspace
belonging to the eigenvalue −n+2k is H(n−k,k). Hence, the space Hn, n > 1, is
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classified by It into its subspaces H(n−k,k). The generator of the gauge group
is iI.

Remark. The operator It extends to a more general gauge transformation,
where it is replaced by itf, f ∈ E, so that we have a collection of generators
that span a space isomorphic to a nuclear space E, hence a nuclear Lie algebra
is given.

2.2) The shifts Sj
t with generators

− ∂

∂uj
, j = 1, 2, · · · , d.

2.3) Multiplication πj
t , j = 1, 2, · · · , d. Let them be defined to be the conjugate

to the shifts via the Fourier transform F :

πj
t = FSj

tF−1.

Definition The subgroup generated by the gauge group, the shifts and the
multiplication is called the Heisenberg group.

4) The Fourier-Mehler transforms Fθ (d = 1).

It is possible to consider the fractional power of the ordinary Fourier trans-
form. It is defined by the integral kernel Kθ(u, v):

Kθ(u, v) = (π(1− exp[2iθ]))−1/2 exp[− i(u2 + v2)
2tanθ

+
iuv

sinθ
].

It defines an operator Fθ by writing

(Fθζ)(u) =
∫ ∞

−∞
Kθ(u, v)ζ(v)dv,

where θ 6= 1
2kπ, k ∈ Z. Particular choices of θ give

Fπ/2 = F , F(3/2)π = F−1.

Thus, we have obtained a periodic one-parameter unitary group including the
Fourier transform and its inverse.

The infinitesimal generator of Fθ is denoted by if and is expressed in the
form

if = −1
2
i(

d2

du2
− u2 + I).
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@

Observing the commutation relations among the generators, so as to have
a finite dimensional Lie algebra, either real or complex form, we are given a
generator σ′ of the form

σ′ =
1
2
(

d2

du2
+ u2).

We are now interested in probabilistic roles or meanings of this operator in
quantum dynamics (as the repulsive oscillator).

It is convenient to take σ = σ′ + i
2I, namely we have

σ =
1
2
(

d2

du2
+ u2 + iI).

A one-parameter group with the generator σ can be defined locally in space-
time. See e.g. [16].

Lie algebras of infinitesimal generators.

We have so far various infinitesimal generators. For simplicity we consider
the case d = 1, that is the case of one-dimensional parameter complex white
noise.

The algebraic structure of the space spanned by the generators is helpful
for applications to quantum dynamics and differential geometry.

We list the generators so far obtained (for the case d = 1).

I, s, τ, κ, π, f, σ

Proposition Based on the set of operators

{iI, s, iπ, τ, f, σ}

we have 6-dimensional complex Lie algebra g.

Proposition The abgebra generated by {iI, s, iπ} is a radical of g.

In the multi-dimensional, say d-dimensional, case the rotations rj,k, 1 ≤
j, k ≤ d, are involved in the algebra for conformal group:

rj,k = uj
∂

∂uk
− uk

∂

∂uj
, 1 ≤ j 6= k ≤ d.

The algebraic structure of the Lie algebra involving the rj,k does not make
much difference from the case d = 1.
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Now it seems necessary to give an interpretation to the fact that the gen-
erator κ of the special conformal transformation is a particular one, being
excluded from g .

1) The reason why the κ has been taken.

i) It is a good candidate to be introduced among the possible expressions
of generators expressed in the the form a(u) d

du + 1
2a′(u). If the basic nuclear

space E is taken to be D0, the κ is acceptable with a(u) = u2. As a result,
we have proved that the algebra generated by those possible generators is
isomorphic to sl(2, R).

ii) Similar to s, the κ is transversal to τ , which defines a flow of the
Ornstein-Uhlenbeck process (flow).

2) On the other hand, there are crucial reasons why κ should not be involved
in the algebra g.

i) In order to introduce the κ we need particular space like D0, instead of
a familiar space Sc.

ii) It does not satisfy favorable commutation relations with other favorable
ones.
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