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1 Stochastic differential equations, Hormander
representations, and stochastic flows.

1.1 Introduction.

One of the main tools arising from Ito’s calculus is the theory of stochastic
differential equations, now with applications to many areas of science, eco-
nomics and finance. This article is a remark on some aspects of the geometry
and topology of certain spaces of stochastic differential equations, making no
claims to relevance to the actual theory or its applications. It is based on work
with Yves LeJan & Xue-Mei Li reported in [ELL99],[ELJL04] and in prepa-
ration in [ELJL]. It was stimulated by contacts with Steve Rosenberg and his
article with Sylvie Paycha, [PR04]. However the topological constructions and
remarks, in all except 2.4 (which is taken from [ELJL]), are essentially well
known and any novelty arises from their interpretation in terms of stochastic
differential equations and flows.

1.2 The spaces.

We shall consider Stratonovich equations on a compact, connected, finite di-
mensional manifold M . We shall write them as:

dxt = X(xt) ◦ dBt + A(xt)dt (1)

where A is a vector field on M and for each x ∈ M we have a continuous
linear map

X(x) : H → TxM

of a fixed, real, separable Hilbert space H into the tangent space to M at x.
Our ”noise” {Bt : t > 0} is a standard Brownian motion on H, cylindrical if
H is infinite dimensional. We are only interested in the case where X and H
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are sufficiently smooth for a there to be unique solutions for a given initial
point and a solution flow of diffeomorphisms, see [Elw82], [IW89], or [Kun90].

The solutions to equation (1) form a diffusion process with generator the
diffusion operator A for

A = 1/2
∑

j

LXjLXj + LA. (2)

where LXj denotes Lie differentiation by the vector field Xj given by

Xj(x) = X(x)(ej)

for ej , j = 1, 2, ... any orthonormal basis of H. Commonly H is finite dimen-
sional, H = Rm, say. However this can be included in the infinite dimensional
case by taking X(x) to vanish on some finite codimensional subspace for all
x, and we know from [Bax84] that to obtain all stochastic flows we need to
allow infinite dimensional noise.

We shall fix a diffusion generator A which is smooth (so has smooth coef-
ficients in local coordinates) and assume that the principal symbol of A has
constant rank in TM . This latter assumption is equivalent to the existence
of a smooth subbundle E of the tangent bundle TM such that for any SDE
such as equation (1) the map X(x) maps H onto the fibre Ex of E over x.
In particular it holds when A is elliptic, in which case E = TM . Note that
X(x) or equivalently the symbol of A determines an inner product, 〈−,−〉x on
Ex for each x ∈ M giving it a Riemannian structure. Without specifying the
regularity or giving topologies at this stage let HorA denote the set of Hor-
mander form representations, as equation (2) of A, and SDEA the space of
SDE’s whose solutions are A- diffusions. Since the natural map from SDE’s to
Hormander forms depends only on a choice of basis, any such basis determines
a bijection

HorA ∼= SDEA. (3)

Moreover, since the choice of the noise coefficient X in an element of SDEA
determines the vector field A, both spaces are naturally in one-one correspon-
dence with the space SDE(E) of vector bundle maps X : M ×H → E, of the
trivial H-bundle onto E, which induce the given Riemannian metric on E. It
is this space which we shall examine in more detail below.

Closely related to these spaces is the space FlowA of stochastic flows of
diffeomorphisms of M whose one point motions are A-diffusions. Following
Baxendale, [Bax84], these can be considered as Wiener processes on the dif-
feomorphism group, DiffM of M , and determine and are determined by
a Hilbert space Hγ of sections of E with the property that the evaluation
map evx : Hγ → Ex is surjective and induces the given inner product, for
each x ∈ M . In turn this is determined by a suitable reproducing kernel
kγ(x, y) : E∗

x → Ey, [Bax76],[ELL99], defined by

kγ(x,−) = (evx)∗ : E∗
x → Hγ . (4)
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Let RKH(E) denote the space of such Hilbert subspaces and RK(E) the,
isomorphic, space of their reproducing kernels. Using the inner product on Ex

to identify it with its dual space, the latter can be identified with the space
of those sections k] of the bundle of linear maps L(E;E) over M × M such
that k](x, y) : Ex → Ey satisfies

(i) k](x, y) = k](y, x)∗;
(ii) k](x, x) = identity : Ex → Ex;
(iii) for any finite set x1, ..., xq of elements of M we have

q∑
i,j=1

〈k](xi, xj)ui, uj〉xj > 0

for all {uj}q
j=1 with uj ∈ Exj

.

It is easy to see that these form a convex subset of the space of all sections.
It is natural to identify the space of smooth flows Flow∞A in FlowA with
the space of smooth elements of RK(E) with topology induced from the C∞

topology on the sections of the bundle L(E;E) over M × M . This topology
is a reasonable topology for the space of flows: for example if K is a smooth
compact manifold with a map f : K → Flow∞A which is smooth in the sense
that it is smooth when identified with a map into every Sobolev space of
sections of L(E;E), then there is a smooth stochastic flow on K ×M which
restricts to f(k) on each of the leaves {k}×M,k ∈ M . Convexity tells us that
given any two flows in Flow∞A there is a (canonical) smooth flow on [0, 1]×M
which restricts to a flow on each {k} ×M in Flow∞A agreeing with the given
ones at k = 0, 1. In this sense:

• The space of smooth stochastic flows on M whose one point motions have
A as generator, is contractible.

There is the natural map taking an SDE to its flow. It corresponds to the
map

H : SDE(E) → RKH(E) (5)

given by H(X) = {X(−)(e) : e ∈ H} with inner product induced from H.
When H is infinite dimensional this is surjective. Note that given some Hγ in
RKH(E) we can obtain an SDE in SDE(E) which maps to Hγ by choosing
a linear map U : Hγ → H which is an isometry into H and defining X(x)e =
U∗(e)(x), for e ∈ H,x ∈ M . Thus H−1(Hγ) is not connected in general. See
also the end of section 2.2 below.

Our main interest is in C∞ equations and flows. To do differential calculus
on the various manifolds of C∞ mappings which will arise it would be nat-
ural to use the Froelicher-Kriegl calculus, see [KM97], as Michor in [Mic91].
However Banach manifolds are more familiar and we will generally consider
manifolds of Sobolev spaces of mappings of sufficiently high differentiability
class. Taking s very large compared to the dimension of M let SDE(E)s,
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RK(E)s, etc., denote the relevant subsets of Sobolev spaces of mappings of
class Hs, (i.e. those whose weak derivatives of order s lie in L2, see [Pal68]).
In particular let Ds denote the Hilbert manifold of all diffeomorphisms of
class Hs . By standard approximation techniques the homotopy class of these
spaces does not depend on s given that s is large enough.

2 Induced connections and the action of the gauge
group.

2.1 The gauge group and its universal bundle.

For A and E as above let q be the fibre dimension of E. Suppose that H is
infinite dimensional. Consider the Grassmanian G(q, H) of all q-dimensional
linear subspaces of H, the space V (q, H) of all q-frames in H, and the natural
projection p : V (q, H) → G(q, H). Identify Rq with a subspace of H and let
H∞−q be its orthogonal complement. Let O(H), O(∞− q), and O(q) be the
orthogonal groups of H, H∞−q, and Rq, respectively. Then V (q, H), which
is naturally the space of all isometries of Rq into H, can be identified with
the homogeneous space O(H)/O(∞− q) with the natural right action of O(q)
making p a smooth, even real analytic, principal O(q)-bundle, [KM97]. Here
we can furnish G(q, H) with the manifold structure it inherits as a homoge-
neous space or, equivalently, as a manifold modelled on the Hilbert space of
continuous linear maps L(Rq;H∞−q). Thus both G(q, H) and the total space
V (q, H) are modelled on Hilbert spaces.

By Kuiper’s theorem O(H) and O(∞−q) are contractible, and so therefore
is V (q, H), making p a universal O(q)-bundle, as is frequently used. This
means that if p′ : B → M is any smooth principal O(q)-bundle over M there
is a smooth map χ : M → G(q, H) classifying p′ in the sense that the the pull
back by χ of V (q, H) is equivalent to B; in other words there is a diagram of
smooth maps:

B

p′

��

χ̄ // V (q, H)

p

��
M χ

// G(q, H)

where χ̄ is a diffeomorphism on the fibres and is equivariant with respect to
the right actions of O(q). Such a lift χ̄ exists over any smooth map homotopic
to χ, e.g see [Ste51]. It is not uniquely determined by χ; the space of all such
lifts is {χ ◦ α : α ∈ G} where G is the gauge group of B, i.e. the group of all
smooth O(q) equivariant diffeomorphisms α : B → B over the identity map
of M . Following Atiyah &Bott, [AB83], let Hs

B(M ;G(q, H)) be the space of
Hs maps classifying B and Hs

O(q)(B;V (q, H)) the space of equivariant maps
of B into V (q, H) of class Hs. There is the natural projection



The space of stochastic differential equations 5

pG : Hs
O(q)(B;V (q;H)) → Hs

B(M ;G(q, H))

say, which coincides with the quotient map by the right action of Gs, the Hs

version of G. Note that Hs
B(M ;G(q, H)) is a smooth manifold with Hilbert

model since it is a connected component of the space of all Hs maps of
M into G(q, H); that Gs is, and is a Lie group, is shown in [MV81]; while
Hs

O(q)(B;V (q, H)) is the fixed point set of the natural action of the com-
pact group O(q) on the Hilbert manifold Hs(B;V (q, H)), and so a smooth
submanifold of Hs(B;V (q, H)) by [Pal79].

Atiyah & Bott observe that Hs
O(q)(B;V (q;H)) is contractible and hence

pG is a universal Gs-bundle, so that Hs
B(M ;G(q, H)) is a classifying space

for Gs- bundles. To see this contractibility it suffices, by a theorem of
J.H.C.Whitehead, to prove that any two continuous maps fj , j = 1, 2 of a
finite dimensional complex K, say, into Hs

O(q)(B;V (q, H)) are homotopic.
However such maps determine a bundle map to V (q, H) of the restriction
to {0, 1} ×K ×M of the O(q)-bundle I× I×B over [0, 1]×K ×M . By the
universal property of p : V (q, H) → G(q, H) this extends over the whole bun-
dle projecting down to give the required homotopy, c.f. the proof of Theorem
19.3 in [Ste51]. There is also a proof in [Hus94].

2.2 Stochastic differential equations, their filtrations, and gauge
equivalence.

Now take B to be the orthonormal frame bundle, O(E), of our subbundle E
of TM . Note that an element X in SDE(E)s is equally determined by the H-
valued one-form Y on E given by the its adjoint map: Yx = X(x)∗ : Ex → H.
From this we obtain the diagram, [ELL99],

O(E) Φ //

p′

��

V (q, H)

p

��
M

Φ0

// G(q, H)

defined by: Φ0(x) = ImageYx, x ∈ M and Φ(u) = (Yxu(e1), ..., Yxu(eq)),
for u ∈ O(E) where e1, ..., eq is an orthonormal base for Rq. In partic-
ular we obtain Φ belonging to Hs

O(q)(B;V (q, H)) and so a smooth map
κs : SDE(E)s → Hs

O(q)(B;V (q, H)). Elements of G can be considered as auto-
morphisms of the Riemannian bundle E and so act on the right on SDE(E)s

by (X, α) 7→ α−1 ◦X(·) so that multiplication by α maps Y to Y ◦α. This ac-
tion is free and we see that κs is an equivariant diffeomorphism which descends
to give an isomorphism of Gs-bundles:
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SDE(E)s κs
//

proj.

��

Hs
O(q)(B;V (q, H))

p

��
SDE(E)s/Gs

κ0
// Hs

O(E)(M ;G(q, H))

We will say that two stochastic differential equations determined by X
and X ′ in SDE(E)s are gauge equivalent if they are in the same orbit of Gs

i.e. if there exists some α : E → E in Gs such that X ′(x) = αX(x) for all x
in M .

This leads to one of our main observations:

• Let A be a smooth diffusion generator on a compact manifold M whose
symbol has constant rank. Then for all sufficiently large s the space of
stochastic differential equations, SDEs

A, whose solutions are A-diffusions
is contractible. Moreover the natural right action of the group of Hs-
automorphisms, Gs, on SDE(E)s makes the latter into the total space
of a universal bundle for Gs. In particular the space of equivalence classes
of elements in SDE(E)s under gauge equivalence has a natural topology
which makes it a classifying space for Gs-bundles. The corresponding re-
sults hold for smooth stochastic differential equations.

In fact each gauge equivalence class corresponds to a map from M to
G(q, H), namely that given by the map Φ0 above. Intuitively it tells us which
part of the cylindrical noise is acting infinitesimally at a given point of M .
It may be illuminating to consider the following, rather artificial, problem:
suppose we are given a smooth map Θ of the product K × M of M with
a compact connected manifold K, into the Grassmanian G(q, H), and wish
to construct a smooth family of stochastic differential equations in SDEs

A
parametrised by K so that at each point (k, x) the SDE is driven by the noise
in the subspace Θ(k, x); what conditions on Θ are needed? From above we
know that for each k in K we must have x 7→ Θ(k, x) in the correct homotopy
class of maps, Hs

O(E)(M ;G(q, H)), to classify E. To get a family of SDE’s
continuous in K we also need the resulting map θ : K → Hs

O(E)(M ;G(q, H))
to lift to a continuous map of K into Hs

O(q)(O(E);V (q, H)). This holds if and
only if θ is homotopic to a constant. The fibre over a point k ∈ K of the
pull back by θ of Hs

O(q)(O(E);V (q, H)) can be identified with the space of
all those stochastic differential equations which use the noise in the subspaces
determined by Θ(k,−), and a section of the pull back bundle will give us the
required family.

For another equivalence relation with more standard probabilistic signif-
icance it will be convenient to fix a probability space {Ω,F , P} on which
our cylindrical noise B is defined. For each equation in SDEs

A we obtain the
(completed) filtration, FX

t : 0 6 t < ∞, say, determined by its solution flow,
where X is the corresponding element in SDE(E)s. Clearly gauge equivalent
equations give the same filtration. On the other hand the filtration is the
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same as the filtration of the, possibly cylindrical, Brownian motion of H(X),
and so using the martingale representation theorem for cylindrical Brownian
motions, as in [AH04], we see

• Two stochastic differential equations X and X ′ in SDEs
A give the same

filtrations if and only if the kernels of their induced maps H → H(X) and
H → H(X ′) are the same.

Thus the space of all possible such filtrations can be identified with the set
{(q, F ) : q ∈ Z ∪ {∞}, q > r(E)&F is a q-dimensional subspace of H }, where
r(E) is the minimal fibre dimension of a trivial bundle over M which contains
a copy of E. In other words it can be identified with

⋃
∞>q>r(E) G(q, H), the

space of all closed linear subspaces of H. If we give this space the topology
corresponding to strong convergence of the corresponding orthogonal projec-
tions, the Wijsman topology, [Tsi], it will agree with the usual topology on
the finite dimensional Grassmanians. Also, any such filtration is immersed in
that of our underlying cylindrical Brownian motion {Bt : t > 0} in the sense
of Tsirelson, [Tsi], and so is determined by the σ-algebra FX

∞. This shows that
this description fits in with the much more general discussion of filtrations in
[Tsi].

From this we can also return to equation (5) and observe that a stochastic
differential equation in SDEA is determined, up to a right action of O(q) ×
I∞−q, by its flow and its filtration, where the filtration is determined by (q, F )
and the group is considered as the subgroup of O(H) which acts as the identity
on the orthogonal complement of F .

2.3 The connection induced on E.

Narasimhan &Ramanan showed in [NR61] that there is a ”universal connec-
tion”, $, say, on any universal O(q)-bundle and given a metric connection
on E, or equivalently any connection $E on O(E), there is a classifying map
which pulls $ back to $E . In fact they show this holds for the finite dimen-
sional Stiefel bundles, where H is replaced by a sufficiently high dimensional
Euclidean space. The universal connection in this situation is described in an
Appendix in [ELL99]. In particular we can use any X in SDE(E)s to obtain a
connection (κ(X))∗($) on O(E) and any metric connection on E is obtained
that way. The covariant derivative operator ∇̆ on sections of E corresponding
to (κ(X))∗($) has the very simple expression

∇̆v(U) = X(x)d[y 7→ Yy(U(y))](v) (6)

and in [ELL99] this connection was called the LeJan-Watanabe connection of
the flow since a special case had been noted in the context of stochastic flows
in [LW84], see also [AMV96]. A direct proof that all metric connections on E
can be obtained by a suitable X with H finite dimensional is in [Qui88].

The right action of G on RK(E) given by (k, α) 7→ kα with (kα)](x, y) =
α(y)−1k](x, y)α(y) determines a right action of G on the space of smooth
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flows Flow∞A , though it seems far from clear if it has any significance for
the behaviour of the flows. The map from SDE to flows is equivariant with
respect to this action since the reproducing kernel kX say of H(X) is given by
(kX)](x, y) = X(y)Yx. We see we have a factorisation by equivariant maps:

SDEA → Flow∞A → CE

of the map X 7→ (κ(X))∗($) into the space of smooth metric connections CE

on E. (Note that by its contractibility, observed in 1.2 we can also consider
the quotient of Flow∞A by the action of G as a classifying space for G). Each
part of this factorisation is surjective. In the final section, next, we lift results
from [ELJL], see also [ELJL04], which give information about the fibres of the
second map.

2.4 The induced semi-connection on the diffeomorphism bundle.

Fix some point x0 of M and let π : Ds → M be the evaluation map π(θ) =
θ(x0). We shall think of this as a principal bundle with group Ds

x0
, those

Hs-diffeomorphisms which fix x0, acting on the right by composition. Since
the action is not smooth we need to be careful; alternatively we can consider
smooth diffeomorphisms using the approach in [KM97] and [Mic91].

Consider a smooth stochastic flow with corresponding element k ∈ RK(E).
From it we obtain a smooth horizontal lift map:

Ξθ : Eπ(θ) → TθDs

given by
Ξθ(u)(y) = k](θ(x0), θ(y))(u) ∈ Eθ(y)

for u ∈ Eθ(x0), y ∈ M, θ ∈ Ds, where we identify the tangent space TθDs at θ
to the diffeomorphism group with the space of Hs-maps of M into TM which
lie over θ. This is invariant under the action of Ds

x0
on Ds. We call such an

object a semi-connection on Ds over E and let SCE(Ds) denote the set of all of
these objects. They are also called ” partial connections” or ”connections over
E”, see [Gro96]. In the elliptic case, E = TM , they are the usual connections.
They give a procedure for obtaining horizontal lifts σ̃ : [0, T ] → Ds of those
smooth curves σ : [0, T ] → M with the property that σ̇(t) ∈ Eσ(t) for all t.
For the semi-connection determined by our kernel k this lift, starting from a
given diffeomorphism θ with θ(x0) = σ(0), is the composition σ̃(t) = Ψ(t) ◦ θ
where Ψ is the flow of the time dependent dynamical system on M ,

ż(t) = k](σ(t), z(t))σ̇.

Our diffeomorphism bundle can be considered as a universal natural bundle
on M , and each element of SCE(Ds) determines a semi-connection over E on
each natural bundle over M , (see [KMS93]). In particular it gives an element
of SCE(GL(M)) the space of semi-connections on the full linear frame bundle
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of E: for this the lift of our curve σ to GL(M) starting at a frame u is just
T σ̃ ◦ u, the composition of the derivative of our lift σ̃ with the frame. This
determines a partial covariant derivative operator ∇′, say, which allows us
to differentiate arbitrary smooth vector fields but only in E-directions, i.e
a ”semi-connection over E on TM” as defined in [ELL99]. There is a map
between connections on E itself and such semi-connections : to∇ the covariant
derivative of a connection on E there corresponds the semi-connection with
covariant derivative ∇′ given by

∇′u(V ) = ∇v(U)− [V,U ](x)

for U a smooth section of E, V a smooth vector field, x ∈ M and U(x) =
u, V (x) = v. Following Driver for the case E = TM , we say the semi-
connection and connection are ”adjoints”, [ELL99]. From [ELJL04] we have:

• The semi-connection on GL(M) induced by a stochastic flow is the adjoint
of the metric connection on E determined by the flow.

In [ELJL] there is the following:

• The map described from smooth flows with A as generator of their one
point motions to smooth semi-connections over E on the diffeomorphism
bundle is injective.

From this the induced semi-connection must contain all information about
the flow. We can rephrase some of these statements to :

• The adjoint semi-connection of a metric connection $E on E has many
”prolongations” to a semi-connection on the diffeomorphism bundle and
so to a coherent system of semi-connections on all natural bundles over
M . Some of these are induced by a stochastic flow, (necessarily unique),
and from then by the choice of a classifying map for the bundle E into the
infinite dimensional Grassmanian. The latter will pull back the universal
connection to the given connection $E.

We can summarise some of these observations in the following diagram:

C∞
O(q)(O(E);V (q, H)) (κ∞)−1

//

NR

��

SDE(E) H // FlowA ∼= RK(E)

Ξ

��
CE

adjoint // SCE(TM) SCE(DiffM)oo

The maps on the top row are G-equivariant and surjective, with (κ∞)−1

bijective; the map NR refers to the pull-back of Narasimhan & Ramanan’s
universal connection and so is surjective and G-equivariant.

Acknowledgments. This grew out of joint work with Yves LeJan and Xue-
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[Gro96] Mikhael Gromov. Carnot-Carathéodory spaces seen from within. In Sub-
Riemannian geometry, volume 144 of Progr. Math., pages 79–323. Birkhäuser,
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