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Summary. Let a be a non-isolated point of a topological space E. Suppose we are
given standard processes X0 and bX0 on E0 = E \ {a} in weak duality with respect
to a σ-finite measure m on E0 which are of no killings inside E0 but approachable to
a. We first show that their extensions X and bX to E admitting no sojourn at a and
keeping the weak duality are uniquely determined by the approaching probabilities
of X0, bX0 and m up to a non-negative constant δ0 representing the killing rate of
X at a. We then construct, starting from X0, such X by piecing together returning
excursions around a and a possible non-returning excursion including the instant
killing. This extends a recent result by M. Fukushima and H. Tanaka [16] which
treats the case where X0, X are m-symmetric diffusions and X admits no sojourn
nor killing at a. Typical examples of jump type symmetric Markov processes and
non-symmetric diffusions on Euclidean domains are given at the end of the paper.

Dedicated to Professor Kiyosi Itô on the occasion of his 90th birthday

1 Introduction

Let a be a non-isolated point of a topological space E and X0 = {X0
t , ζ

0,P0
x}

be a strong Markov process on E0 = E \ {a} which admits no killings inside
E0 and satisfies

ϕ(x) := P0
x(ζ0 <∞, X0

ζ0− = a) > 0 for every x ∈ E0.

We are concerned with a strong Markovian extension X of X0 from E0 to E
such that X admits no sojourn at the one-point set {a}. Natural questions
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arise: is X uniquely determined by X0 and how can it be constructed from
X0 ?

When both X0 and X are required to be diffusions that are symmetric
with respect to a σ-finite measure m on E0 with m({a}) = 0, affirmative
answers to these questions were given quite recently in M. Fukushima and
H. Tanaka [16]. It is shown in [16] that the entrance law and the absorption
rate for the absorbed Poisson point processes of excursions attached to X
away from a (due to K. Itô [24] and P.A. Meyer [27]) are uniquely determined
by the approaching probability ϕ to a for X0 and the measure m, yielding
the uniqueness of the extension X that admits no sojourn nor killing at the
point a. Conversely such extension X can be constructed from X0 by piecing
together the associated returning excursions and possibly a non-returning one
away from a.

The purpose of the present paper is to generalize the stated results of [16]
to general standard processes X0 and X which are not necessarily symmetric
but admitting weak dual standard processes X̂0 and X̂, respectively. We can
no longer use the Dirichlet form theory which has played an important role
in [16].

Nevertheless, the entrance law and the absorption rate for the absorbed
Poisson point process of excursions of X at the point a can still be identified
in §2 and §3 in terms of the approaching probabilities to a by X0 and X̂0 and
m owing to the recent works on the exit system by P.J. Fitzsimmons and R.G.
Getoor [12] and by the present authors [5]. It turns out that we must allow
the killings of X and X̂ at the point a in order to preserve the duality of X0

and X̂0 so that the uniqueness of extensions holds only up to a parameter δ0
that represents the killing rate of X at a (see Theorem 4.2).

In §5, we shall construct such an extension X starting from X0 by piecing
together the returning excursions around a and possibly a non-returning ex-
cursion from a including a killing at a.X0 and its dual X̂0 are assumed to be of
no killings inside E0. The sample path of the constructed process X is cadlag
and is continuous at the times t when Xt = a. If X0 is of continuous sample
path, then so is X. In this construction, we can proceed along essentially the
same line laid in [16] although some natural additional conditions on X0 and
X̂0 including an off-diagonal finiteness of jumping measures will be required
due to the lack of the symmetry and the path continuity. But we shall see
that an integrability condition of the α-order approaching probability being
imposed on X0 in [16] can be removed under a fairly general circumstance.

As a typical example of a jump type Markov process, we consider in §6
the case where X0 is a censored symmetric α-stable process on an open set of
Rn studied by K. Bogdan, K. Burdzy and Z.-Q. Chen [3]. An example is also
given on extending non-symmetric diffusions in Euclidean domains. Finally we
remark at the end of §6 that the present results on the one point extensions
can be applied to obtaining an extension to infinitely many points.
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2 Exit system and point process of excursions around a
point

Let E be a Lusin space (i.e. a space that is homeomorphic to a Borel sunset
of a compact metric space), B(E) be the Borel σ-algebra on E and m be
a σ-finite Borel measure on E. We consider a pair of Borel right processes
X = (Xt, ζ,Px) and X̂ = (X̂t, ζ̂, P̂x) on E that are in weak duality with
respect to m:

(C.1)
∫

E

Ĝαf(x)g(x)m(dx) =
∫

E

f(x)Gαg(x)m(dx)

for every f, g ∈ B+(E) and α > 0, where Gα, Ĝα denote the resolvents of
X, X̂ respectively.

We fix a point a ∈ E which is regular for {a} with respect to X:

(C.2) Pa(σa = 0) = 1.
Here σa = inf{t > 0 : Xt = a} with the convention of inf ∅ := ∞.

Under (C.1), we may and do assume that both X and X̂ are of cadlag
paths up to their life times (c. [21, §9]).

Let E0 := E \ {a}, m0 := m|E0 , and

ϕ(x) := Px(σa <∞), uα(x) := Ex

[
e−ασa

]
for every x ∈ E.

The corresponding functions for X̂ will be denoted by ϕ̂ and ûα(x), respec-
tively. For u, v ∈ B+(E0), (u, v) will denote the inner product of u and v in
L2(E0;m0), that is, (u, v) :=

∫
E0
u(x)v(x)m0(dx).

Denote by X0 = (X0
t , ζ

0,P0
x) and X̂0 = (X̂0

t , ζ̂
0, P̂0

x) the subprocesses of
X and X̂ killed upon leaving E0, respectively. It is known that they are in
weak duality with respect to m0. The X0-energy functional L(0)(ϕ̂ ·m0, v) of
the X0-excessive measure ϕ̂ ·m0 and an X0-excessive function v is then well
defined by

L(0)(ϕ̂ ·m0, v) = lim
t↓0

1
t
(ϕ̂− P̂ 0

t ϕ̂, v),

where P̂ 0
t is the transition semigroup of X̂0 (see [16, Lemma 2.1]).

We shall now work with the exit system of X for the point a. To this end,
it is convenient to take as the sample space Ω of the process X the space of
all paths ω on E∆ = E ∪ ∆ which are cadlag up to the life time ζ(ω) and
stay at the cemetery ∆ after ζ. Thus, Xt(ω) is just t-th coordinate of ω. Ω
is equipped with the minimal completed admissible filtration {Ft, t ≥ 0} for
{Xt, t ≥ 0}. The shift operator θt is defined by Xs(θtω) = Xs+t(ω), s ≥ 0.
We also introduce an operator kt, t ≥ 0, on Ω defined by

Xs(ktω) =
{
Xs(ω) if s < t
∆ if s ≥ t.
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We adopt the usual convention that any numerical function of E is extended
to E∆ by setting its value at ∆ to be zero.

Let us consider the random time set M(ω)

M(ω) := {t ∈ [0,∞) : Xt(ω) = a}, (2.1)

where − indicates the closure in [0,∞). The random set M(ω) is closed and
homogeneous on [0,∞).

Define Rt(ω) := t+ σa(θtω) for every t > 0 and L(ω) := sup{s > 0 : s ∈
M(ω)}, with the convention that sup ∅ := 0. The connected components of
the open set [0,∞) \M(ω) are called the excursion intervals. The collection
of the strictly positive left end points of excursion intervals will be denoted
by G(ω). We can easily see that

t ∈ G(ω) if and only if Rt−(ω) < Rt(ω),

and in this case Rt−(ω) = t. In particular, L(ω) ∈ G(ω) whenever L(ω) <∞.
We further define the operator it, t ≥ 0, on Ω by it = kσa ◦ θt. Then

{isω : s ∈ G} and {isω : s ∈ G,Rs <∞}

are by definition the collection of excursions and the collection of returning
excursions respectively of the path ω away from F, while iL(ω)(ω) = θL(ω)(ω)
is the non-returning excursion whenever L(ω) <∞.

Note that those excursions belong to the excursion space W specified by

W = {kσaω : ω ∈ Ω, σa(ω) > 0}, (2.2)

which can be decomposed as

W = W+ ∪W− ∪ {∂} (2.3)

with

W+ = {w ∈W : σa <∞} and W− = {w ∈W : σa = ∞ and ζ > 0}.

Here ∂ denotes the path identically equal to ∆.
The unit mass δ{a} concentrated at the point a is smooth in the sense

of [11] because {a} is not semipolar by the assumption (C.2). Hence there
is a unique positive continuous additive functional (PCAF in abbreviation)
` = {`t, t ≥ 0} of X with Revuz measure δ{a}. Clearly ` is supported by {a}
and any PCAF of X supported by {a} is a constant multiple of `. We call `
the local time of X at the point a.

Since the point a is assumed to be regular for {a}, {t ≥ 0 : Xt = a} has
no isolated points, and the equilibrium 1-potential Ex[e−σa ] is regular in the
sense of [2, Definition IV.3.2] because Ex[e−σa ] = cEx

[∫∞
0
e−td`t

]
on E for

some c > 0. Thus according to [26, §9] (see also [1], [8], [12] and [20])), there
exists a unique σ-finite measure P∗ on Ω carried by {σa > 0} and satisfying
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P∗ [
1− e−σa

]
<∞ (2.4)

such that

Ex

[∑
s∈G

Zs · Γ ◦ θs

]
= P∗(Γ ) ·Ex

[∫ ∞

0

Zsd`s

]
for x ∈ E, (2.5)

for every non-negative predictable process Z and every non-negative random
variable Γ on Ω. Here E∗ is the expectation under the law P∗. The pair (P∗, `)
is the predictable version of the exist system for a originated in Maisonneuve
[26, §9]. The measure P∗ is Markovian with respect to the transition semigroup
of X. We are particularly concerned with the σ-finite measure Q∗ on the space
of excursions W induced from P∗ by Q∗(Γ ) = E∗(Γ ◦ kσa). The measure Q∗

is Markovian with respect to the semigroup {P 0
t , t ≥ 0} of X0 and satisfies

Ex

[∑
s∈G

Zs · Γ ◦ is

]
= Q∗[Γ ] ·Ex

[∫ ∞

0

Zsd`s

]
, x ∈ E, (2.6)

for every non-negative predictable process Zs and every non-negative random
variable Γ on W.

We define for f ∈ B+(E)

νt(f) := Q∗[f(Xt)] = E∗[f(Xt); t < σa], t > 0.

By the Markov property of Q∗, we readily see that {νt : t > 0} is an entrance
law for X0: νtP

0
s = νt+s.

Proposition 2.1 (i) {νt}t>0 is the unique X0-entrance law characterized by

ϕ̂ ·m0 =
∫ ∞

0

νt dt. (2.7)

Moreover νt(E0) is finite for each t > 0.

(ii) Q∗[W−] = L(0)(ϕ̂ ·m0, 1− ϕ).

Proof. (i). We put ν̌α(f) =
∫ ∞

0

e−αtνt(f)dt. Then, for f ∈ B+
b (E) and for

v ∈ Cb(E) vanishing at a, we have, using (C.1), (2.6) and the Revuz formula
[21, (2.13)],

(ûα, v)Ĝαf(a) = (Ĝαf − Ĝ0
αf, v) = (f,Gαv −G0

αv)

= Ef ·m

[∫ ∞

σa

e−αtv(Xt)1Mc(t)dt
]

= Ef ·m

[∑
s∈M

∫ s+σa◦θs

s

e−αtv(Xt)dt

]

= Ef ·m

[∑
s∈M

e−αs

∫ σa

0

e−αtv(Xt)dt ◦ θs

]
= ν̌α(v)Ef ·m

[∫ ∞

0

e−αsd`s

]
= ν̌α(v)Ĝαf(a).
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Hence
ûα ·m0 = ν̌α, (2.8)

from which (2.7) follows by letting α ↓ 0. Since ϕ̂ ·m0 is a purely excessive
measure of X0, the uniqueness follows (cf. [20]). The finiteness of νt follows
from (2.4).
(ii). By (i) and [5, Lemma 3.1], L(0)(ϕ̂ ·m0, v) = lim

t↓0
νt(v) for any X0-excessive

function v. Hence

L(0)(ϕ̂ ·m0, 1− ϕ) = lim
t↓0

Q∗[(1− ϕ)(Xt)] = lim
t↓0

Q∗[1σa=∞ ◦ θt; t < ζ ∧ σa]

= Q∗[W−].

�

Remark 1. In the next section, we shall identify Q∗ with the characteristic
measure n of the absorbed Poisson point process of excursions associated with
`. Proposition 2.1 was first proved by Fukushima-Tanaka [16] for n in the case
that X is an m-symmetric diffusion by making use of the Dirichlet form of X.
In a recent paper of Fitzsimmons-Getoor [12], various properties of some basic
quantities for the exit system of a one point set including those in the above
proposition have been obtained in the most general setting that X is just a
Borel right process with an excessive measure m, in which case X̂ can be taken
to be a dual left continuous moderate Markov process. But the present proof,
taken from a recent paper by Chen-Fukushima-Ying [5], is simpler under the
condition (C.1) as far as Proposition 2.1 is concerned.

The next proposition is taken from Fitzsimmons-Getoor [12, (2.10) and
(2.17)]. Recall that L(ω) := supM(ω).

Proposition 2.2 Put δ = P∗(σa = ∞). Then the followings are true:
(i) Pa(`∞ > t) = exp(−δt), t > 0.

(ii) Pa(L <∞) = 0 or 1 according to δ = 0 or δ > 0.

Let {τt, t ≥ 0} be the right continuous inverse of ` = {`t, t ≥ 0}, that is,

τt := inf{s ≥ 0 : `s > t}, (2.9)

with the convention that inf ∅ = ∞. Since ` is supported by a, we have (cf.
[4, §5]) Pa-a.s.

τ`t = Rt for every t ≥ 0.

We see from the above that, after removing from Ω a Pa-negligible set,

L(ω) <∞ if and only if `∞(ω) <∞,

and in this case,
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`∞(ω) = `L(ω), τ`∞−(ω) = L(ω) and τ`∞(ω) = ∞.

Hence, if we let

J`(ω) := {s ∈ (0,∞) : τs−(ω) < τs(ω)},

then
J`(ω) := {`t : t ∈ G(ω)} (2.10)

and s ∈ J`(ω) implies that s = `t(ω) for some t ∈ G(ω) with τs−(ω) =
Rt−(ω) = t and τs(ω) = Rt(ω).

In particular, `∞(ω) ∈ J`(ω) whenever it is finite.
Finally the W -valued point process p = p(ω) associated with the local

time ` is introduced by

Dp(ω) = J`(ω) and ps(ω) = iτs−ω for s ∈ Dp(ω). (2.11)

Note that {ps(ω) : s ∈ Dp(ω)} ⊂ W and {ps(ω) : s ∈ Dp(ω), τs <∞} ⊂ W+

is the collections of excursions and of the returning excursions away from
a, respectively, while p`∞(ω)(= θL(ω)) ∈ W− ∪ {∂} is the non-returning
excursion whenever `∞(ω) <∞ or, equivalently, L(ω) <∞.

The counting measure of p is defined by

np((s, t], Λ) =
∑

u∈Dp∩(s,t]

1Λ(pu), Λ ∈ B(W ), (2.12)

and np(t, Λ) = np((0, t], Λ) is then Fτt
-adapted as a process in t ≥ 0.

Using (2.10), we now make the time substitute in the relation (2.6) to
obtain

Ea

[∑
s∈J`

Zτs− · Γ ◦ iτs−

]
= Q∗[Γ ] ·Ea

[∫ `∞

0

Zτs
ds

]
. (2.13)

Inserting the predictable process Zu = 1(0,τt−](u), we arrive at the formula
holding for the counting measure of the point process p associated with `:

Ea[np(t, Λ)] = Q∗[Λ] ·Ea[t ∧ `∞] for every t ≥ 0 and Λ ∈ B(W ). (2.14)

This formula will be utilized in the next section.

3 Characteristic measure of absorbed Poisson point
process

In this section, we continue to work with the setting in §2 and investigate
properties of the point process (ps,Dp) defined by (2.11) for the local time
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` = {`t, t ≥ 0} at the point a. By the observation made after (2.11), it then
holds that

`∞ = T where T = inf{s > 0 : ps ∈W− ∪ {∂}}. (3.1)

In view of Proposition 2.2, T is exponentially distributed with parameter
δ = P∗(σa = ∞).

Lemma 3.1 Under measure Pa, p is an absorbed Poisson point process with
absorption time T in Meyer’s sense ([27]), that is,

Pa

(
np((r + s1, r + t1], Λ1) ∈ H1, · · · , np((r + sn, r + tn], Λn) ∈ Hn

∣∣∣ Fτr

)
= 1{T>r}Pa (np((s1, t1], Λ1) ∈ H1, · · · , np((sn, tn], Λn) ∈ Hn)

+1{T≤r}1H1(0) · · · 1Hn(0), (3.2)

for any s1 < t1, · · · , sn < tn, H1, · · · ,Hn ⊂ Z+, r > 0, Λ1, · · · , Λn ∈ B(W ).

Proof. The proof is the same as in [27, §2] although [27] considered only the
conservative case. In fact, the identity τr+u = τr + τu ◦ θτr implies np((r +
s, r + t], Λ) = np((s, t], Λ) ◦ θτr and consequently we see from (3.1) and the
strong Markov property of X that the left hand side of (3.2) (with n = 1)
equals

PXτr
(np((s, t], Λ) ∈ H) = 1{T>r}Pa(np((s, t], Λ) ∈ H)

+1{T≤r}P∆(np((s, t], Λ) ∈ H),

whose last factor is equal to 1H(0). �

By virtue of [27, §1], there is on a certain probability space (Ω̃, P̃) a W -
valued Poisson point process p̃ = {p̃, s > 0} with domain Dep satisfying the
following property.

Let T̃ = inf{s > 0 : p̃s ∈ W− ∪ {∂}} and consider the stopped process
{ps, s > 0}:

ps = p̃s for s ∈ Dp = Dep ∩ (0, T̃ ]. (3.3)

Then the point process {ps, s > 0} under Pa and {ps, s > 0} under P̃ are
equivalent in law.

Let us denote by n the characteristic measure of the W -valued Poisson
point process {p̃, s > 0}.

Theorem 3.2 It holds that
n = Q∗. (3.4)

Therefore n is a σ-finite measure on W with n(σa > t) <∞ for every t > 0,
and n is Markovian with respect to the transition semigroup {P 0

t , t ≥ 0} of
X0. The X0-entrance law {νt, t > 0} of n defined by
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νt(f) = n(f(Xt); t < σa), t > 0, f ∈ B+(E)

is characterized by ∫ ∞

0

νt dt = ϕ̂ ·m0. (3.5)

Define δ0 by
δ0 = n(ζ = 0). (3.6)

Then T̃ is exponentially distributed with parameter L(0)(ϕ̂ ·m0, 1− ϕ) + δ0:

P̃(T̃ > t) = exp
(
−t

(
L(0)(ϕ̂ ·m0, 1− ϕ) + δ0

))
for every t > 0. (3.7)

Moreover, νt(E0) <∞ for each t > 0 and L(0)(ϕ̂ ·m0, 1− ϕ) <∞.

Proof. Since {p̃s : s ∈ Dep, p̃s ∈ W+} and T̃ are independent, we have by
(3.1)

Ea[np(t, Λ)] = Ẽ

 ∑
u∈Dep∩(0,t∧eT ]

1Λ(p̃u)

 = n(Λ) · Ẽ[t∧ T̃ ] = n(Λ) ·Ea[t∧ `∞],

which compared with (2.14) leads us to (3.4).
Identities (3.5) and (3.7) are the consequences of Propositions 2.1 as

Q∗(W− ∪ {∂}) = Q∗(W−) + Q∗({∂}) = L(0)(ϕ̂ ·m0, 1− ϕ) + δ0.

Then σ-finiteness of n and the last statement follow from (2.4). �

4 Duality preserving one-point extension

Let E be a locally compact separable metric space, a be a non-isolated point of
E and m be a σ-finite measure on E0 := E \ {a}. Contrarily to the preceding
two sections, we shall start in this section with two given strong Markov
processes X0 and X̂0 on E0 that are in weak duality with respect to m0

and have no killings inside E0. We are concerned with their possible duality
preserving extensions X and X̂ to E that admit no sojourn at a. It turns out
that we need to allow X and X̂ have killings at a in order to guarantee their
weak duality but they are unique up to a parameter δ0 that represents the
killing rate of X at a.

We shall assume that we are given two Borel standard processes X0 =
(X0

t ,P
0
x, ζ

0) and X̂0 = (X̂0
t , P̂

0
x, ζ̂

0) on E0 satisfying the next three conditions.

(A.1) X0 and X̂0 are in weak duality with respect to m0; that is, for every
α > 0 and f, g ∈ B+(E0),
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E0

Ĝ0
αf(x)g(x)m0(dx) =

∫
E0

f(x)G0
αg(x)m0(dx),

where G0
α and Ĝ0

α are the resolvent of X0 and X̂0, respectively.

(A.2) X0 and X̂0 are approachable to {a} but admit no killings inside E0:
for every x ∈ E0,

P0
x

(
ζ0 <∞, X0

ζ0− = a
)
> 0 and P0

x

(
ζ0 <∞, X0

ζ0− ∈ E0

)
= 0, (4.1)

P̂0
x

(
ζ̂0 <∞, X̂0bζ0− = a

)
> 0 and P̂0

x

(
ζ̂0 <∞, X̂0bζ0− ∈ E0

)
= 0. (4.2)

Here for a Borel set B ⊂ E, the notation “X0
ζ0− ∈ B” means that the left limit

of X0
t at t = ζ0 exists under the topology of E and takes values in B ⊂ E.

We use the same convention for X̂.
We shall use the same notations as in [16]: for x ∈ E0 and α > 0,

ϕ(x) := P0
x

(
ζ0 <∞, X0

ζ0− = a
)

and uα(x) := E0
x

[
e−αζ0

: X0
ζ0− = a

]
.

(4.3)
As in §2, the X0-energy functional of X0-excessive measure µ and X0-
excessive function v is denoted by L(0)(µ, v). The corresponding notations
for X̂0 will be designated by ϕ̂, ûα, L̂

(0). We use (u, v) to denote the inner
product between u and v in L2(E0,m0), that is, (u, v) =

∫
E0
u(x)v(x)m0(dx).

We say that a strong Markov process X (resp. X̂) on E is an extension of
X0 (resp. X̂0) if the subprocess on E0 of X (resp. X̂) killed upon hitting the
point a is identical in law to X0 (resp. X̂0).

Let us now consider two Borel right processes X = (Xt,Px, ζ) and X̂ =
(X̂t, P̂x, ζ̂) on E satisfying the next four conditions.

(1) X and X̂ are in weak duality with respect to a σ-finite measure m on E
with m|E0 = m0.

(2) X and X̂ are extensions of X0 and X̂0 respectively.
(3) The point a is regular for itself with respect to X:

Pa(σa = 0) = 1,

where σa = inf{t > 0 : Xt = a} is the hitting time of a by X.
(4) X admits no sojourn at the point a, that is,

Px

(∫ ∞

0

1{a}(Xs)ds = 0
)

= 1 for every x ∈ E.

Under (1), we can and do assume that both X and X̂ possess cadlag paths
up to their life times.
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Proposition 4.1 Assume that the above conditions (1), (2), (3) and (4)
hold. Then

(i) The measure m does not charging on {a}: m({a}) = 0
(ii) X admits no jumping from E0 to the point a: for every x ∈ E0,

Px (Xt− ∈ E0, Xt = a for some t ∈ (0, ζ)) = 0, (4.4)

(iii) X admits no jump from the point a to E0 in the following sense:

Px (Xt− = a, Xt ∈ E0 for some t ∈ (0, ζ)) = 0 for q.e. x ∈ E. (4.5)

Here q.e. means except on an m-polar set for X.
(iv) The one point set {a} is not m-polar for X. Let functions ϕ and uα be

defined as in (4.3). Then

ϕ(x) = Px(σa <∞) and uα(x) = Ex

[
e−ασa

]
for x ∈ E0. (4.6)

(v) uα, ûα ∈ L1(E0,m0) for every α > 0.

Proof. (i). This is immediate from (1), (4) for X as

Ĝαf(a)m({a}) =
∫

E

f(x)Gα1{a}(x)m(dx) = 0 for every f ∈ B+(E).

(ii). It follows from (4.1) and (2) that

Px (Xσa− ∈ E0, σa <∞) = 0 for every x ∈ E0. (4.7)

For any open set O that has a positive distance from {a}, let {σn
a , n ≥

0}, {ηn, n ≥ 0} be the stopping times defined by

η0 = 0, σ0
a = σa, η

n = σn−1
a + σO ◦ θσn−1

a
, σn

a = ηn + σa ◦ θηn (4.8)

with an obvious modification after one of them becomes infinity. Clearly the
time set

{t ∈ (0, ζ(ω)) : Xt−(ω) ∈ O, Xt(ω) = a} ⊂ {σn
a (ω); n = 0, 1, 2, · · · }.

Thus it follows from the strong Markov property of X and (4.7) that for every
x ∈ E0,

Px (there is some t > 0 such that Xt− ∈ O, Xt = a) = 0.

Letting O increase to E0 establishes (4.4).
(iii). Clearly, property (ii) also holds for X̂:

P̂x

(
X̂t− ∈ E0, X̂t = a for some t ∈ (0, ζ̂)

)
= 0 for every x ∈ E0. (4.9)
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We combine the above with a time reversal argument based on the stationary
Kuznetsov process (P, Zt, α < t < β) associated with X and X̂ as was formu-
lated in [21, §10] : the σ-finite measure P on a path space D((−∞,∞), E∆)
with a random birth time α and a random death time β is stationary under
the time shift of the path, and furthermore, if we put

Ẑt = Z(−t)− for t ∈ R, α̂ = −β and β̂ = −α,

then {Zt, 0 ≤ t < β} (resp. {Ẑt, 0 ≤ t < β̂}) on {Z0 ∈ E} (resp. {Ẑ0 ∈ E})
is a copy of {Xt, 0 ≤ t < ζ} (resp. {X̂t, 0 ≤ t < ζ̂}) under Pm(resp. P̂m).
We shall use the formula (10.5) of [21, §10] which express a precise meaning
of this property.

Consider the set

Λ = {Zt− = a and Zt ∈ E0, for some t ∈ (α, β)}.

Then
Λ = {Ẑt− ∈ E0 and Ẑt = a, for some t ∈ (α̂, β̂)},

and thus Λ =
⋃

r∈Q+

Λr with

Λr = {α̂ < r < β̂, Ẑt− ∈ E0, Ẑt = a for some t > r}.

According to (10.5) of [21, §10], P(Λr) is equal to the integral of the left hand
side of (4.7) with respect to m for each rational r. Therefore P(Λ) = 0.

Denote by h(x) the function of x ∈ E appearing in the left hand side of
(4.5). By (10.5) of [21, §10] again, we have∫

E

h(x)m(dx) = P (Zt− = a and Zt ∈ E0, for some t ∈ (0, β), α < 0 < β)

≤ P(Λ) = 0.

Consequently, h = 0 m-a.e. and hence q.e. on E because h is X-excessive (cf.
[5, §2]).
(iv). On account of [2, p.59] (see also [21, Proposition 15.7] when E is a Lusin
space),

Px(0 < σ′a < σa) = 0, where σ′a = inf{t : Xt− = a}, x ∈ E.

On the other hand, (A.2) and (2) imply for ζ0 = σa ∧ ζ that for x ∈ E0,

Px(σa < σ′a) ≤ Px(σa <∞, Xσa− 6= a) ≤ Px(ζ0 <∞, Xζ0− ∈ E0) = 0.

Hence Px(σa = σ′a) = 1 and

ϕ(x) = Px(ζ0 <∞, Xζ0− = a) = Px(σa <∞) for x ∈ E0.
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In particular,

Pm(σa <∞) =
∫

E0

ϕ(x)m(dx) > 0

by (A.2) and therefore {a} is not m-polar for X.
(v). By the strong Markov property of X̂,

Ĝαf(x) = Ĝ0
αf(x) + ûα(x)Ĝαf(a), x ∈ E.

We can take a non-negative m-integrable function f on E such that Ĝαf(a) >
0. Then

Ĝαf(a)(ûα, 1) ≤ (Ĝαf, 1) = (f,Gα1) ≤ 1
α

(f, 1) <∞,

yielding the m0-integrability of ûα. Similar, we have uα ∈ L1(E0,m0). �

Theorem 4.2 Assume that X and X̂ are two Borel right processes on E
satisfying conditions (1), (2), (3) and (4) in this section. Let {Gα, α > 0}
and {Ĝα, α > 0} denote the resolvents of X and X̂, respectively. Then there
exist constants δ0 ≥ 0, δ̂0 ≥ 0 such that

L(0)(ϕ̂ ·m0, 1− ϕ) + δ0 = L̂(0)(ϕ ·m0, 1− ϕ̂) + δ̂0, (4.10)

and for every f ∈ B+(E) and α > 0,

Gαf(a) =
(ûα, f)

α(ûα, ϕ) + L(0)(ϕ̂ ·m0, 1− ϕ) + δ0
, (4.11)

Gαf(x) = G0
αf(x) + uα(x)Gαf(a) for x ∈ E0, (4.12)

Ĝαf(a) =
(uα, f)

α(uα, ϕ̂) + L̂(0)(ϕ ·m0, 1− ϕ̂) + δ̂0
, (4.13)

Ĝαf(x) = Ĝ0
αf(x) + ûα(x)Ĝαf(a) for x ∈ E0. (4.14)

Corollary 4.3 Borel right processes X and X̂ on E satisfying conditions
(1)-(4) of this section are unique in law up to a parameter δ0 satisfying

δ0 ≥ max
{
L̂(0)(ϕ ·m0, 1− ϕ̂)− L(0)(ϕ̂ ·m0, 1− ϕ), 0

}
.

Proof of Theorem 4.2. In view of conditions (1)-(4) of this section and
Proposition 4.1, X satisfies the conditions (C.1)-(C.2) of §2 so that Theorem
3.2 is applicable to X.

The identity (4.12) is a simple consequence of the strong Markov property
of X applied to the hitting time σa. In order to show (4.11), we consider the
local time ` = {`t, t ≥ 0} of X with Revuz measure δ{a} and the W -valued
point process p associated with ` defined by (2.11). By Lemma 3.1, p under
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Pa is an absorbed Poisson point process and admits the representation (3.3)
in terms of a W -valued Poisson point process p̃ defined on some probability
space (Ω̃, P̃) together with its hitting time T̃ of W− ∪ {∂}.

Let n be the characteristic measure of p̃. Then, for any non-negative pre-
dictable process {a(t, w, ω̃), t ≥ 0, w ∈W, ω̃ ∈ Ω̃}, we have

Ẽ

∑
s≤t

a(s, p̃s, ω̃)

 = Ẽ

[∫
W×(0,t]

a(s, w, ω̃)n(dw)ds

]
, (4.15)

because the compensator of p̃ equals t n(·) (cf. [23, §II.3]).
We now proceed along the same line as in [16, Remark 4.2]. The terminal

time of w ∈W is denoted by ζ(w): for w = kσa
(ω) with ω ∈ Ω, ζ(w) = σa(ω).

We put for f ∈ B+(E0)

f̌α(w) =
∫ ζ(w)

0

e−αtf((w(t))dt, w ∈W, α > 0.

Note that t 7→ Xt(ω) has only at most countably many discontinuous points.
Thus by (2.2) and the condition (4), M(ω) has zero Lebesgue measure almost
surely. So we have Pa-a.s.∫ ∞

0

e−αtf(Xt)dt =
∑

s<`∞

∫ τs

τs−

e−αtf(Xt)dt+
∫ ∞

τ`∞−

e−αtf(Xt)dt

=
∑

s<`∞

e−ατs− f̌α(ps) + e−ατL∞− f̌α(p`∞), (4.16)

which is equivalent in law to∑
s< eT

e−αS(s−)f̌α(p̃+
s ) + e−αS(T̃−)f̌α(p̃eT ), under P̃, (4.17)

where {p̃+
s , s > 0} is a Poisson point process defined by p̃+

s = p̃s for s ∈
Dep+ = {s ∈ Dep : p̃s ∈ W+} and S(s) =

∑
r≤s ζ(p̃

+
r ). The characteristic

measure of {p̃+
s , s > 0} is the restriction n+ of n on W+.

First we claim that

Ẽ
[
e−αS(s)

]
= exp(−α(ûα, ϕ)s). (4.18)

Since

e−αS(s) − 1 =
∑
r≤s

{
e−αS(r) − e−αS(r−)

}
=

∑
r≤s

e−αS(r−)
{
e−αζ(p+

r ) − 1
}
,

it follows from (4.15) that

Ẽ
[
e−αS(s)

]
− 1 = −c

∫ s

0

Ẽ
[
e−αS(r)

]
dr,
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with

c = n+(1− e−αζ) = n(1− e−αζ ; ζ <∞) = n

{
α

∫ ζ

0

e−αtdt; ζ <∞

}

= α

∫ ∞

0

e−αtn(t < ζ <∞)dt.

Due to (3.5) (see also (2.8)), we have accordingly

c = α

∫ ∞

0

e−αtνt(ϕ)dt = α(ûα, ϕ),

which is finite by Proposition 4.1(v). The identity (4.18) then follows.
On the other hand, we have from Theorem 3.2 and the basic properties of

Poisson point processes,

(i) T̃ has an exponential distribution with exponent L(0)(ϕ̂ ·m0, 1−ϕ) + δ0,
where δ0 is defined by (3.6).

(ii) The three objects {p̃+
s , s > 0}, T̃ and p̃eT are independent.

(iii) The law of p̃eT is n̄−(W− ∪ {∂})−1n̄− = (L(0)(ϕ̂ ·m0, 1−ϕ) + δ0)−1n̄−,
where n̄− is the restriction of n on W− ∪ {∂}.

Taking these facts and formula (4.15) for p̃+ into account, we get from
(4.16),(4.17) and (4.18),

Gαf(a) = Ẽ

∑
s< eT

e−αS(s−)f̌α(p̃+
s ) + e−S( eT−)f̌α(p̃eT )


= Ẽ

[∫ eT
0

e−α(buα,ϕ)sds

]
n+(f̌α)

+Ẽ
(
e−α(buα,ϕ) eT )

(L(0)(ϕ̂ ·m0, 1− ϕ) + δ0)−1n−(f̌α)

=
n+(f̌α)

α(ûα, ϕ) + L(0)(ϕ̂ ·m0, 1− ϕ) + δ0
+

n−(f̌α)
α(ûα, ϕ) + L(0)(ϕ̂ ·m0, 1− ϕ) + δ0

=
n(f̌α)

α(ûα, ϕ) + L(0)(ϕ̂ ·m0, 1− ϕ) + δ0
,

which coincides with the right hand side of (4.11) because we have from The-
orem 3.2

n(f̌α) =
∫ ∞

0

e−αtνt(f)dt = (ûα, f).

(4.13) can be obtained analogously.
Under the weak duality assumption (1), the denominators of (4.11) and

(4.13) must be equal. Since (ûα, ϕ) = (uα, ϕ̂) (see the first two equations in
the proof of Lemma 5.8), we must have the identity (4.10). �
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In the above proof, we did not use the property of X having no jumps
from the point a to E0, which is proved in Proposition 4.1(iii). But this prop-
erty reflects on the following property of the characteristic measure n of the
absorbed Poisson point process p considered in the above proof.

Proposition 4.4 n {w(0) 6= a} = 0.

Proof. By (4.5), we have Ea(
∑

s∈G 1Λ ◦ is) = 0 for Λ = {w(0) 6= a} and we
get n(Λ) = Q∗(Λ) = 0 from (2.6) and (3.4). �

Remark 2. In this section, we have assumed that E is a locally compact
separable metric space. But all assertions in this section remain valid for a
general Lusin space E except that the identities (4.6), (4.12), (4.14) hold only
for q.e. x ∈ E0 rather than for every x ∈ E0, because we need to replace the
usage of [2, p59] by [21, (15.7)] in the proof of (4.6). The uniqueness statement
in Corollary 4.3 should be modified accordingly in the Lusin space case.

We also note that the expression (4.11) of the resolvent has been obtained
in [12] by a different method for a general right process X and its excessive
measure m, in which case X̂ can be taken to be a dual moderate Markov
process. But the present proof is more useful in the next section.

5 Extending Markov process via Poisson point processes
of excursions

As in §4, let E be a locally compact separable metric space and a be a fixed
non-isolated point of E and m0 be a σ-finite measure on E0 := E \ {a} with
Supp[m0] = E. We extend m0 to a measure m on E by setting m({a}) = 0.
Note that m could be infinity on a compact neighborhood of a in E. Let
E∆ = E ∪ {∆} be the one point compactification of E. When E is compact,
∆ is added as an isolated point.

5.1 Excursion laws in duality

We shall assume that we are given two Borel standard processes X0 ={
X0

t ,P
0
x, ζ

0
}

and X̂0 =
{
X̂0

t , P̂
0
x, ζ̂

0
}

on E0 satisfying the following con-
ditions.

(A.1) X0 and X̂0 are in weak duality with respect to m0, that is, for every
α > 0, and f, g ∈ B+(E0),∫

E0

Ĝ0
αf(x)g(x)m0(dx) =

∫
E0

f(x)G0
αg(x)m0(dx),

where G0
α and Ĝ0

α are the resolvents of X0 and X̂0, respectively.
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(A.2) X0 and X̂0 satisfy, for every x ∈ E0,

P0
x

(
ζ0 <∞, X0

ζ0− = a
)
> 0,

P0
x

(
ζ0 <∞, X0

ζ0− ∈ {a, ∆}
)

= P0
x(ζ <∞), (5.1)

P̂0
x

(
ζ̂0 <∞, X̂0bζ0− = a

)
> 0,

P̂0
x

(
ζ̂0 <∞, X̂0bζ0− ∈ {a, ∆}

)
= P̂0

x(ζ̂ <∞).x (5.2)

Here, as in §4, for a Borel set B ⊂ E∆, the notation “X0
ζ0− ∈ B” means

that the left limit of t 7→ X0
t at t = ζ0 exists under the topology of E∆

and takes values in B.

The first condition in (5.1) (resp. (5.2)) means that X0 (resp. X̂0) is ap-
proachable to the point a, while the second condition in (5.1) (resp. (5.2))
implies that X0 (resp. X̂0) admits no killings inside E0.

As in §4, we put for x ∈ E0 and α > 0,

ϕ(x) := P0
x

(
ζ0 <∞, X0

ζ0− = a
)

and uα(x) := E0
x

[
e−αζ0

; X0
ζ0− = a

]
.

(5.3)
The corresponding notations for X̂0 will be designated by ϕ̂ and ûα. As in §2,
theX0-energy functional L(0)(ϕ̂·m0, v) of theX0-excessive measure ϕ̂·m0 and
an X0-excessive function v is well defined. Similarly the X̂0-energy functional
L̂(0)(ϕ · m0, v̂) is well defined. The inner product of u, v in L2(E0,m0) will
be denoted by (u, v), that is, (u, v) =

∫
E0
u(x)v(x)m0(dx). The space of all

bounded continuous functions on E0 will be denoted by Cb(E0).
We impose some more assumptions:

(A.3) uα, ûα ∈ L1(E0,m0) for every α > 0.

(A.4) G0f(x), Ĝ0f(x), x ∈ E0, are lower semi-continuous for any Borel
f ≥ 0. Here G0 denotes the 0-order resolvent of X0:

G0f(x) := Ex

[∫ ∞

0

f(Xt)dt
]

=↑ lim
α↓0

G0
αf(x)

for x ∈ E and Borel function f ≥ 0 on E. The 0-order resolvent Ĝ0 of X̂0

is similarly defined.

We note that, if G0
α(Cb(E0)) ⊂ Cb(E0), Ĝ0

α(Cb(E0)) ⊂ Cb(E0), α > 0, then
(A.4) is satisfied by the monotone class lemma.

The next condition will be imposed only when X0 is non-symmetric,
namely, when X0 6= X̂0.

(A.5) lim
x→a

uα(x) = lim
x→a

ûα(x) = 1, for every α > 0.
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The next condition (A.6) will be imposed only when X0 is not a diffusion,
namely, when

P0
m

(
X0

t− 6= X0
t for some t ∈ (0, ζ0)

)
> 0.

Note that X̂0 then has the same property in view of [21, §10]. According to
[31, (73.1), (47.10)], the standard process X0 on E0 has a Lévy system (N,H)
on E0. That is, N(x, dy) is a kernel on (E0,B(E0)) and H is a PCAF of X0 in
the strict sense with bounded 1-potential such that for any nonnegative Borel
function f on E0× (E0∪{∆0}) that vanishes on the diagonal and is extended
to be zero outside E0 × E0,

E0
x

∑
s≤t

f(X0
s−, X

0
s )

 = E0
x

[∫ t

0

∫
E0

f(X0
s , y)N(X0

s , dy)dHs

]
(5.4)

for every x ∈ E0 and t ≥ 0. Similarly, the standard process X̂0 has a Lévy
system (N̂ , Ĥ). Let µH and µ bH be the Revuz measure of the PCAF H of X0

and the PCAF Ĥ of X̂0 with respect to the measure m0 on E0, respectively.
Define

J0(dx, dy) := N(x, dy)µH(dx) and Ĵ0(dx, dy) := N̂(x, dy)µ bH(dx). (5.5)

The measures J0 and Ĵ0 are called the jumping measure of X0 and X̂0, re-
spectively. It is known (see [18]) that

J0(dx, dy) = Ĵ0(dy, dx) on E0 × E0. (5.6)

We now state the condition (A.6).

(A.6) Either E \ U is compact for any neighborhood U of a in E, or
for any open neighborhood U1 of a in E, there exists an open neighborhood
U2 of a in E with U2 ⊂ U1 such that

J0(U2 \ {a}, E0 \ U1) <∞ and Ĵ0(U2 \ {a}, E0 \ U1) <∞.

Throughout this section, we assume that we are given a pair of Borel
standard processes X0 and X̂0 on E0 satisfying conditions (A.1), (A.2),
(A.3), (A.4), and additionally (A.5) in non-symmetric case and (A.6) in
non-diffusion case. We aim at constructing (see Theorem 5.15) under these
conditions their right process extensions X, X̂ to E with resolvents (4.11),
(4.13) respectively. Theorem 5.16 will then be concerned with some stronger
conditions (A.1)’ and (A.4)’ to ensure the quasi-left continuity of the con-
structed processes so that they become standard.

We note that, if X0 is an m0-symmetric diffusion on E0, then the present
conditions (A.2), (A.3) are the same as the conditions A.1, A.2, A.3 as-
sumed in [16, §4], while the present (A.4) is weaker than A.4 of [16, §4] as
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is noted in the paragraph below (A.4). Therefore the results of this paper
extend the construction problem treated in [16, §4] to a more general case.
However we shall proceed along the same line as was laid in [16, §4].

In Theorem 5.17 at the end of this section, we shall present a stronger vari-
ant (A.2)’ of the condition (A.2) and prove using a time change argument
that, under the conditions (A.1), (A.2)’, (A.4) and additionally (A.5) in
non-symmetric case and (A.6) in non-diffusion case, the integrability condi-
tion (A.3) holds automatically and therefore can be dropped.

As is shown in [5, Lemma 3.1], the measure ϕ̂ ·m0 is X0-purely excessive
and accordingly there exists a unique entrance law {µt}t>0 for X0 character-
ized by

ϕ̂ ·m0 =
∫ ∞

0

µtdt. (5.7)

Analogously there exists a unique X̂0-entrance law {µ̂t}t>0 characterized by

ϕ ·m0 =
∫ ∞

0

µ̂tdt. (5.8)

Further by [5, Lemma 3.1], the Laplace transforms of µt, µ̂t satisfy∫ ∞

0

e−αt〈µt, f〉dt = (ûα, f) and
∫ ∞

0

e−αt〈µ̂t, f〉dt = (uα, f) (5.9)

for every α > 0 and f ∈ B+(E0). On account of the assumption (A.3), we
then have that for every t > 0,

µt(E0) <∞, µ̂t(E0) <∞, and
∫ 1

0

µs(E0)ds <∞,

∫ 1

0

µ̂s(E0)ds <∞.

(5.10)
We now introduce the spaces W ′ and W of excursions by

W ′ = {w : a cadlag function from (0, ζ(w)) to E0 for some ζ(w) ∈ (0,∞]} ,

W =
{
w ∈W ′ : if ζ(w) <∞ then w(ζ(w)−) := lim

t↑ζ(ω)
w(t) ∈ {a, ∆}

}
.(5.11)

We call ζ(w) the terminal time of the excursion w.
We are concerned with a measure n on the space W specified in terms of

the entrance law {µt, t > 0} and the transition semigroup {P 0
t , t ≥ 0} of X0

by ∫
W

f1(w(t1))f2(w(t2)) · · · fn(w(tn))n(dw) = Eµt1

[
n∏

k=1

fk(X0
tk−t1)

]
= µt1f1P

0
t2−t1f2 · · ·P

0
tn−1−tn−2

fn−1P
0
tn−tn−1

fn, (5.12)

for any 0 < t1 < t2 < · · · < tn, f1, f2, · · · , fn ∈ Bb(E0). Here, we use the
convention that w ∈W satisfies w(t) := ∆ for w ∈W and t ≥ ζ(w), and any
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function f on E0 is extended to E0 ∪∆ by setting f(∆) = 0. Further, on the
right hand side of (5.12), we employ an abbreviated notation for the repeated
operations

µt1

(
f1P

0
t2−t1

(
f2 · · ·P 0

tn−1−tn−2

(
fn−1P

0
tn−tn−1

fn

)
· · ·

))
.

Proposition 5.1 There exists a unique measure n on the space W satisfying
(5.12).

Proof. Let n be the Kuznetsov measure on W ′ uniquely associated with the
transition semigroup {P 0

t , t ≥ 0} and the entrance rule {ηu, u ∈ R} defined
by

ηu = 0 for u ≤ 0 and ηu = µu for u > 0,

as is constructed in [8, Chap XIX, §9] for a right semigroup. Because of the
present choice of the entrance rule, it holds that the random birth time α for
the Kuznetsov process is identically 0 (cf. [20, p54]).

On account of the assumption (A.2) for the standard process X0 on E0,
the same method of the construction of the Kuznetsov measure as in [8,
Chap.XIX, 9] works in proving that n is carried on the space W and sat-
isfies (5.12). �

We call n the excursion law associated with the entrance law {µt} for
X0. It is strong Markov with respect to the transition semigroup {P 0

t , t ≥ 0}
of X0. Analogously we can introduce the excursion law n̂ on the space W
associated with the entrance law µ̂t for X̂0.

We split the space W of excursions into two parts:

W+ := {w ∈W : ζ(w) <∞ and w(ζ−) = a} and W− := W \W+.
(5.13)

For w ∈W+, we define time-reversed path ŵ ∈W ′ by

ŵ(t) := w((ζ − t)−) = lim
t′↑t

w(ζ − t′), 0 < t < ζ. (5.14)

The next lemma asserts that the excursion laws n and n̂ restricted to W+

are interchangeable under this time reversion.

Lemma 5.2 For any tk > 0 and fk ∈ Bb(S0), (1 ≤ k ≤ n),

n

{
n∏

k=1

fk(w(t1 + · · ·+ tk)); W+

}
= µt1f1P

0
t2f2 · · ·P

0
tn−1

fn−1P
0
tn
fnϕ,

(5.15)

n

{
n∏

k=1

fk(w(t1 + · · ·+ tk)); W+

}
= n̂

{
n∏

k=1

fk(ŵ(t1 + · · ·+ tk)); W+

}
.

(5.16)
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Proof. (5.15) readily follows from (5.12) and the Markov property of n. As
for (5.16), we observe that, for α1, · · · , αn > 0,∫ ∞

0

· · ·
∫ ∞

0

e−
P

)k=1nαkn

{
n∏

k=1

fk(w(t1 + · · ·+ tk));W+

}
dt1 · · · dtn

= n{F (w); ζ <∞, w(ζ−) = a}, (5.17)

where, with t+ 0 := 0,

F (w) = n!
∫

0<t1<···<tn<ζ

n∏
k=1

{
e−αk(tk−tk−1)fk(w(tk))

}
dt1 · · · dtn.

Hence, for (5.16), it suffices to prove for fk ∈ Cb(E0), 1 ≤ k ≤ n,

n{F (w); ζ <∞, w(ζ−) = a} = n̂{F (ŵ); ζ <∞, w(ζ−) = a}. (5.18)

Changing of variables ζ− tk = sk for 0 ≤ k ≤ n in the following expression

F (ŵ) = n!
∫

0<t1<···<tn<ζ

n∏
k=1

{
e−αk(tk−tk−1)fk(w((ζ − tk)−))

}
dt1 · · · dtn,

where t0 := 0, and noting that

s0 = ζ and 0 < t1 < · · · < tn < ζ if and only if 0 < sn < · · · < s1 < ζ,

we obtain

F (ŵ) = n!
∫

0<sn<···<s1<ζ

n∏
k=1

{
e−αk(sk−1−sk)fk(w(sk))

}
ds1 · · · dsn

= n!
∫

0<sn<···<s1<∞
Γs1···sn(w)ds1 · · · dsn,

where

Γs1···sn(w) =
n∏

k=2

{
e−αk(sk−1−sk)fk(w(sk))

}
· e−α1(ζ−s1)f1(w(s1))1(0,ζ)(s1).

On the other hand, we get from (5.10) and the Markov property of n̂ that

n̂ {Γs1s2···sn(w); ζ <∞, w(ζ−) = a}

= n̂
{
fn(w(sn))e−αn(sn−1−sn) · · · f2((w(s2))e−α2(s1−s2)

f1(w(s1))uα1(w(s1)); s1 < ζ}
= e−

Pn
k=2 αk(sk−1−sk µ̂snfnP̂

0
sn−1−sn

fn−1P̂
0
sn−2−sn−1

fn−1

· · · P̂ 0
s2−s3

f2P̂
0
s1−s2

f1ûα1 .
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Therefore,

n̂ {F (ŵ); ζ <∞, w(ζ−) = a}

=
∫ ∞

0

dsnµ̂sn
fnĜ

0
αn
fn−1Ĝ

0
αn−1

· · · f3Ĝ0
α3
f2Ĝ

0
α2
f1ûα1 .

In view of (5.8), the weak duality (A.1), (5.15) and (5.17), we arrive at

n̂ {F (ŵ); ζ <∞, w(ζ−) = a}

=
〈
ϕ ·m0, fnĜ

0
αn
fn−1Ĝ

0
αn−1

· · · f3Ĝ0
α3
f2Ĝ

0
α2
f1ûα1

〉
=

(
fnϕ, Ĝ

0
αn
fn−1Ĝ

0
αn−1

· · · f3Ĝ0
α3
f2Ĝ

0
α2
f1ûα1

)
=

(
f1G

0
α2
f2G

0
α3
f3 · · ·G0

αn
fnϕ, ûα1

)
=

∫ ∞

0

e−α1t1µt1f1G
0
α2
f2G

0
α3
f3 · · ·G0

αn
fnϕdt1

= n {F (w); ζ <∞ and w(ζ−) = a} ,

the desired identity (5.18). This establishes (5.16). �

Next we define

Wa := {w ∈W : w(0+) := lim
t↓0

w(t) = a}. (5.19)

Lemma 5.3 n {W \Wa} = 0 and n̂ {W \Wa} = 0.

Proof. The preceding lemma implies that

n
{
W+ \Wa

}
= n

{
W+ ∩ (w(0+) = a)c

}
= n̂

{
W+ ∩ (ŵ(0+) = a)c

}
= n̂

{
W+ ∩ (w(ζ−) = a)c

}
= 0.

We then have for each t > 0

n {ϕ(w(t)); (ζ > t) ∩ (w(0+) = a)c} = n
{
(W+ \Wa) ∩ (ζ > t)

}
= 0.

As ϕ(x) > 0 for every x ∈ E0 by the assumption (A.2). we conclude that

n {(W \Wa) ∩ (ζ > t)} = 0 for every t > 0,

and therefore n {(W \Wa)} = 0 after letting t ↓ 0. The same property of n̂
can be shown analogously. �
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Lemma 5.4 For any neighborhood U of a in E, define

τU (w) = inf{t > 0 : w(t) /∈ U} for w ∈W.

Then
n {τU < ζ} <∞ and n̂ {τU < ζ} <∞.

Proof. We only give a proof for n. Let V be any neighborhood of a in E. It
suffices to show

n(τU < ζ) <∞

for some neighborhood U of a with U ⊂ V. We choose such U as follows. Let
us fix a relatively compact open neighborhood U1 of a in E. When X0 is a
diffusion, we put U = V ∩ U1. When X0 is not a diffusion and the second
condition of (A.5) is fulfilled, we take U2 in the condition for U1 and put
U = V ∩ U2.

By virtue of the relation

ϕ− u1 = G0
1ϕ = G0u1

and the assumption (A.4), the function G0
1ϕ is lower semi-continuous on

E0. Furthermore, since ϕ is X0-excessive and strictly positive by assumption
(A.2), G0

1ϕ is moreover strictly positive on E0. As U1 is compact in E,

δ :=
1
2

inf
x∈U1\U

G0
1ϕ(x) > 0. (5.20)

Since G0
1ϕ(x) =

∫ ∞

0

e−t Px

(
t < ζ0 <∞, X0

ζ0− = a
)
dt, we have

Px

(
δ < ζ0 <∞, X0

ζ0− = a
)
> δ for every x ∈ U1 \ U. (5.21)

We shall use the notation τU not only for w ∈ W but also for the sample
path of the Markov process X0. Using the preceding lemma, we have

n
{
τU < ζ0

}
= lim

ε↓0
n

{
ε < τU < ζ0

}
= lim

ε↓0

∫
U

µε(dx)P0
x

{
τU < ζ0

}
= I + II,

where

I : = lim
ε↓0

∫
U

µε(dx)P0
x

(
τU < ζ0, X0

τU
∈ U1 \ U

)
,

II : = lim
ε↓0

∫
U

µε(dx)P0
x

(
τU < ζ0, X0

τU
∈ E0 \ U1

)
.

From (5.21) and (5.10), it follows that
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I ≤ limε↓0

∫
U

µε(dx)E0
x

[
δ−1PX0

τU

(
δ < ζ0 <∞, X0

ζ0− = a
)
;

τU < ζ0, X0
τU

∈ U1 \ U
]

≤ δ−1 lim
ε↓0

∫
E0

µε(dx)P0
x(δ < ζ0 <∞, X0

ζ0− = a)

≤ δ−1 lim
ε↓0

∫
E0

µε(dx)P0
x(δ < ζ0)

= δ−1 lim
ε↓0

µε+δ(E0)

≤ δ−1µδ(E0) <∞.

II may not vanish when X0 is not a diffusion. In this case, let (N(x, dy),H)
be the Lévy system of X0 appearing in the condition (A.5). Note that

II = lim
ε↓0

∫
U

µε(dx)E0
x

[∫ τU

0

1U (X0
s )N(X0

s , E \ U1)dHs

]
≤ lim

ε↓0

∫
E0

µε(dx)E0
x

[∫ ∞

0

1U (X0
s )N(X0

s , E \ U1)dHs

]
= lim

ε↓0

∫
E0

µε(dx)G0µK(x)

where µK(dx) := 1U (x)N(x,E0 \ U1)µH(dx) is the Revuz measure of the
PCAF of X0

Kt :=
∫ t

0

1U (X0
s )N(X0

s , E \ U1)dHs, t ≥ 0,

and G0µK(x) := Ex [K∞]. Note that µK is a finite measure on E0 by assump-
tion (A.5). For α > 0 and x ∈ E0, we define

G0
αµK(x) := Ex

[∫ ∞

0

e−αtdKt

]
.

Observe that αG0
αG

0µK increases to G0µK as α ↑ ∞. We have, by (5.7), the
identity G0

αG
0µK = G0G0

αµK and [21, (9.3)],∫
E0

µε(dx)G0µK(x) = lim
α→∞

α

∫
E0

µε(dx)G0G0
αµK(x)

= lim
α→∞

∫ ∞

0

〈µεP
0
t , αG

0
αµK〉dt

≤ lim
α→∞

∫ ∞

0

〈µt, αG
0
αµK〉dt = lim

α→∞
〈ϕ̂ ·m0, αG

0
αµK〉

= lim
α→∞

〈αĜ0
αϕ̂, µK〉 =

∫
E0

ϕ̂(x)µK(dx) ≤ µK(E0) <∞.
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Hence we get the desired finiteness of II.
When the first condition of (A.5) is fulfilled, the first half of the preceding

proof is enough if we replace U, U1 with V, E0 respectively. �

Lemma 5.5 n(W−) = L0(ϕ̂ ·m0, 1− ϕ) <∞ and
n̂(W−) = L̂0(ϕ ·m0, 1− ϕ̂) <∞.

Proof. Since n
(
ζ > t; W−)

= 〈µt, 1 − ϕ〉, the first identity follows from [5,
Lemma 3.1] by letting t ↓ 0. Take a relatively compact neighborhood U of a
in E. Since a ∈ E and ∆ is a one-point compactification of E, we have

{ζ <∞ and w(ζ−) = ∆} ⊂ {τU < ζ}. (5.22)

Hence for any t > 0,

n
(
W−)

= n {ζ <∞, w(ζ−) = ∆}+ n {ζ = ∞}
≤ n {τU < ζ}+ n {ζ > t}
= n {τU < ζ}+ µt(E0),

which is finite by Lemma 5.4 and (5.10). The second assertion can be shown
similarly. �

5.2 Poisson point processes on Wa ∪ {∂} and a new process Xa

By Lemma 5.3, the excursion law n is concentrated on the space Wa defined
by (5.19). In correspondence to (5.13), we define

W+
a := {w ∈W+ : lim

t↓0
w(t) = a} and W−

a := {w ∈W− : lim
t↓0

w(t) = a},

so that Wa = W+
a + W−

a . In the sequel however, we shall employ slightly
modified but equivalent definitions of those spaces by extending each w from
an E0-valued excursion to E-valued one as follows:

Wa = {w : a cadlag function from [0, ζ(w)) to E for some ζ(w) ∈ (0,∞]
withw(0) = a, w(t) ∈ E0 for t ∈ (0, ζ(w))

and w(ζ(w)−) ∈ {a, ∆} if ζ(w) <∞}. (5.23)

Any w ∈ Wa with the properties ζ(w) < ∞ and w(ζ(w)−) = a will be
regarded to be a cadlag function from [0, ζ(w)] to E by setting w(ζ(w)) = a.
We further define

W+
a := {w : a cadlag function from [0, ζ(w)] to E for some ζ(w) ∈ (0,∞)

with w(t) ∈ E0 for t ∈ (0, ζ(w)) and w(0) = w(ζ(w)) = w(ζ(w)−) = a},
W−

a := Wa \W+
a .
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The excursion law n will be considered to be a measure on Wa defined by
(5.23). Let us add an extra point ∂ to Wa which represents a specific path
constantly equal to ∆. Fix a non-negative constant δ0 and we assign a point
mass δ0 to {∂} and extend the measure n on Wa to a measure n̄ on Wa ∪{∂}
by

n̄(Λ) =
{

n(Λ) if Λ ⊂Wa

n(Λ ∩Wa) + δ0 if ∂ ∈ Λ (5.24)

for Λ ⊂Wa ∪{∂}. The restrictions of n̄ to W+
a and W−

a ∪{∂} are denoted by
n+ and n̄−, respectively.

Let p = {ps : s ∈ Dp} be a Poisson point process on Wa ∪ {∂} with
characteristic measure n̄ defined on an appropriate probability space (Ωa,P).
We then let p+ and p− be the point processes obtained from p by restricting
to W+

a and W−
a ∪ {∂} respectively, that is,

Dp+ = {s ∈ Dp : ps ∈W+
a } and Dp− = {s ∈ Dp : ps ∈W−

a ∪ {∂}}.
(5.25)

Then {p+
s , s > 0}, {p−s , s > 0} are mutually independent Poisson point pro-

cesses on W+
a and W−

a ∪{∂} with characteristic measures n+ and n̄−, respec-
tively. Clearly,

ps = p+
s + p−s .

Recall that ζ(p+
r ) denotes the terminal time of the excursion p+

r . We define

J(s) :=
∑
r≤s

ζ(p+
r ) for s > 0 and J(0) := 0. (5.26)

Lemma 5.6 (i) J(s) <∞ a.s. for s > 0.
(ii) {J(s)}s≥0 is a subordinator with

E
[
e−αJ(s)

]
= exp (−α(ûα, ϕ)s) . (5.27)

Proof. (i) We write J(s) as J(s) = I + II with

I :=
∑

r≤s, ζ(p+
r )≤1

ζ(p+
r ) and II :=

∑
r≤s, ζ(p+

r )>1

ζ(p+
r ).

Since n+(ζ > 1) ≤ µ1(E0) < ∞ by (5.10), r in the sum II is finite a.s. and
hence II <∞ a.s. On the other hand,

E(I) = sn+(ζ; ζ ≤ 1) ≤ sn+(ζ ∧ 1)

= sn+

{∫ 1

0

1(0,ζ)(t)dt
}

= s

∫ 1

0

n+(ζ > t)dt ≤ s

∫ 1

0

µt(E0)dt,

which is finite by (5.10). Hence I <∞ a.s.
(ii) This can be shown exactly in the same way as that for (4.18) in the proof
of Theorem 4.2 by using the identity (5.9). �
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In view of Lemma 5.4 and Lemma 5.6, by subtracting a P-negligible set
from Ωa if necessary, we may and do assume that the next three properties
hold for every ω ∈ Ωa:

J(s) <∞ for every s > 0, (5.28)

lim
s→∞

J(s) = ∞, (5.29)

and, for any finite interval I ⊂ (0,∞) and any neighborhood U of a in E,{
s ∈ I : τU (p+

s ) < ζ(p+
s )

}
is a finite set. (5.30)

Let T be the first time of occurrence of the point process {p−s , s > 0},
namely,

T = inf{s > 0 : s ∈ Dp−}. (5.31)

Since by Lemma 5.5

n̄−(W−
a ∪ {∂}) = n(W−

a ) + δ0 = L0(ϕ̂ ·m0, 1− ϕ) + δ0 <∞,

we see that T and p−T are independent and

P(T > t) = e−(L(bϕ·m0,1−ϕ)+δ0)t and p−T
dist= (L(ϕ̂ ·m0, 1−ϕ) + δ0)−1 n̄−.

(5.32)
We are now in a position to produce a new process X = {Xt, t ≥ 0} out

of the point processes of excursions p±.
(i) For 0 ≤ t < J(T−), there is an s ≥ 0 such that

J(s−) ≤ t ≤ J(s).

We define

Xa
t :=

{
p+

s (t− J(s−)) if J(s)− J(s−) > 0,
a if J(s)− J(s−) = 0. (5.33)

It is easy to see that Xa is well-defined.
(ii) If p−T ∈W−

a , then we define

ζω := J(T−) + ζ(p−T ) and Xa
t := p−T (t− J(T−)) for J(T−) ≤ t < ζω.

(5.34)
(iii) If p−T = ∂, then we define

ζω := J(T−). (5.35)

In this way, the E-valued path

{Xa
t , 0 ≤ t < ζω}

is well-defined and enjoys the following properties:
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Xa
0 = a, is cadlag in t ∈ [0, ζω) and continuous when Xa

t = a,

and Xa
ζω− ∈ {a,∆} whenever ζω <∞. (5.36)

The second property is a consequence of (5.30). If p−T ∈ W−
a and ζω < ∞,

then Xa
ζω− = ∆. If T < ∞, p−T = ∂, then T /∈ Dp+ and hence by (5.35), we

have Xa
ζω− = Xa

J(T−)− = a. Thus the third property holds.
For this process Xa = {Xa

t , 0 ≤ t < ζω,P}, let us put

Gαf(a) = E

[∫ ζω

0

e−αtf(Xa
t )dt

]
, α > 0, f ∈ B(E). (5.37)

Similarly we assign a non-negative mass δ̂0 to the death path ∂ and extend
the measure n̂ onWa to a measure n̂ onWa∪{∂}. By making use of the Poisson
point process p̂ on Wa ∪ {∂} with the characteristic measure n̂ on a certain
probability space (Ω̂a, P̂), we can construct a cadlag process {X̂a

t , 0 ≤ t <

ζ̂ω̂, P̂) on E quite analogously. The corresponding quantity to (5.37) is denoted
by Ĝαf(a). We can then obtain the first identity of the next proposition
exactly in the same way as in the proof of Theorem 4.2 using (5.9), Lemma
5.6 and (5.32). An analogous consideration gives the second identity.

Proposition 5.7 For α > 0 and f ∈ B(E), it holds that

Gαf(a) =
(ûα, f)

α(ûα, ϕ) + L(0)(ϕ̂ ·m0, 1− ϕ) + δ0
. (5.38)

Ĝαf(a) =
(uα, f)

α(uα, ϕ̂) + L̂0(ϕ ·m0, 1− ϕ̂) + δ̂0
. (5.39)

For α > 0 and f ∈ B(E), define

Gαf(x) := G0
αf(x) +Gαf(a)uα(x) for x ∈ E0, (5.40)

Ĝαf(x) := Ĝ0
αf(x) + Ĝαf(a)ûα(x) for x ∈ E0. (5.41)

Lemma 5.8 {Gα, α > 0} and {Ĝα, α > 0} are sub-Markovian resolvents on
E. They are in weak duality with respect to m if and only if

L(0)(ϕ̂ ·m0, 1− ϕ) + δ0 = L̂(0)(ϕ ·m0, 1− ϕ̂) + δ̂0. (5.42)

Proof. By making use of the resolvent equations for G0
α, Ĝ

0
α, their weak du-

ality with respect to m0 and the equations

uα(x)− uβ(x) + (α− β)G0
αuβ(x) = 0, α, β > 0, x ∈ E0, (5.43)

ûα(x)− ûβ(x) + (α− β)Ĝ0
αûβ(x) = 0, α, β > 0, x ∈ E0, (5.44)

we can easily check the resolvent equations
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Gαf(x)−Gβf(x) + (α− β)GαGβf(x) = 0, x ∈ E,

Ĝαf(x)− Ĝβf(x) + (α− β)ĜαĜβf(x) = 0, x ∈ E.

Moreover we get as in [16, Lemma 2.1] that

αGα1(x) = αG0
α1(x) + uα(x)

α(ûα, ϕ) + α(ûα, 1− ϕ)
α(ûα, ϕ) + L(ϕ̂ ·m0, 1− ϕ) + δ0

≤ 1− uα(x) + uα(x) = 1, x ∈ E0,

and similarly, αGα1(a) ≤ 1.
The m-weak duality∫

E

Ĝαf(x)g(x)m(dx) =
∫

E

f(x)Gαg(x)m(dx), f, g ∈ B+(E),

holds if and only if the denominators of the right hand sides of (5.38) and
(5.39) coincide. Since (ûα, ϕ) = (uα, ϕ̂) by the above equations for uα, ûα, we
get the last conclusion. �

5.3 Regularity of resolvent along the path of Xa

Let {Un} be a decreasing sequence of open neighborhoods of the point a in E

such that Un ⊃ Un+1 and
∞⋂

n=1

Un = {a}. For α > 0 and 0 < ρ < 1, let

A = Aα,ρ := {x ∈ E0 : uα(x) < ρ}.

We then define

σn := inf{t > 0 : X0
t ∈ Un ∩ E0}, τn := inf{t > 0 : X0

t ∈ Un ∩A},

and σ := limn→∞ σn, with the convention that inf ∅ = ∞. The stopping time
σ may be called the approaching time to a of X0.

The next lemma can be proved exactly in the same way as the proof of
[16, Lemma 4.7].

Lemma 5.9 For any α > 0, ρ ∈ (0, 1) and x ∈ E0,

lim
n→∞

P0
x {τn < σ <∞} = 0. (5.45)

Lemma 5.10 The following are ture.

(i) For any x ∈ E0, P0
x-a.s. on {σ <∞},

lim
t↑σ

uα(X0
t ) = 1 for every α > 0. (5.46)
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(ii) n(Λ ∩W+
a ) = 0 where

Λ =
{
w ∈Wa : ∃α > 0, lim inf

t↑ζ
uα(w(t)) < 1

}
.

(iii) n(Λ̂) = 0 where

Λ̂ =
{
w ∈Wa : ∃α > 0, lim inf

t↓0
ûα(w(t)) < 1

}
.

Proof. Let 0 < ρ < 1. If σ < ∞ and if limt↑σuα(X0
t ) < ρ, then for any small

ε > 0 there exists t ∈ (σ − ε, σ) such that uα(X0
t ) < ρ, and so τn < σ for all

n. Therefore by the preceding lemma

P0
x

(
lim inf

t↑σ
uα(X0

t ) < ρ, σ <∞
)

= 0.

Since uα is decreasing in α and ρ can be taken arbitrarily close to 1, we obtain
(5.46).
(ii) follows from (i) as

n(Λ ∩W+
a ) = lim

ε↓0
n(Λ ∩W+

a ∩ {ε < ζ})

= lim
ε↓0

∫
E0

µε(dx)P0
x

(
lim inf

t↑σ
uα(X0

t ) < 1, σ <∞ for every α > 0
)

= 0.

(iii). Part (ii) combined with Lemma 5.2 and a similar reasoning as in the
proof of Lemma 5.3 leads us to

n(Λ̂ ∩W+
a ) = n̂({ŵ ∈ Λ̂} ∩W+

a ) = 0,

and also n(Λ̂) = 0. �

Denote by Q+ the set of all positive rational number and by Cb(E) the
space of all bounded continuous functions on E. Let us fix an arbitrary
countable subfamily L of Cb(E). We extend functions uα(x) and G0

αf(x) for
f ∈ Cb(E) to be functions on E by setting uα(a) = 1 and G0

αf(a) = 0
respectively. Functions ûα and Ĝ0

αf are similarly extended to E.
As uα and G0

αf for a non-negative f ∈ Cb(E) are α-excessive with respect
to the process X0, it is well-known (cf. [2]) that

uα(X0
t ), G0

αf(X0
t ) are right continuous in t ∈ [0, ζ) P0

x−a.s. x ∈ E0.
(5.47)

Suppose that X0 is m0-symmetric: X0 = X̂0. Then uα = ûα and hence
by Lemma 5.10

n
(

lim inf
t↓0

uα(w(t)) < 1
)

= 0.
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On account of (5.47) and the inequality aG0
α1(x) ≤ 1 − uα(x), x ∈ E, after

subtracting a suitable n-negligible set from Wa if necessary, we may and do
assume that, for any f ∈ L, α ∈ Q+,

uα(w(t)) and G0
αf(w(t)) are right continuous in t ∈ [0, ζ) for w ∈Wa,

uα(w(ζ−)) = 1 , G0
αf(w(ζ−)) = 0, for w ∈W+

a . (5.48)

When X0 is non-symmetric, uα 6= ûα and the above argument does not
work. However, since we have assumed in this non-symmetric case the condi-
tion (A.5), the above property (5.48) holds by Lemma 5.3.

Lemma 5.11 Let 0 < ρ < 1 and set, for α > 0,

W̃ρ =

{
w ∈W+

a : sup
0≤t≤ζ

{1− uα(w(t))} > ρ

}
.

Then n+(W̃ρ) <∞.

Proof. Define δ := − 1
α log(1− ρ

2 ) > 0. For any x with 1−uα(x) ≥ ρ, we have

P0
x(σ > δ) ≥ E0

x

[
1− e−ασ;σ > δ

]
= E0

x

[
1− e−ασ

]
−E0

x

[
1− e−ασ;σ ≤ δ

]
≥ 1− uα(x)− (1− e−αδ) ≥ ρ− (1− e−αδ) =

ρ

2
.

Therefore if we define

τ := inf{t > 0 : 1− uα(w(t)) > ρ},

then for any neighborhood U of a,

n+(W̃ρ) = n+(τ < ζ0) = lim
ε↓0

n+(ε < τ < ζ0)

= lim
ε↓0

∫
E0

µε(dx)P0
x(τ < ζ0 <∞)

≤ lim inf
ε↓0

∫
E0

µε(dx)E0
x

[(
2
ρ

)
P0

X0
τ
(σ > δ); τ < ζ0

]
≤ 2
ρ

lim inf
ε↓0

∫
E0

µε(dx)P0
x(σ > δ, ζ0 <∞)

≤ 2
ρ

lim
ε↓0

∫
E0

µε(dx)P0
x(ζ0 > δ) +

2
ρ

lim
ε↓0

∫
E0

µε(dx)P0
x(ζ0 <∞, Xζ0− = ∆)

≤ 2
ρ

lim
ε↓0

µε+δ(E0) +
2
ρ
n(τU < ζ),

which is finite in view of (5.10) and Lemma 5.4. �
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In last subsection, we have constructed a process Xa = {Xa
t , t ∈ [0, ζω)}

starting from a out of the Poisson point processes p+ and p− onW+
a andW−

a ∪
{∂} defined on a probability space (Ω,P), respectively. A process {X̂a

t , t ∈
[0, ζ̂bω)} can be constructed similarly.

Proposition 5.12 Let v(x) = Gαf with f ∈ Cb(E) be defined by (5.38) and
(5.40). Then v(Xa

t ) is right continuous in t ∈ [0, ζω) and is continuous when
Xt = a for every f ∈ L and every α ∈ Q+ P-a.s. An analogous property holds
for X̂a.

Proof. We already saw that the functions uα and G0
αf for f ∈ L, α ∈ Q+,

have the property (5.48) along any sample point functions of p+ = {p+
s , s > 0}

and p− = {p−s , s > 0}. Moreover, by Lemma 5.11, after subtracting a suitable
P-negligible set from Ω if necessary, we can assume that, in addition to the
properties (5.28), (5.29) and (5.30), p+ satisfies the following property for
every sample point ω ∈ Ω: for any finite interval I ⊂ (0,∞) and for any
ρ ∈ (0, 1),{

s ∈ I : sup
0≤t≤ζ(p+

s )

(1− uα(p+
s (t))) > ρ

}
is a finite set. (5.49)

Combining this with the inequality αG0
α1(x) ≤ 1 − uα(x), x ∈ E, it is not

hard to see that uα(Xa
t ), G0

αf(Xa
t ) and hence v(Xa

t ) enjoy the properties in
the statement of the proposition. �

5.4 Constructing a standard process X on E0 ∪ {a}

Combining the given standard process X0 on E0 with the process Xa con-
structed and studied in the last two subsections, we can now construct a right
process X on E := E0 ∪ {a} whose resolvent coincides with {Gα, α > 0}
defined by (5.38) and (5.40). We will only do the construction of X. But
obviously the analogous procedure allows us to construct out of X̂0 a right
process X̂ on E with resolvent given by (5.39) and(5.41), and these two right
processes on E are in weak duality with respect to m if and only if their killing
rates δ0 and δ̂0 at a satisfy the relation (4.10).

With the preparations made in the last subsections, we can now just fol-
low the corresponding arguments in [16, §4] without any essential change to
construct the desired process X on E.

First, using the approaching time σ to a of X0 defined in the beginning of
the last subsection, we define Ptf(x) for t > 0, x ∈ E, f ∈ B(E), as follows:

Ptf(a) := E (f(Xa
t ); t < ζω) , (5.50)

Ptf(x) := P 0
t f(x) + E0

x [Pt−σf(a); σ ≤ t] for x ∈ E0. (5.51)
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Evidently the Laplace transform of Pt equals the resolvent Gα in view of
(5.37) and (5.40) and we can see exactly in the same way as the proof of [16,
Lemma 4.10] that {Pt, t ≥ 0} is a sub-Markovian transition semigroup on E:

Pt+s = PtPs with Pt1 ≤ 1 for t, s > 0.

Proposition 5.13 (i) Xa = {Xa
t , 0 ≤ t < ζω,P} is a Markov process on E

starting from a with transition semigroup {Pt, t > 0}.

(ii) P(σa = 0, τa = 0) = 1, where σa = inf{t > 0 : Xa
t = a} and τa = inf{t >

0 : Xa
t ∈ E0}.

Proof. The proof of [16, Proposition 4.4] still works to obtain the first asser-
tion (i). The only places to be modified in the proof are to replace L(m0, ψ)
appearing there with L0(ϕ̂ ·m0, 1− ϕ) + δ0 in the present case.

The second assertion (ii) follows from (i) and Proposition 5.12 just as the
proof of [16, Lemma 4.12]. �

In §5.1, we have started with a standard process

X0 =
{
X0

t , 0 ≤ t < ζ0, P0
x, x ∈ E0

}
on E0, where P0

x, x ∈ E0, are probability measures on a certain sample space,
say Ω0.

In §5.2, we have constructed a cadlag process

Xa = {Xa
t (ω′), 0 ≤ t < ζω′ , P}

on E starting from a by piecing together excursions away from a, where P is
a probability measure on another sample space, say Ω′, to define the Poisson
point process with value in (Wa ∪ {∂}, n̄).

For convenience, we assume that Ω0 contains an extra path η with
P0

x({η}) = 0 for every x ∈ E0, and we set P0
a = δη, η representing the constant

path taking value a identically.
We now define

Ω = Ω0 ×Ω′, Px = P0
x ×P for x ∈ E. (5.52)

Note that ζ0(ω0) ≤ σ(ω0) and ζ0(ω0) = σ(ω0) when σ(ω0) < ∞. For ω =
(ω0, ω′) ∈ Ω, let us define Xt = Xt(ω) as follows:
(1) When ω0 ∈ Ω0 \ {η},

Xt(ω) =
{
X0

t (ω0) 0 ≤ t < ζ0(ω0) ≤ σ(ω0) ≤ ∞
Xa

t−σ(ω0)(ω
′) σ(ω0) ≤ t < σ(ω0) + ζω′ , if σ(ω0) <∞.

(5.53)

(2) When ω0 = η,
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Xt(ω) = Xa
t (ω′) 0 ≤ t < ζω′ . (5.54)

The life time ζ(ω) of Xt(ω) is defined by

ζ(ω) =
{
ζ0(ω0) if σ(ω0) = ∞,
σ(ω0) + ζω′ if σ(ω0) <∞.

(5.55)

Combining Proposition 5.13(i) with the Markov property of {X0
t , t ≥

0, P0
x, x ∈ E0}, we readily get as in [16, Lemma 4.13] the next lemma:

Lemma 5.14 X = {Xt, 0 ≤ t < ζ, Px, x ∈ E} is a Markov process on E
with transition semigroup {Pt, t ≥ 0} defined by (5.50) and (5.51).

The resolvent {Gα, α > 0} of the Markov process X is defined by

Gαf(x) = Ex

[∫ ∞

0

e−αtf(Xt)dt
]
, x ∈ E, α > 0, f ∈ B(E). (5.56)

The resolvent of X0 is denoted by G0
α.

Theorem 5.15 The process X enjoys the following properties:

(i) X is a right process on E. Its sample path {Xt, 0 ≤ t < ζ} is cadlag on
[0,∞), continuous when Xt = a and satisfies

Xζ− ∈ {a,∆} when ζ <∞.

(ii) The point a is regular for itself with respect to X in the sense that for
the hitting time σa = inf{t > 0 : Xt = a}

Pa(σa = 0) = 1.

(iii) X0 is identical in law with the subprocess of X killed upon hitting a.
(iv) The resolvent Gαf admits the expression (5.38) and (5.40) for f ∈ B(E).
(v) If X0 is a diffusion on E0, then X is a diffusion on E.

Proof. (iv) follows from Lemma 5.14 and a statement next to (5.51).
(i). On account of (A.1), we may assume that

X0
t (ω0) is cadlag in t ∈ [0, ζ0(ω0)) and

X0
ζ0(ω0)−(ω0) ∈ {a ∪∆} when ζ0(ω0) <∞,

for every ω0 ∈ Ω0. We have already chosen Ω′ in a way that {Xa
t (ω′), 0 ≤

t < ζω′} has the property (5.36). Hence the sample path t 7→ Xt(ω) has the
stated property in (i).

Take a countable linear subspace L of Cb(E) such that, for any open set
G ⊂ E, there exist functions fn ∈ L increasing to IG. We then see from the
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expression (5.40) of Gαf , (5.47) and Proposition 5.12 that, for any v = Gαf
with f ∈ L, α ∈ Q+,

v(Xt) is right continuous in t ∈ [0, ζ) Px-a.s. for x ∈ E.

Therefore X is strong Markov by [2, p41].
(ii) follows from Proposition 5.13(ii).
(iii) and (v) are also evident from the construction of X. �

The right process X in the above theorem becomes a standard process if
either condition (A.1) or (A.4) is replaced by the following stronger coun-
terpart, respectively:

(A.1)’ X0 and X̂0 are standard processes on E0 in weak duality with
respect to m and

every semipolar set is m-polar for X0. (5.57)

(A.4)’ For any α > 0, uα, ûα ∈ Cb(E0) and

G0
α(Cb(E0)) ⊂ Cb(E0), Ĝ0

α(Cb(E0)) ⊂ Cb(E0).

We note that condition (5.57) is automatically satisfied if X0 is m-
symmetric or more generally if the Dirichlet form of X0 on L2(E0;m0) is
sectorial (cf.[4]). (A.4)’ implies (A.4) as we noted right after the statement
of the latter. Recall that a right process is called a standard process if it is
quasi-left continuous up to the life time.

Theorem 5.16 (i) Suppose that the standard processes X0 and X̂0 on E0

satisfy (A.1), (A.2), (A.3), (A.4)’ and additionally (A.5) in non-symmetric
case and (A.6) in non-diffusion case. Then the right process X on E in
Theorem 5.15 is quasi-left continuous up to the life time.

(ii) Suppose that the standard processes X0 and X̂0 on E0 satisfy (A.1)’,
(A.2), (A.3), (A.4) and additionally (A.5) in non-symmetric case and
(A.6) in non-diffusion case. Then the right process X on E in Theorem 5.15
is quasi-left continuous up to the life time for X-q.e. starting point x ∈ E.

Proof. (i) If condition (A.4)’ is satisfied, then along any cadlag path of X0,
we trivially have

lim
s↑t

uα(X0
s ) = uα(X0

t−) and lim
s↑t

G0
αf(X0

s ) = G0
α(Xt−) for t ∈ (0, ζ0),

(5.58)
for any α > 0 and f ∈ Cb(E0). Combining this with Lemma 5.10(i) and
Lemma 5.11, we easily see as in the proofs of Proposition 5.12 and Theorem
5.15(i) that
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lim
s↑t

Gαf(Xs) = Gαf(Xt−), t ∈ (0, ζ), Px-a.s. (5.59)

for any x ∈ E and for any α > 0, f ∈ Cb(E), from which the quasi-left
continuity of X follows.

(ii) Here we use the terminologies adopted in [5]. From condition (A.1)’, we
can deduce as in [5, Lemma 2.2] that (5.58) holds P0

x-a.s. for X0-q.e. x ∈ E0

for each α > 0 and each f ∈ Cb(E0). In particular, there exists a Borel set
B ⊂ E0 with m(B) = 0 such that E0 \ B is X0-invariant and (5.58) holds
P0

x-a.s. for any x ∈ E0 \B and for any α ∈ Q+, f ∈ L, where L is a countable
subfamily of Cb(E0).

Let us observe that the set E \B is invariant for X of Theorem 5.15. Since
the restriction of X0 to the Lusin space E0 \ B is a standard process again,
the entrance law {µt, t > 0} uniquely characterized by the equation (5.7) is
carried by E0 \ B for every t > 0 and accordingly the excursion law n of
Proposition 5.1 is carried by the path space (5.23) with E, E0 being replaced
by E \B, E0 \B respectively. Hence E \B is X-invariant by the construction
of X.

Now we can see by the same reasoning as in the proof of (i) that (5.59)
holds for any x ∈ E \B and for any α ∈ Q+, f ∈ L. Taking L as in the proof
of Theorem 5.15(i), we conclude that X is quasi-left continuous for every
starting point x ∈ E \B. �

To formulate the last theorem in this section, we need the following
stronger variant (A.2)’ of the condition of (A.2):

(A.2)’ For every x ∈ E0,

P0
x(ζ0 <∞, X0

ζ0− = a) > 0, P0
x(X0

ζ0− ∈ {a,∆}) = 1,

P̂0
x(ζ̂0 <∞, X̂0bζ0− = a) > 0, P̂0

x(X̂0bζ0− ∈ {a,∆}) = 1.

Theorem 5.17 We assume that m0(U ∩ E0) <∞ for some neighborhood U
of a in E. Suppose that the pair of standard processes X0 and X̂0 on E0 satisfy
the conditions (A.1), (A.2)’, (A.4) and additionally (A.5) in non-symmetric
case and (A.6) in non-diffusion case. Then the integrability condition (A.3)
is fulfilled by X0 and X̂0.

Proof. Note that the condition (A.3) holds if m0(E0) <∞. When m0(E0) =
∞, let γ(x) be a continuous function on E0 such that 0 < γ(x) ≤ 1 on E0,
γ(x) = 1 on U ∩ E0 and

∫
E0
γ(x)m0(dx) <∞. Define for t > 0,

τt := inf
{
s > 0 :

∫ s

0

γ(X0
r )dr > t

}
and
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τ̂t := inf
{
s > 0 :

∫ s

0

γ(X̂0
r )dr > t

}
.

Then the time changed processes Y 0 = {Y 0
t := X0

τt
, t ≥ 0} and Ŷ 0 = {Ŷ 0

t :=
X̂0bτt

, t ≥ 0} are standard processes on E0 satisfying (A.1) with respect to the
finite measure µ0 = γ(x)m0(dx). Clearly condition (A.3) holds for Y 0 and
the reference measure µ0. Note that since γ(x) ≤ 1, we have

τt ≥ t and τ̂t ≥ t for every t ≥ 0.

Let GY 0

α denote the 0-order resolvent of Y 0. It is easy to check that for any
non-negative Borel function f on E0, GY 0

f = G0(γf). Therefore Y 0 and Ŷ 0

inherit the conditions (A.2)’, (A.4) and in non-symmetric case (A.5) from
X0 and X̂0.

Let (N,H) be a Lévy system ofX0. Since its defining formula (5.4) remains
valid with the constant time t being replaced by any stopping time, it follows
from it and a time change that Y 0 has a Lévy system (N,HY 0

), where

HY 0

t = Hτt for every t ≥ 0.

According to [10, Theorem 6.2], the correspondence between PCAF and its
Revuz measure is invariant under a strictly increasing time change. Therefore
the Revuz measure of the PCAF of HY 0

with respect to the measure µ0 is
the same as that µH of PCAF H of X0 with respect to the measure m. Hence
Y 0 has the same jumping measure J0(dx, dy) := N(x, dy)µH(dy) as that of
X0. The same applies to Ŷ 0. Therefore Y 0 and Ŷ 0 also inherit the condition
(A.6) from X0 and X̂0.

Thus by Theorem 5.15, there are duality preserving standard processes Y
and Ŷ on E = E0 ∪ {a} extending Y 0 and Ŷ 0. Define for t > 0,

σt := inf
{
s > 0 :

∫ s

0

γ(Yr)−1dr > t

}
and

σ̂t := inf
{
s > 0 :

∫ s

0

γ(Ŷr)−1dr > t

}
.

Then X = {Xt := Yσt , t ≥ 0} and X̂ = {X̂t := Ŷbσt
, t ≥ 0} is a pair of

standard processes on E in weak duality with respect to m. Clearly X and X̂
extend X0 and X̂0, they spend zero Lebesgue amount of time at {a}, and for
X and Y , a is a regular point for {a}. Therefore by Proposition 4.1(v), X0

and X̂0 must have the property (A.3). �

Remark 3. In this section, we have assumed that E is a locally compact
separable metric space, a is a non-isolated point of E and ∆ is added to E
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as a one-point compactification. This assumption is used only to have (5.20)
and (5.22).

The local compactness assumption on E can be relaxed and be replaced
by the following conditions. Let E be a Lusin space and a a non-isolated point
of E and m0 be a σ-finite measure on E0 := E \ {a}. Let ∆ be a cemetery
point added to E. Let X0 and X̂0 be Borel standard processes on E0 with
lifetimes ζ0 and ζ̂0, respectively.

We say X0
ζ0− = a if limt↑ζ0 Xt = a under the topology of E, and X0

ζ0− = ∆
if the limit limt↑ζ0 Xt does not exist in the topology of E. The same applies
to the process X̂0.

Let {F0
t , t ≥ 0} be the minimal admissible completed σ-field generated

by X0. We assume X0 and X̂0 satisfy the conditions (A.1), (A.4)’ and
additionally (A.5) in non-symmetric case and (A.6) in non-diffusion case.
We also assume, instead of (A.2), that

(A.2)” There is an open neighborhood U1 of a such that its closure U1 is
compact in E. Further

ζ0 is {F0
t }-predictable, ϕ(x) > 0 on E0, and lim inf

x→a
ϕ(x) > 0, (5.60)

ζ̂0 is F̂0
t -predictable, ϕ̂(x) > 0 on E0, and lim inf

x→a
ϕ̂(x) > 0, (5.61)

where ϕ is defined by (5.3) and ϕ̂ is defined analogously for X̂0.

We claim that under the above assumptions, all the main results in
this section, including Theorem 5.15, remain true. Note that the existence
of an open neighborhood U1 of a with U1 being compact in E guarantees
the validity of (5.20). So it suffices to show that (5.22) holds almost surely
under measure n for some neighborhood U of a under condition (5.60).
As c := lim infx→a ϕ(x) > 0 and ϕ is lower semi-continuous by (A.4)’,
U := {x ∈ E0 : ϕ(x) > c/2} ∪ {a} is an open neighborhood of a. On the
other hand, for x ∈ E0, we have P0

x-a.s. on {t < ζ0},

ϕ(X0
t ) = Ex

[
1n

ζ0<∞ and X0
ζ0−

=a
o∣∣∣F0

t

]
.

As ζ0 is {F0
t }-predictable, it follows that

lim
t↑ζ0

ϕ(Xt) = 1n
ζ0<∞ and X0

ζ0−
=a

o Px-a.s. for every x ∈ E0.

Hence{
ζ0 <∞ and X0

ζ0− = ∆
}
⊂

{
τ0
U < ζ0

}
Px-a.s. for every x ∈ E0.

Here τ0
U := inf{t > 0 : X0

t /∈ U}. This shows that (5.22) almost surely under
measure n. Since condition (A.2)” is invariant under the strict time change



Extending Markov Processes in Weak Duality 39

as in the proof of the preceding theorem, condition (A.3) is automatically
satisfied. This proves our claim.

Note that condition (5.60) is weaker than the following condition

P0
x

(
ζ0 <∞

)
= P0

x

(
ζ0 <∞, X0

ζ− = a
)

for every x ∈ E0. (5.62)

�

6 Examples and application

Several basic examples of Theorem 5.15 have been exhibited in [16, §6] when
X0 are symmetric diffusions on E0 in which cases their extensions X are
symmetric diffusions on E by [16, Theorem 4.1] there or by Theorem 5.15(v)
of the present paper. In this section, we first consider a simple case where X0

is of pure jump type and admits no killings inside E0. A typical example of
such a process is a censored stable process on an Euclidean open set studied in
[3]. We then consider the case that X0 is an absorbing barrier non-symmetric
diffusion on an Euclidean domain. As an application, we finally consider an
extension of X0 by reflecting at infinitely many holes (obstacles).

6.1 Extending censored stable processes in Euclidean domains

Let D be an open n-set in Rn, that is, there exists a constant C1 > 0 such
that

m(B(x, r)) ≥ C1 r
n for all x ∈ D and 0 < r ≤ 1.

Here m is the Lebesgue measure on Rn, B(x, r) := {y ∈ Rn : |x− y| < r} and
| · | is the Euclidean metric in Rn. Note that bounded Lipschitz domains in Rn

are open n-set and any open n-set with a closed subset having zero Lebesgue
measure removed is still an n-set. For an n-set D (which can be disconnected),
consider for 0 < α < 2 the Dirichlet space defined by

F =
{
u ∈ L2(D; dx) :

∫
D×D

(u(x)− u(y))2

|x− y|n+α
dxdy <∞

}
,

E(u, v) = An,α

∫
D×D

(u(x)− u(y))(v(x)− v(y))
|x− y|n+α

dxdy, u, v ∈ F ,

with An,α = α2α−1Γ ( α+n
2 )

πn/2Γ (1−α
2 )
. When D = Rn, (E ,F) is just the Dirichlet form on

L2(Rn, dx) of the symmetric α-stable process on Rn.
We refer the reader to [3] for the following facts. The bilinear form (E ,F)

is a regular irreducible Dirichlet form on L2(D; 1D(x)dx) and the associated
Hunt process X on D may be called a reflected α-stable process. It is shown in
[6] that X has Hölder continuous transition density functions with respect to
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the Lebesgue measure dx on D and therefore X can be refined to start from
every point in D.

The process X0 = (X0
t ,P

0
x, ζ

0) obtained from X by killing upon leaving D
is called the censored α-stable process in D, which has been studied in detail
in [3]. The process X0 is symmetric with respect to the Lebesgue measure and
its Dirichlet form on L2(D, dx) is given by (E ,F0), where F0 is the closure
of C1

0 (D) in F with respect to E1 := E + (·, ·)L2(D,dx). The process X0 has no
killings inside D in the sense that

Px

(
ζ0 <∞ and X0

ζ0− ∈ D
)

= 0 for every x ∈ D.

Let τD := inf{t > 0 : Xt /∈ D}. Note that for β > 0, uβ(x) = Ex

[
e−βτD )

]
is a β-harmonic function of X0 and so it is continuous on D (see [3, (3.8)]).
For any bounded measurable function f on D, we extend its definition of D
by defining f(x) = 0 on ∂D. By [6], Gαf(x) := Ex

[∫∞
0
e−βtf(Xt)dt

]
is a

continuous function on D. Applying strong Markov property of X at its first
exit time τD from D, we have for G0

βf(x) := Ex

[∫ τD

0
e−βtf(Xt)dt

]
,

G0
βf(x) = Gβf(x)−Ex

[
e−βτDGβf(XτD

)
]

for x ∈ D.

Since x 7→ Ex

[
e−βτDGβf(XτD

)
]

is a β-harmonic function of X0 and thus
it is continuous on D, we conclude that G0

βf is continuous on D. Hence the
conditions (A.1) and (A.4)’ in §5 are always satisfied for censored α-stable
process in any open n-set D. In view of [15, §5.3], a Lévy system of X0 is
given by (N(x, dy), dt) with

N(x, dy) = 2An,α |x− y|−(n+α)dy

and the condition (A.6) of §5 is clearly satisfied.
Note that if D1 is an open subset of D, then X and its subprocess killed

upon leaving D1 have the same class of m-polar sets in D1. If a closed set
Γ ⊂ ∂D has a locally finite and strictly positive d-dimensional Hausdorff
measure when n ≥ 2 and is non-empty when n = 1, then by [3, Theorem 2.5
and Remark 2.2(i)]

ϕΓ (x) := P0
x(ζ0 <∞, X0

ζ0− ∈ Γ ) > 0 for every x ∈ D (6.1)

if and only if α > n− d when n ≥ 2 and α > 1 when n = 1.

In the following D ⊂ Rn is a proper open n-set, Γ is a closed subset of
∂D that satisfies the Hausdorff dimensional condition proceeding (6.1). The
topology on D∗ = D ∪ {a} will be defined in the following three special cases
separately.

(i) D is an open n-set, Γ = ∂D, and α ∈ (n−d, n). Let D∗ be the one point
compactification of D. Note that ϕ(x) = 1 on D with D is bounded, and
0 < φ < 1 on D when D is unbounded with compact boundary.
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(ii) D is an n-open set having disconnected boundary ∂D. A prototype is a
bounded domain D with one or several holes in its interior. Suppose that
∂D = Γ ∪Γ2, where Γ and Γ2 are non-trivial disjoint open subsets of ∂D,
with Γ being compact and satisfying the Hausdorff dimensional condition
proceeding (6.1) and α ∈ (n−d, n). In this case, 0 < ϕΓ (x) ≤ 1 for x ∈ D.
We prescribe a topology on D∗ as follows. A subset U ⊂ D∗ containing
the point {a} is a neighborhood of a if there is an open set U1 ⊂ Rd

containing Γ1 such that U1 ∩D = U \ {a}. In other words, D∗ = D ∪ {a}
is obtained from D by identifying Γ into one point {a}.

(iii) α > 1 = n, D = (0,∞) and Γ = {0}. In this case ϕΓ (x) = 1. D∗ =
[0,∞).

In every case, condition (A.2)’ in §5 is fulfilled. Indeed the first half of
(A.2)’ follows from (6.1). Its second half can be also verified although the
proof will be spelled out elsewhere. Consequently, condition (A.3) is auto-
matically satisfied by Theorem 5.17. Therefore, in each case, we can construct
the extension X on D∗ of X0 on D satisfying the properties of Theorem 5.15
by means of the Poisson point process around {a}. X is a standard process
by Theorem 5.16 but admits no jump from D to a nor from a to D.

In case (iii), X coincides with the process on [0,∞) considered in the
beginning of this section and may be called a reflecting α-stable process. But
it differs from the two closely related processes on [0,∞) that are defined by
the symmetric α-stable process xt on R as

X
(1)
t =

{
xt t < σ0

xt − infσ0≤s≤t xs t ≥ σ0
, X

(2)
t = |xt| ,

and investigated in detail by S. Watanabe [32], because both X(1) and X(2)

admit jumps from (0,∞) to 0.
Note that given an open n-set with disconnected boundary, extensions in

case (i) and (ii) can be different. For example for D = {x ∈ Rn : 1 < |x| < 2}
with Γ := {x ∈ Rn : |x| = 1}, the process X in case (ii) is transient and gets
“birth” only when X0 approaches Γ , while in case (i), the extension process
is conservative and gets “birth” when X0 approaches ∂D.

6.2 Extending non-symmetric diffusions in Euclidean domains

Let D be a proper domain in Rn and m be the Lebesgue measure on D.
Assume that ∂D is regular for Brownian motion, or, equivalently, for 1

2∆. Let

L =
1
2
∇ · (a∇) + b · ∇

=
1
2

n∑
i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+

n∑
i=1

bi
∂

∂xi
,
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where a : Rn → Rd ⊗ Rn is a measurable, symmetric (n × n)-matrix-valued
function which satisfies the uniform elliptic condition

λ−1In×n ≤ a(·) ≤ λIn×n

for some λ ≥ 1 and b = (b1, · · · , bn) : Rn → Rn are measurable functions
which could be singular such that

1D|b|2 ∈ K(Rn),
n∑

i=1

∂bi
∂xi

= 0 on D.

Here K(Rn) denote the Kato class functions on Rn. We refer the reader to [7]
for its definition. We only mention here that Lp(Rn, dx) ⊂ K(Rn) for p > n/2.

Let X0 be the diffusion in D with infinitesimal generator L with Dirichlet
boundary condition on ∂D. It is clearly that X0 has a weak dual diffusion
X̂0 in D with respect to the Lebesgue measure m on D whose generator is
L∗, the dual operator of L with Dirichlet boundary condition on ∂D so that
X0 satisfies condition (A.1). The conditions (A.4)’, (A.5) are satisfied by
[7, Lemma 5.7 and Theorem 5.11]. Condition (A.2)’ is also satisfied. Its first
half is clear and the proof of the second half will be spelled out elsewhere. So
condition (A.3) is automatically satisfied by Theorem 5.17 and we can apply
Theorem 5.15 to construct a weak duality preserving diffusion extension X of
X0 to D∗ := D ∪ {a}, where the topology on D∗ can be prescribed as in the
three special cases (i)-(iii) in §6.1.

6.3 Extending by reflection at infinitely many holes

In this paper, we restrict ourself to consider duality preserving one-point ex-
tension of standard processes X0 and X̂0. The method of this paper allows
us to do finite many points {a1, · · · , an} or countably infinite many points
{a1, · · · , an, · · · } extensions, with an obviously modified conditions on aj ’s
and with no killings at nor direct jumps between {a1, a2, · · · }, provided that
X0 is symmetric (that is, X0 = X̂0). One way to do it is to do one-point
extension one at a time. We leave the details to the interested reader.

Thus, for example, consider a domain D ⊂ Rn whose complement Rn \D
consists of a countable number of strictly disjoint, non-accumulating compact
holes {K1,K2, · · · }. Let D∗ := D ∪ {a1, a2, · · · } be the topological space ob-
tained by shrinking each set Ki to a point ai and adding all of them to D. Let
D∗

0 = D and for each i ≥ 1, we define D∗
i := D∗

i−1 ∪ {ai}, the space obtained
by adding Ki to D∗

i−1 as one point just as in (ii) of §6.1. Given an appropriate
symmetric Markov process X0 on D, for i ≥ 1, the extension Xi to D∗

i can be
constructed from Xi−1 on D∗

i−1 by means of Theorem 5.15 with δ0 = 0.. The
extension X of X0 on D to D∗ := D ∪ {a1, a2, · · · } is obtained as the limit
of Xi’s. The process X is then symmetric on D∗ and its Dirichlet form may
be described in terms of the Feller measure for X0 on D studied in detail in
[13], [25] and [4].
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