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Summary. The Martin boundary theory allows to describe all positive solutions of
a linear elliptic equation in an arbitrary domain E of a Euclidean space Rd. Our goal
is to describe all positive solutions of a semilinear equation Lu = ψ(u). As a result of
efforts of probabilists and analysts since early 1990s, now we have a solution of this
problem for the equation ∆u = uα with 1 < α ≤ 2 in a bounded smooth domain
E. The present article contains an exposition of the theory developed to obtain this
solution. 1 The central role is played by the boundary trace theory. A survey of this
theory is given in Part One. In Part Two we outline the principal steps needed to
construct an arbitrary positive solution starting from its trace.

Our main probabilistic tool is (L,ψ)-superdiffusions.

Part One. Trace theory

The trace theory is applicable to a general equation

Lu = ψ(u) in E (I.1)

where L is a second order elliptic operator, E is an arbitrary domain in Rd

and ψ is a continuously differentiable convex function on [0,∞) subject to the
conditions

(i) ψ(u) > 0 for u > 0, ψ(0) = 0.
(ii) There is a constant a such that ψ(2u) ≤ aψ(u) for all u.
(iii)

∫∞
N
ds

[∫ s

0
ψ(u) du

]−1/2
<∞ for some N > 0.

Under these conditions the class U of all positive solutions of (I.1) is closed
under the pointwise convergence.

The trace of a solution u is a pair (Γ, ν) where Γ is a Borel subset of ∂E
and ν is a σ-finite measure on ∂E \ Γ . [For a smooth domain E, ∂E is the
geometrical boundary of E; in general, this is the Martin boundary.]

A rough version of the trace used in earlier work of Le Gall, Dynkin–
Kuznetsov and Marcus–Véron is adequate for small dimensions d: in this

1 Complete proofs can be found in the books [1] and [2].
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case, a solution is uniquely defined by its rough trace. However an example
due to Le Gall shows that, in general, infinite many solutions can have the
same rough trace. In 1998 Dynkin and Kuznetsov introduced a concept of
the fine trace. The solutions in Le Gall’s example have distinct fine traces. In
[3] all values of the fine trace were described and a 1-1 correspondence was
established between them and a class of solutions which we call σ-moderate.
2 Proofs of these results are presented in Chapter 11 of [1]. In the Epilogue to
[1], a crucial outstanding question was formulated:

Are all the solutions σ-moderate?
In the case of the equation ∆u = u2 in a domain of class C4, a positive

answer to this question was given in the thesis of Mselati [6] - a student of J.-F.
Le Gall. 3 However his principal tool - the Brownian snake - is not applicable to
more general equations. In a series of publications by Dynkin and Kuznetsov,
Mselati’s result was extended, by using a superdiffusion instead of the snake,
to the equation ∆u = uα with 1 < α ≤ 2. A systematic presentation of
the proofs is contained in the book [2]. In Section 1 we give the definition
of the fine trace and formulate its fundamental properties. In Section 2 we
explain how these properties can be established by using probabilistic tools:
superdiffusions and their relation to conditional diffusions.

Since we consider only the fine trace, we drop the word fine.

1 Definition and properies of trace

1.1 Moderate and σ-moderate solutions

We denote by U the set of all positive solutions of the equation (I.1) and by
H the set of all positive solutions of the equation

Lh = 0 in E. (1)

We call solutions of (1) harmonic functions.
If E is smooth 4 and if k(x, y) is the Poisson kernel 5 of L in E, then the

formula
hν(x) =

∫
∂E

k(x, y)ν(dy) (2)

establishes a 1-1 correspondence between the set M(∂E) 6 and the set H.

2 The definition of this class is given in Section 1.
3 The dissertation of Mselati was published in 2004 (see [7]).
4 We use the name smooth for open sets of class C2,λ unless another class is indi-

cated explicitely.
5 For an arbitrary domain, k(x, y) should be replaced by the Martin kernel and
∂E should be replaced by a certain Borel subset E′ of the Martin boundary (see
Chapter 7 in [1]).

6 We denote by M(S) the set of all finite measures on S.
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A solution u is called moderate if it is dominated by a harmonic function.
There exists a 1-1 correspondence between the set U1 of all moderate solutions
and a subset H1 of H: h ∈ H1 is the minimal harmonic function dominating
u ∈ U1, and u is the maximal solution dominated by h. We put ν ∈ N1 if
hν ∈ H1. We denote by uν the element of U1 corresponding to hν .

An element u of U is called σ-moderate solutions if there exist un ∈ U1 such
that un(x) ↑ u(x) for all x. The labeling of moderate solutions by measures
ν ∈ N1 can be extended to σ-moderate solutions by the convention: if νn ∈ N1,
νn ↑ ν and if uνn ↑ u, then put ν ∈ N0 and u = uν .

1.2 Lattice structure in U

We write u ≤ v if u(x) ≤ v(x) for all x ∈ E. This determines a partial order in
U . For every Ũ ⊂ U , there exists a unique element u of U with the properties:
(a) u ≥ v for every v ∈ Ũ ; (b) if ũ ∈ U satisfies (a), then u ≤ ũ. 7 We denote
this element Sup Ũ .

For every u, v ∈ U , we put u ∨ v = Sup{u, v} and we put u ⊕ v = SupW
where W is the set of all w ∈ U such that w ≤ u + v. Note that u ⊕ v and
u∨ v are moderate if u and v are moderate and they are σ-moderate if so are
u and v.

In general, Sup Ũ does not coincide with the pointwise supremum (the
latter does not belong to U). However, both are equal if u ∨ v ∈ Ũ for every
u, v ∈ Ũ . Moreover, in this case there exist un ∈ Ũ such that un(x) ↑ u(x) =
Sup Ũ for all x ∈ E. Therefore, if Ũ is closed under ∨ and if it consists of
moderate solutions, then Sup Ũ is σ-moderate. Since u ∨ v is moderate for
all moderate u and v, to every Borel subset Γ of ∂E there corresponds a
σ-moderate solution

uΓ = Sup{uν : ν ∈ N1, ν is concentrated on Γ}. (3)

We also associate with Γ another solution wΓ . First, we define wK for
closed K by the formula

wK = Sup{u ∈ U : u = 0 on ∂E \K}. (4)

For every Borel subset Γ of ∂E, we put

wΓ = Sup{wK : closed K ⊂ Γ}. (5)

Proving that uΓ = wΓ was a key part of the program outlined in [1]. A sketch
of the proof will be presented in Section 4.

7 The existence is proved in Section 8, Chapter 5 in [1].



4 Eugene B. Dynkin

1.3 Singular points of a solution u

We consider classical solutions of (I.1) which are twice continuously differen-
tiable in E. However they can tend to infinity as x → y ∈ ∂E. We say that
y is a singular point of u if it is a point of rapid growth of ψ′(u). [A special
role of ψ′(u) is due to the fact that the tangent space to U at point u is de-
scribed by the equation Lv = ψ′(u)v.] An analytic definition of rapid growth
involves the Poisson kernel (or Martin kernel) k`(x, y) of the operator Lu−`u.
Namely, y ∈ ∂E is a point of rapid growth for a positive continuous function
` if k`(x, y) = 0 for all x ∈ E.

A transparent probabilistic definition of singular points is given in Section
2.5.

We say that a Borel subset Γ of ∂E is f-closed if Γ contains all singular
points of the solution uΓ defined by (3).

1.4 Definition and properties of trace

The trace of u ∈ U (which we denote Tr(u)) is defined as a pair (Γ, ν) where
Γ is the set of all singular points of u and ν is a measure on ∂E \ Γ given by
the formula

ν(B) = sup{µ(B) : µ ∈ N1, µ(Γ ) = 0, uµ ≤ u}. (6)

We have
uν = Sup{ moderate uµ ≤ u with µ(Γ ) = 0}

and therefore uν is σ-moderate.
The trace of every solution u has the following properties: 8

Assumption 1.1

1.1.A Γ is a Borel f-closed set; 9 ν is a σ-finite measure of class N0 such that
ν(Γ ) = 0 and all singular points of uν belong to Γ .

1.1.B If Tr(u) = (Γ, ν), then
u ≥ uΓ ⊕ uν . (7)

Moreover, uΓ ⊕ uν is the maximal σ-moderate solution dominated by u.
1.1.C Suppose that (Γ, ν) is an arbitrary pair subject to the condition 1.1. If

Tr(uΓ ⊕ uν) = (Γ ′, ν), then the symmetric difference between Γ and Γ ′ is
not charged by any measure µ ∈ N1. Moreover, uΓ ⊕ uν is the minimal
solution with this property and the only one which is σ-moderate.

8 See Theorems 7.1-7.2 in Chapter 11 of [1].
9 This part will be also proved in Section 2.5 below.
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2 Diffusions and superdiffusions

2.1 L-diffusion and its transformations

A diffusion describes a random motion of a particle. An example is the Brow-
nian motion in Rd. This is a Markov process with continuous paths and with
the transition density

pt(x, y) = (2πt)−d/2e−|x−y|2/2t

which is the fundamental solution of the heat equation

∂u

∂t
=

1
2
∆u.

A Brownian motion in a domain E can be obtained by killing the path at the
first exit time from E. By replacing 1

2∆ by an elliptic operator L, we define a
Markov process (ξt,Πx) called L-diffusion.

Suppose that (ξt,Πx) is an L-diffusion in E with the transition density
pt(x, y). To every h ∈ H there corresponds a finite measure Πh

x such that, for
all 0 < t1 < · · · < tn and every Borel subsets B1, . . . , Bn of E,

Πh
x{ξt1 ∈ B1, . . . , ξtn

∈ Bn}

=
∫

B1

dz1 . . .

∫
Bn

dzn pt1(x, z1)pt2−t1(z1, z2) . . . ptn−tn−1(zn−1, zn)h(zn).

(8)

Note that Πh
x (Ω) = h(x) and therefore Π̂h

x = Πh
x/h(x) is a probability mea-

sure. (ξt, Π̂h
x ) is a Markov process with continuous paths and with the tran-

sition density

ph
t (x, y) =

1
h(x)

pt(x, y)h(y).

For every y ∈ ∂E, we put Πy
x = Πh

x with h(x) = k(x, y). The process (ξt, Π̂y
x)

can be interpreted as an L-diffusion conditioned to exit from E at point y:

Π̂y
x{C} = Πx{C|ξτE

= y}

where τE is the first exit time of ξt from E.

2.2 (L,ψ)-superdiffusion

An (L,ψ)-superdiffusion is a model of random evolution of a cloud of parti-
cles. Each particle performs an L-diffusion. It dies at a random time leaving a
random offspring of size controlled by the function ψ. All children move inde-
pendently of each other (and of the family history) with the same transition
and procreation mechanism as the parent.
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Superdiffusions appeared, first, (under the name“continuous state branch-
ing processes”) in a pioneering paper of S. Watanabe [8]. Important contribu-
tions to the theory of these processes were made by Dawson and Perkins.

We consider a superdiffusion as a family of the exit measures (XD, Pµ)
from open sets D ⊂ E . An intuitive picture of (XD, Pµ) is explained on
Figure 1 (borrowed from [1]).

y4

y1

x2

y3

x1

y2

  

Fig. 1.

Here we have a scheme of a process started by two particles located at
points x1, x2 in D. The first particle produces at its death time two children
that survive until they reach ∂D at points y1, y2. The second particle has three
children. One reaches the boundary at point y3, the second one dies childless
and the third one has two children. Only one of them hits ∂D at point y4.
The initial and exit measure are described by the formulae

µ =
∑

δxi , XD =
∑

δyi .

To get an (L,ψ)-superdiffusion, we pass to the limit as the mass of each
particle and its expected life time tend to 0 and an initial number of particles
tends to infinity. We refer for details to [1].

2.3 Superdiffusions as a special class of branching exit Markov
systems

The concept of a branching exit Markov [BEM] system (in a more general
setting) is introduced in [1], Chapter 3. Suppose that to every D ⊂ E and to
every µ ∈M(E) there corresponds a random measure (XD, Pµ). We say that
this family is a BEM system if XD ∈M(E) for all D and if:

Assumption 2.1

2.1.A [Continuous branching property] For all positive Borel functions f1, . . . ,
fn, all subdomains D1, . . . , Dn of E and every µ ∈M(E),
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logPµe
−Z =

∫
logPye

−Zµ(dy) (9)

where

Z =
n∑
1

〈fi, XDi〉 (10)

and Py = Pδy .
2.1.B [Markov property.] The σ-algebra F⊂D generated by XD′ , D′ ⊂ D and

the σ-algebra F⊃D generated by XD′′ , D′′ ⊃ D are conditionally indepen-
dent given XD.

2.1.C For all µ and D,
Pµ{XD(D) = 0} = 1.

2.1.D If µ(D) = 0, then
Pµ{XD = µ} = 1.

Condition 2.1.A implies that

Pµe
−Z =

∏
Pµne

−Z

if µ =
∑
µn.

A BEM system is an (L,ψ)-superdiffusion if

u(x) = − logPxe
−〈f,XD〉

satisfies the equation

u(x) +Πx

τD∫
0

ψ[u(ξt)]dt = Πxf(ξτD
) (11)

where (ξt,Πx) is an L-diffusion. If D is smooth and bounded and f is contin-
uous and bounded, then (11) is equivalent to the conditions

Lu = ψ(u) in D,
u = f on ∂D.

(12)

[The problem (12) has a unique solution.]
The existence of an (L,ψ)-superdiffusion is proved, in particular, for

ψ(u) = bu2 +
∫ ∞

0

(e−tu − 1 + tu)N(dt) (13)

under the conditions

b ≥ 0,
∫ ∞

1

tN(dt) <∞,

∫ 1

0

t2N(dt) <∞. (14)
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An important special case is the function

ψ(u) = uα, 1 < α ≤ 2 (15)

corresponding to b = 0 and

N(dt) = `t−1−αdt

where
` = [

∫ ∞

0

(e−λ − 1 + λ)λ−1−αdλ]−1.

The class U under investigation can be characterized probabilistically by
the following mean value property : u ∈ U if and only if

Pxe
−〈u,XD〉 = e−u(x) (16)

for all D such that D̄ ⊂ E. 10

2.4 Stochastic boundary values

Denote by Mc(E) the set of all finite measures on E concentrated on compact
subsets of E. Suppose that, for all µ ∈Mc(E)

〈u,XDn〉 → Z Pµ-a.s. (17)

for every sequence of domains Dn such that D̄n ⊂ Dn+1 and E is the union
of Dn. Then we say that Z is the stochastic boundary value of u and we write
Z = SBV(u). The stochastic boundary values exist for all u ∈ U and for all
h ∈ H. Put

Zu = SBV(u), Zν = SBV(uν).

It follows from (17) and the mean value property (16) that

Pxe
−Zu = e−u(x) for every u ∈ U . (18)

In particular,
Pxe

−Zν = e−uν(x) for every ν ∈ N1. (19)

We have

Zu⊕v = Zu + Zv, (20)
Zcu = cZu for any constant c ≥ 0, (21)

Zun ↑ Zu if un ↑ u. (22)

[ See Section 1.3, Chapter 9 in [1].]

10 See [1], Chapter 8, 2.1.D.
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2.5 Relation between superdiffusions and conditional diffusions

We start with the promised probabilistic definition of singular points of a
solution u. Put

Φu =
∫ τE

0

ψ′[u(ξt)]dt. (23)

A point y ∈ ∂E is singular for u if Φu = ∞ Πy
x -a.s. for every x ∈ E.

The following relation plays a fundamental role for the developing the trace
theory. For every u ∈ U and every ν ∈ N1,

PxZνe
−Zu = e−u(x)Πν

xe
−Φu (24)

where
Πν

x =
∫
ν(dy)Πy

x .

[See Theorem 3.1 in Chapter 9 of [1].] The formula (24) is a key tool for proving
the properties 1.1.A–1.1.C of the trace. To illustrate how it is applied, we prove
that the set Γ of all singular points of u is f-closed. If ν is concentrated on Γ ,
then Φu = ∞ Pν

x -a.s. By (24), Px-a.s.,PxZνe
−Zu = 0. Hence, Px-a.s., either

Zν = 0 or Zu = ∞. In both cases Px{Zν ≤ Zu} = 1. By (18) and (19), this
implies uν ≤ u and, by (3), uΓ ≤ u. Hence, every singular point of uΓ is a
singular point of u that is it belongs to Γ .

Remark 1. To apply (24) we need to assume the existence of (L,ψ)-super-
diffusion. The original version of the trace theory was developed under this
assumption. Later the theory was extended to more general ψ 11 by using
an inequality which follows from (24) but can be proved without assuming
the existence of (L,ψ)-superdiffusion. The price is less transparent and more
lengthy arguments.

Part Two. Representation of solutions in terms
of their traces

Suppose that Tr(u) = (Γ, ν). We claim that u can be represented by the
formula

u = uΓ ⊕ uν (II.1)

where uν is defined in Section 1 and uΓ is defined in Section 1.2. A probabilistic
version of this formula is given in Section 3.2 (see (29)).

By 1.1.B,
u ≥ uΓ ⊕ uν . (II.2)

Since uΓ and uν are σ-moderate, (II.1) implies that u is σ-moderate.
Formula (II.1) will follow if we prove that

11 See Chapter 11 in [1].
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wΓ = uΓ , (II.3)

and
u ≤ wΓ ⊕ uν . (II.4)

We establish (II.3) for a bounded smooth domain E and ψ(u) = uα where
1 < α ≤ 2. 12 The bound (II.4) is proved under an additional assumption that
L = 1

2∆ (that is a superdiffusion is the super-Brownian motion).
In Section 3 we prepare tools for proving (II.3): N-measures, range of a

superdiffusion and Poisson capacities. A special role is played by an inequal-
ity (32) relating superdiffusions in two domains D ⊂ E. We call it (D,E)-
inequality.

Section 4 is devoted to proof of (II.3) and Section 5 to proof of (II.4).

3 Tools

3.1 N-measures

An introduction of measures Nx in parallel to measures Px is a recent en-
hancement of the superdiffusion theory. First, N-measures appeared as excur-
sion measures of the Brownian snake introduced by Le Gall. These measures
were used by him and his school for investigating the equation ∆u = u2. In
particular, they played a key role in Mselati’s dissertation. In Le Gall’s the-
ory, measures Nx are defined on the space of continuous paths. We define their
analog on the same space Ω as measures Pµ.

The measures Nx are constructed by using the integral representation of
infinitely divisible random measures (XD, Px). They are related to Px by the
formula

Nx(1− e−Z) = − logPxe
−Z (25)

for every Z of form (10) and for Z = Zu where u ∈ U . In particular, for every
bounded smooth domain E and every continuous function f ,

u(x) = Nx(1− e−〈f,XE〉)

is a solution of (I.1) with the boundary value f .
In contrast to probability measures Px, measures Nx are infinite (but

NxZν <∞ for all ν ∈ N1).
For every ν ∈ N1,

Nx{Zν 6= 0} = lim
n→∞

unν(x). (26)

Indeed, Nx{1 − e−nZν} → Nx{Zν 6= 0} as n → ∞ and therefore (26) follows
from (25), (18) and (21).
12 By using purely analytic method, Marcus and Véron proved in [5] that in the

case L = ∆ the equality (II.3) holds for all α > 1.



An application of probability to nonlinear analysis 11

An increasing sequence nν tends to a measure ∞ · ν equal to 0 on sets of
ν-measure 0 and equal to ∞ on the rest of Borel sets. Note that ∞ · ν ∈ N0

and, by (26),
Nx{Zν 6= 0} = u∞·ν(x). (27)

3.2 Range

The range of a superdiffusion X is the area hit by X. More precisely, the
range is a closed set R = R(ω) with the properties:

(i) For every D ⊂ E and every µ ∈M(E), XD is concentrated, Pµ-a.s. on
R.

(ii) If R̃ = R̃(ω) is a closed set such that, for some µ ∈ M(E) and for all
D ⊂ E, XD are concentrated, Pµ-a.s., on R̃, then, Pµ-a.s., R̃ ⊃ R.

(iii) For every D ⊂ E and every x ∈ D, XD is concentrated, Nx-a.s. on R.
(iv) If R̃ = R̃(ω) is a closed set such that, for some x ∈ E and for all

D ⊂ E which contain x, XD are concentrated, Nx-a.s., on R̃, then, Nx-a.s.,
R̃ ⊃ R.

The existence of R is proved for all superdiffusions. It is also proved that

wΓ (x) = − logPx{R ∩ Γ = ∅} = Nx{R ∩ Γ 6= ∅}. (28)

Moreover, for every ν ∈ N0,

wΓ ⊕ uν = − logPx{R ∩ Γ = ∅, e−Zν}
= Nx{R ∩ Γ 6= ∅}+ Nx{R ∩ Γ = ∅, 1− e−Zν}.13 (29)

In combination with (II.1) and (II.3) this formula provides a probabilistic
representation of a solution with the trace (Γ, ν).

3.3 Poisson capacities

To every constant α > 1 there corresponds the Poisson capacity 14 defined by
the formula

Cap(Γ ) = sup{e(ν)−1 : ν ∈ P(Γ )}

where P(Γ ) is the set of all probability measures on Γ and

e(ν) =
∫

E

d(y, ∂E)dy[hν(y)]α.

(d(x,K) stands for the distance from x to K. Function hν is given by (2).)
We also use the capacities
13 See Theorem 3.4 in Section 4, [2]. Writing P{A,X} means

R
A
XdP .

14 Analysts work with the Bessel capacity Cap2/α,α′ . Bounds for the Poisson capac-
ity in terms of the Bessel capacity proved in [2] in the Appendix written by I. E.
Verbitsky imply that the results of both approaches are equivalent.
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Capx(Γ ) = sup{ex(ν)−1 : ν ∈ P(Γ )}

where
ex(ν) =

∫
E

g(x, y)dy[hν(y)]α. (30)

and g is the Green function in E for L.
We establish the following relation between Cap(K) and Capx(K). Put

EK = {x ∈ E : d(x,K) ≥ 1
4
diam(K), ϕ(x,K) = d(x, ∂E)d(x,K)−d

where diam(K) means the diameter of K. There exists a constant C such that

Cap(K) ≤ Cϕ(x,K)Capx(K) (31)

for all K and all x ∈ EK .

3.4 (D,E)-inequality

The (D,E)-inequality involves N-measures, the range, the stochastic bound-
ary values Zν of uν and the integrals (30).

Suppose that D ⊂ E are bounded smooth domains. Put

D∗ = {x ∈ D̄ : d(x,E \D) > 0} = D ∪ L

where L = {x ∈ ∂E : d(x,E \D) > 0}. For every ν ∈ N1 and every x ∈ E,

Nx{R ⊂ D∗, Zν 6= 0} ≥ const.Nx{R ⊂ D∗, Zν}α/(α−1)ex(ν)−1/(α−1). (32)

[This is Theorem 1.1 in Chapter 7 of [2].]

4 Proof of equation (II.3)

4.1 Reduction to N-inequality

First, we prove that (II.3) can be deduced from the following proposition
which we call the N-inequality :

(N) For every K, there exists a constant C with the property: for every x,
there exists a measure ν ∈M(K) such that

Nx{R ∩K 6= ∅} ≤ CNx{Zν 6= 0}. (33)

By (28) and (27), this inequality is equivalent to

wK ≤ Cu∞·ν (34)
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If ν ∈M(∂E) and ex(ν) <∞, then ν ∈ N1. 15 Denote by N1(K) the class
of all ν ∈ N1 concentrated on K.

It follows easily from the definitions of uΓ and wΓ [(3)–(5)] that:
(i) If (II.3) is true for compact subsets of ∂E, then it is true for all Borel

Γ ⊂ ∂E.
(ii) wK ≥ uK for all compact K, and so it is sufficient to prove that

wK ≤ uK .
The relation uµ ∨ uν = uµ∨ν implies that N1(K) is closed under ∨ and

therefore, according to (3), for every x ∈ E, uK(x) is equal to supuν(x) over
ν ∈ N1(K). For every ν ∈ N1(K), unν ≤ uK and therefore u∞·ν(x) ≤ uK(x).
To prove that wK ≤ uK it is sufficient to demonstrate that, for every x, there
exists ν ∈ N1(K) such that wK(x) ≤ u∞·ν(x). Put η = ∞ · ν. It follows from
(21) that Zη = ZCη = CZη. Therefore the bound wK(x) ≤ u∞·ν(x) will follow
from (18) if we prove that (34) holds with C independent of x.

4.2 Proof of the N-inequality

We establish a number of estimates in terms of Capx(K).
A. An upper bound for wK(x) = Nx{R ∩K 6= ∅}.
B. A lower bound (for sufficiently large n) for

Nx{R ⊂ Bn(x,K), Zν}

where
Bn(x,K) = {z : |x− z| < nd(x,K)}

C. A lower bound (for sufficiently big n) for

Nx{R ⊂ Bn(x,K), Zν 6= 0}.

Part A is based on an estimate

wK(x) ≤ Cϕ(x,K)Cap(K)1/(α−1), (35)

where the constant C does not depend on K and x. 16 It follows from (35)
and (31) that

wK(x) ≤ C[ϕ(x,K)αCapx(K)]1/(α−1). (36)

In part B we use the relations between superdiffusions and conditional
diffusions and bounds for conditional diffusions involving first exit times from
E and from a ball of radius r centered at x. As a result, we prove the existence
of C and n such that, for all K, all x ∈ EK and all ν ∈ P(K) such that
ex(ν) <∞,

Nx{R ⊂ Bn(x,K), Zν} > Cϕ(x,K). (37)
15 This follows from 2.1.A, Chapter 12 in [1].
16 The bound (35) was proved for α = 2 by Mselati [7] and for 1 < α < 2 by

Kuznetsov [4].
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Part C is deduced from the definition of Capx(K) and from (37) by (D,E)-
inequality (32) applied to D = E∩Bn(x,K). We prove this way the existence
of C and n with the property: for every K and every x ∈ EK ,

Nx{R ⊂ Bn(x,K), Zν 6= 0} ≥ C[ϕ(x,K)αCapx(K)]1/(α−1) (38)

for some ν ∈ P(K) such that ex(ν) <∞.
It follows from (28), (36) and (38) that:
(M) There exist constants C and n such that, for every K and every

x ∈ EK , there is a ν ∈ N1(K) with the property

Nx{R ∩K 6= ∅} ≤ CNx{R ⊂ Bn(x,K), Zν 6= 0}. (39)

It remains to deduce (N) from (M). In both propositions we have upper
estimates for Nx{R ∩K 6= ∅}. However (39) holds only for x ∈ EK and (33)
holds for all x ∈ E. On the other hand, C in (33) depends on K and in (39)
it is independent of K. Following Mselati [6] and [7], 17 we cover K by closed
sets Km to which we can apply M. We get this way measures νm ∈ P(Km)
with ex(νm) <∞. Their sum ν satisfies (33).

To realize this plan, we fix x ∈ E and K ⊂ ∂E and we put

Km =

{
{z ∈ K : |x− z| ≤ 2δ} for m = 1,
{z ∈ K : 2m−1 ≤ δ ≤ 2mδ} for m > 1

where δ = d(x,K). The set M of m such that Km is not empty is finite and
x ∈ EKm for every m ∈M . By (M), there exist constants C, n and measures
νm ∈ N1(Km) such that ex(νm) <∞ and

Nx{R ∩Km 6= ∅} ≤ CNx{R ⊂ Bn(x,Km), Zνm
6= 0}. (40)

If 2p > n, then, for every positive m, Bn(x,Km) ⊂ B2p+m(x,K) and, by
(40),

Nx{R ∩ Km 6= ∅} ≤ CNx(Qm)

where
Qm = {R ⊂ B2p+m(x,K)}.

The sum ν of νm is a finite measure and ex(ν) <∞.

ν =
∑
M

νm ∈ N1(K)

and

Nx{R ∩K 6= ∅} ≤
∑
M

Nx{R ∩Km 6= ∅} ≤ C

∞∑
1

Nx(Qm).

Now we need to bound the right side from above. First, we prove that
17 See also [2].
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Nx{Qm ∩Qm′} = 0 if m′ ≥ m+ p+ 1. (41)

Indeed,
Qm ∩Qm′ ⊂ {R ∩Km′ = ∅, Zνm′ 6= 0}.

Since νm′ is concentrated on Km′ ,

Nx{R ∩Km′ = ∅, Zνm′ 6= 0} = 0

which implies (41).
Every integer m ≥ 1 has a unique representation m = n(p+ 1) + j where

j = 1, . . . , p+ 1 and therefore

Nx{R ∩K 6= ∅} ≤ Cκ

p+1∑
j=1

∞∑
n=0

Nx(Qn(p+1)+j). (42)

It follows from (41) that Nx{Qn(p+1)+j ∩Qn′(p+1)+j} = 0 for n′ > n. There-
fore, for every j,

∞∑
n=0

Nx{Qn(p+1)+j} = Nx

{ ∞⋃
n=0

Qn(p+1)+j

}

≤ Nx

{ ∞∑
n=0

Zνn(p+1)+j
6= 0}

}
≤ Nx{Zν 6= 0} (43)

because
∞∑

n=0

Zνn(p+1)+j
≤

∞∑
m=1

Zνm = Zν .

The bound (33) follows from (42) and (43).

5 Proof of bound (II.4)

In this section we assume that u is a positive solution of the equation

∆u = uα in E (44)

with the trace (Γ, ν) and that 1 < α ≤ 2 and we investigate the class E of all
domains E for which the bound (II.4) is true. The final result is: all bounded
domains of class C4 belong to E.

The main steps in the proof are:
A.There is a class E1 ⊂ E with the property: E ∈ E1 if, for every y ∈ ∂E,

there exists a domain D ∈ E1 such that D ⊂ E and ∂D ∩ ∂E contains a
neighborhood of y in ∂E.
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B. E1 contains all star domains. 18

C. If E is a C4 domain, then, for every y ∈ ∂E, there exists a star domain
D ⊂ E such that ∂D ∩ ∂E contains a neighborhood of y in ∂E.

Here is the definition of class E1: E ∈ E1 if, for every v ∈ U(E) and every
Γ ⊂ ∂E, the conditions Tr(v) = (Λ, µ), Λ ⊂ Γ and µ(Γ \ Λ) = 0 imply that
v ≤ wΓ .

In part A we use connections between Tr(v) and Tr(v′) where v ∈ U(E)
and v′ is the restriction of v to D ⊂ E.

Step B is based on a self-similarity property of the equation ∆u = uα: if
E is a star domain relative to 0, then, for every 0 < r ≤ 1,

ur(x) = r2/(α−1)u(rx)

also belongs to U(E). A crucial role is played by the following absolute con-
tinuity result which is also of independent interest: if A ∈ F⊃D, then either
Px(A) = 0 for all x ∈ D or Px(A) > 0 for all x ∈ D. In other words, on
the σ-algebra F⊃D, Px1 is absolutely continuous with respect to Px2 for all
x1, x2 ∈ D.

Step C is based on elementary arguments of differential geometry.
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