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1 Stochastic measures and functions.

1.1 Space-time products.

In this paper we consider some elements of a stochastic calculus for random
fields over general space-time products. The various space components which
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may be specified in the possible applications are here considered altogether
and denoted by Θ. We consider Θ to be a general space equiped with some
countable σ-algebra. The time-component is an interval T. To simplify nota-
tions, we fix T = (0, T ].

In the sequel a basic tool is constituted by the partitions of the involved
spaces. As for the interval T, its partition with level of refinement n, from now
on named nth -partition, is represented by the corresponding finite nth -series
of intervals of type (s, u] such that

T =
∑

(s, u] : max
(s,u]

(u− s) −→ 0 , n→∞ (1)

(note that here and in the sequel we denote the disjoint union of sets by
∑

).
The partitions are such that for n = 1, 2, ..., the (n + 1)th-series is obtained
by partitioning the intervals of the previous nth -series. The family of all the
sets of all the nth -partitions, n = 1, 2, ..., generates the Borel σ-algebra of T.

Hereafter we introduce the nth -partitions (n = 1, 2, ...) for the standard
product Θ × T of the measurable spaces Θ and T. The σ-algebra of Θ × T
will be treated as generated by these nth -partitions. Since in the sequel we
are dealing with the general σ-finite measure M = M(∆), ∆ ⊆ Θ × T, on the
σ-algebra of Θ × T, the nth -partitions of Θ × T are going to be selected for
the increasing sequence (which can be any) of sets

Θn × T , n = 1, 2, ..., such that lim
n→∞

Θn × T :=
⋃
n

Θn × T = Θ × T ,

and with
M(Θn × T) <∞ , n = 1, 2, ... . (2)

The nth -partition of Θ × T is then actually a partition of

Θn × T =
∑

∆ : ∆ ⊆ Θ × (s, u] (3)

given by the corresponding finite series of sets ∆, related to the nth -series of
time-intervals (s, u] ⊆ T in (1). Any set ∆ in the nth -series is the (disjoint)
union of some elements of the (n + 1)th-series. Clearly M(∆) < ∞ for any
element ∆ of the partitions of Θ × T.

We assume that the measure M satisfies

M(Θ × [t]) = lim
n→∞

M(Θn × [t]) = 0 (4)

whatever the point-set [t] ⊆ T be. This implies, in particular, that any set
∆ ⊆ Θ × T : M(∆) <∞, is infinitely-divisible in the sense that ∆ admits the
nth -partitions.

We will refer to the finite (disjoint) unions of sets belonging to the same
nth -series of partitions (3) as the simple sets in Θ × T. Note that for any set
∆ ⊆ Θ × T : M(∆) <∞, we have
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∆ =
∑

∆ ∩
(
Θ × (s, u]

)
:
∑

(s, u] = T ,

where the nth -series of time-intervals (1) have been used. Since max(u−s) →
0, n→∞, we have

max
(s,u]

M
(
∆ ∩

(
Θ × (s, u]

))
−→ 0 , n→∞ . (5)

We write M(dθ dt), (θ, t) ∈ Θ × T, for M as integrator.
Any ∆ ⊆ Θ × T : M(∆) < ∞, can be approximated by simple sets

∆(n), n = 1, 2, ..., in the sense that

∆ = lim
n→∞

∆(n), i.e. M
(
(∆ \∆(n))∪ (∆(n) \∆)

)
−→ 0 , n→∞ . (6)

Note that for any finite number of disjoint sets ∆1, ...,∆m: M(∆j) < ∞,
j = 1, ...,m, the approximation above can be given by the corresponding
sequences of disjoint simple sets ∆(n)

1 , ...,∆
(n)
m (n = 1, 2, ...).

1.2 Stochastic measures with independent values.

For the complete probability space (Ω,A, P ), let L2(Ω) be the standard (com-
plex) space of random variables ξ = ξ(ω), ω ∈ Ω, with finite norm

∥∥ ξ ∥∥ =
(
E |ξ|2

)1/2

. (7)

We write µ = µ(∆), ∆ ⊆ Θ × T, for the additive set-function with the real
values µ(∆) ∈ L2(Ω) and such that Eµ(∆) = 0, Eµ(∆)2 = M(∆). Here the
variance M = M(∆), ∆ ∈ Θ × T, is a measure which satisfies the conditions
(2)-(4). The additive set-function µ is considered on all the sets ∆ : M(∆) <
∞. The values of µ on disjoint sets are independent random variables.

Note that µ, initially considered just on the simple sets in Θ × T (related
to some partitions), can be extended on all ∆ ⊆ Θ × T : M(∆) <∞, via the
limits

µ(∆) = lim
n→∞

µ(∆(n)), i.e.
∥∥µ(∆)− µ(∆(n))

∥∥ −→ 0 , n→∞ , (8)

where the simple sets ∆(n), n = 1, 2, ..., approximate ∆, i.e.

M
((
∆ \∆(n)

)
∪
(
∆(n) \∆

))
=
∥∥∥µ(∆)− µ(∆(n))

∥∥∥2

−→ 0, n→∞.

Cf. (6). We refer to µ as the stochastic measure with indepenent values of the
type

E µ = 0 , E µ2 = M . (9)

And we write µ(dθ dt), (θ, t) ∈ Θ × T, for µ as the integrator.



4 Giulia Di Nunno and Yuri A. Rozanov

Let µk, k = 1, ...,K (K ≤ ∞), be a number of the independent stochas-
tic measures of type Eµk = 0, Eµ2

k = Mk on the corresponding space-time
products Θk × T. Let

Θ × T :=
∑

k

(Θk × T).

The mixture of µk, k = 1, ...,K, is a stochastic measure µ on the space-time
product Θ × T formally introduced above defined as

µ(∆) :=
∑

k

µk

(
∆ ∩ (Θk × T)

)
, ∆ ⊆ Θ × T . (10)

This stochastic measure is of the type Eµ = 0, Eµ2 = M , where

M(∆) =
∑

k

Mk

(
∆ ∩ (Θk × T)

)
, ∆ ⊆ Θ × T .

Cf. (9). Naturally in the expression above the sets Θk × T (k = 1, ...,K)
formally represent some partition sets of Θ × T. To illustrate, let µk, k =
1, ...,K (K ≤ ∞), be stochastic measures on the time interval T. Then the
space-time product Θ × T that can be applied has space component Θ =
{1, ...,K}.

1.3 The events generated.

Let µ = µ(∆), ∆ ∈ Θ × T, be a general stochastic measure with independent
values of the type (9). In particular, it can be the mixture of a number of
independent components - cf. (10). We write

A∆ , ∆ ⊆ Θ × T , (11)

for the σ-algebras generated by µ over the subsets of ∆ and augmented by
all the events of zero probability. To be more precise, A∆is the minimal aug-
mented σ-algebra containing all the standard events {µ(∆′) ∈ B} for all
B ⊆ R and the subsets ∆′ ⊆ ∆. To simplify notations and terminology, we
assume that the σ-algebra

A = AΘ×T (12)

represents all the events A ⊆ Ω.
We remark that, in some sense, the σ-algebras A∆ are continuous with

respect to the sets ∆ ⊆ Θ × T. To explain, on one hand we have

lim
n→∞

A∆(n) :=
∨
n

A∆(n) = A∆, (13)

for any sequence of increasing sets∆(n), n = 1, 2, ..., such that limn→∞∆(n) =
∆, i.e. M ((∆(n) \∆)∪ (∆ \∆(n))) → 0, n→∞ (here, the sign

∨
defines the

minimal σ-algebra containing the involved components)-cf. (8). On the other
hand, we have the following result. See e.g. [13].
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Theorem 1. Let ∆(n), n = 1, 2, ..., be a sequence of decreasing sets and let
∆ =

⋂
n∆

(n), then we have

lim
n→∞

A∆(n) :=
⋂
n

A∆(n) = A∆ . (14)

Proof. Note that

A∆(1) = A∆

∨
A∆(1)\∆ where A∆(1)\∆ =

∨
n

A∆(1)\∆(n) .

Cf. (13). Accordingly, we have

H∆(1) = H∆

∨
H∆(1)\∆ where H∆(1)\∆ =

∨
n

H∆(1)\∆(n) .

for the subspaces in L2(Ω) of random variables measurable with respect to the
corresponding σ-algebras (here above, the sign

∨
defines the linear closure of

the involved components). The products ξ · ξ′ : ξ ∈ H∆, ξ
′ ∈ H∆(1)\∆(n) , n >

1, constitute a complete system in H∆(1) . Hence, the orthogonal projections

ξ · ξ′ − E (ξ · ξ′|A∆) = ξ(ξ′ − E ξ′),

on the orthogonal complement H∆(1) 	 H∆ to the subspace H∆ ⊆ H∆(1) ,
constitute a complete system in H∆(1) 	 H∆. For the subspace H+

∆ of the
random variables in H∆(1) measurable with respect to the σ-algebra A+

∆ :=⋂
n A∆(n) , any ξ+ ∈ H+

∆ is independent from all ξ′ ∈ H∆(1)\∆(n) , n > 1, and
this implies that

E
(
ξ+ · ξ(ξ′ − Eξ′)

)
= E (ξ+ · ξ) · E (ξ′ − Eξ′) = 0 .

Thus, ξ+ is orthogonal to all the elements ξ·(ξ′−Eξ′) of the complete system in
H∆(1) 	 H∆. Accordingly, ξ+ ∈ H∆. This justifies that H+

∆ = H∆, A+
∆ = A∆.

�

The σ-algebras
At := AΘ×(0,t] , t ∈ T (15)

- cf. (11), represent the flow of events in the course of time on T = (0, T ].
Thanks to the condition (4), the σ-algebras At are continuous with respect to
t ∈ T:

lim
s→t−0

As :=
∨
s<t

As = At (0 < t ≤ T ) ,

lim
u→t+0

Au :=
⋂
u>t

Au = At (0 ≤ t < T ) .
(16)

Cf. (13)-(14). Note that, here above, for t = 0 we have the trivial σ-algebra A0.
We remark that, for any t, the values µ(∆), ∆ ∈ Θ× (0, t], are At-measurable
and the values µ(∆), ∆ ∈ Θ × (t, T ], are independent of At.
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1.4 The de Finetti-Kolmogorov infinitely-divisible law.

Let us set
R \ [0] := (−∞, 0) ∪ (0,∞) .

Similar to the stochastic processes with independent increments (cf. e.g. [51],
see also e.g. [49], [3]) the stochastic measure µ = µ(∆), ∆ ⊆ Θ × T, of the
type Eµ = 0, Eµ2 = M - cf. (9), can be characterized as follows. We can
refer to [18] for the following result. We also refer for example to [30] for some
results in this direction with respect to random measures.

Theorem 2. The values µ(∆), ∆ ⊆ Θ × T, obey the infinitely-divisible law

logE eiλµ(∆) =
∫∫

∆

[
− λ2

2
σ2(θ, t)

+
∫

R\[0]

(
eiλx − 1− iλx

)
L(dx, θ, t)

]
M(dθ dt), λ ∈ R : (17)

σ2(θ, t) +
∫

R\[0]
x2 L(dx, θ, t) ≡ 1 .

Proof. The values µ(∆) are infinitely-divisible random variables - cf. (5).
Hence, according to the deFinetti [8] and Kolmogorov [34] law (see [36], [33]),
we have

logE eiλµ(∆) = −λ
2

2
σ2

∆ +
∫

R\[0]

(
eiλx − 1− iλx

)
L∆(dx) , λ ∈ R (18)

with
σ2

∆ +
∫

R\[0]
x2 L∆(dx) ≡M(∆) , ∆ ⊆ Θ × T , (19)

where the constant σ2
∆ and the Borel measure L∆ = L∆(B), B ⊆ R \ [0],

depend on ∆ ⊆ Θ × T as additive set-functions. Taking the relationship (19)
with the variance measure M = M(∆), ∆ ⊆ Θ × T, into account we can see
that σ2

∆, L∆ admit the integral representations

σ2
∆ =

∫∫
∆

σ2(θ, t)M(dθ dt) , L∆(B) =
∫∫

∆

L(B, θ, t)M(dθ dt) .

The integrands σ2(θ, t) and L(B, θ, t), (θ, t) ∈ Θ × T, are elements of the
standard L1-space (with respect to the measure M). Moreover they are addi-
tive in their dependence on the Borel sets B ⊆ R \ [0]. The above stochastic
function L(B, θ, t), B ⊆ R \ [0], (θ, t) ∈ Θ × T, can be modified on a set of
zero M -measure in a way that yields a lifting to a new equivalent integrand
such that, whatever (θ, t) ∈ Θ × T be, the set-function L(B, θ, t), B ⊆ R \ [0],
is a measure on R \ [0] (see e.g. [24]). So, the probability law (18) admits a
representation in the form (17). �
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Example 1.1. The Gaussian stochastic measure µ, having Gaussian random
variables as values µ(∆), ∆ ⊆ Θ × T, corresponds to the probability law (17)
with σ2 ≡ 1 and L ≡ 0.
Example 1.2. The Poisson (centred) stochastic measure µ, having values

µ(∆) = ν(∆)− Eν(∆) , ∆ ⊆ Θ × T ,

where ν(∆), ∆ ⊆ Θ × T, are Poisson random variables, corresponds to the
probability law (17) with σ2 ≡ 0 and L concentrated the point x = 1 in R\ [0]
with unit mass, i.e.

logE eiλµ(∆) = (eiλ − 1− iλ)M(∆) , λ ∈ R.

We recall that the non-negative additive set-function ν = ν(∆), ∆ ⊆ Θ × T,
has values ν(∆) ∈ L2(Ω) which are integer random variables ν(∆) =
ν(∆,ω), ω ∈ Ω. In the case Θ is a complete separable metric space equipped
with the σ-algebra of its Borel sets, we have that ν = ν(∆), ∆ ∈ Θ × T,
admits an equivalent modification, which is referred to as

ν = ν(·, ω), ω ∈ Ω : Eν = M ,

with values ν(∆) = ν(∆,ω), ω ∈ Ω, representing the measures ν(·, ω) =
ν(∆,ω), ∆ ⊆ Θ × T, depending on ω ∈ Ω as parameter. For some (which
can be any) sequence of increasing sets Θn × T, such that M(Θn × T) < ∞,
n = 1, 2, ..., and limn→∞Θn × T = Θ × T, the measures ν(·, ω) can be de-
fined in a way that ν(Θn × T, ω) < ∞, n = 1, 2, ..., and all the finite values
ν(∆,ω) are integers. So, the measures ν(·, ω) are purely discrete, concentrated
on the corresponding atoms (θω, tω) ∈ Θ × T. In particular for ∆ ⊆ Θ × T
with M(∆) < ∞, the possibility of having one atom (θω, tω) ⊆ ∆ with
ν(θω, tω, ω) > 1 or of having a couple of atoms in ∆ with the same time
components occur with zero probability. To explain, the limit

lim
n→∞

P
{

max
(s,u]

µ
(
∆ ∩ (Θ × (s, u])

)
> 1
}

= 0

holds true for the nth -series of partitions of T - cf. (1), T =
∑

(s, u] : max(s−
u) → 0, n→∞, and the corresponding partitions of Θ × T:

∆ =
∑

∆ ∩
(
Θ × (s, u]

)
, n = 1, 2, ...,

- cf. (2)-(5). Hence, all the atoms (θω, tω) are in one-to-one correspondence

Θ × T 3 (θω, tω) ⇐⇒ tω ∈ T

with their time components and we have

ν(θω, tω, ω) ≡ 1.
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1.5 Non-anticipating and predictable stochastic functions.

We write L2(Θ × T × Ω) for the standard (complex) space of the stochastic
functions ϕ = ϕ(θ, t), (θ, t) ∈ Θ × T, with values ϕ(θ, t) = ϕ(θ, t, ω), ω ∈ Ω,
in L2(Ω):

∥∥ϕ∥∥
L2

=
(∫∫∫

Θ×T×Ω

|ϕ|2M(dθ dt)× P (dω)
)1/2

=
(∫∫

Θ×T
‖ϕ‖2M(dθ dt)

)1/2

. (20)

Cf. (7). Here, P = P (A), A ∈ A, is the probability on the σ-algebra A = AΘ×T
of all eventsA ⊆ Ω and the product-measureM×P onΘ × T×Ω is considered
on the σ-algebra generated by the product-sets

∆×A : ∆ ⊆ Θ × (s, u] , A ∈ A . (21)

The component M = M(∆), ∆ ⊆ Θ × T, satisfies (2)-(4). For the product-
sets (21) we have∫∫∫

∆×A
M(dθ dt)× P (dω) = M(∆) · P (A) .

We say that ϕ is a simple function if it admits the representation

ϕ =
∑

ϕ · 1∆

where the sum is taken on some finite series of disjoint sets ∆ ⊆ Θ × T:
M(∆) <∞, and the indicated element ϕ ∈ L2(Ω) in each component ϕ · 1∆

is the value of the simple function on ∆. Note that the simple functions
represented by the indicators

1∆×A = 1A · 1∆ : ∆ ⊆ Θ × (s, u] , A ⊆ Ω ,

with ∆ belonging to the partitions of Θ × T - see (3), constitute a complete
system in L2(Θ × T×Ω). Cf. (3)-(6) and (21).

Let us turn to the σ-algebras

At, t ∈ T,

characterized in (15) which represent the flow of events in the course of time.
The non-anticipating simple function ϕ is characterized by the representation

ϕ =
∑

ϕ · 1∆ (22)

where each component ϕ · 1∆ has ∆ ⊆ Θ × (s, u] and the indicated value
ϕ ∈ L2(Ω) on ∆ is an As-measurable random variable.
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In general, we refer to ϕ ∈ L2(Θ × T×Ω) as a non-anticipating function
if its values ϕ(θ, t) ∈ L2(Ω) in the course of time are determined by the
”past” events. To be more precise, for any t ∈ T, the random variable ϕ(θ, t)
is measurable with respect to the σ-algebra At.

Let us consider also the functions ϕ ∈ L2(Θ × T × Ω) measurable with
respect to the σ-algebra generated by the product-sets

∆×A : ∆ ⊆ Θ × (s, u] , A ∈ As (23)

- cf. (21). Following the common terminology (see e.g. [11]), we refer to the
above functions ϕ as the predictable functions and the σ-algebra generated by
the sets (23) as the predictable σ-algebra. Note that all the non-anticipating
simple functions are predictable. We remark that all the predictable functions
are non-anticipating. The following result details the study of the converse
relationship. Note that this coming result holds thanks to the left-continuity
of the flow of σ-algebras At, t ∈ T - cf. (16).

Theorem 3. Any non-anticipating function ϕ ∈ L2(Θ × T×Ω) can be iden-
tified with the corresponding predictable function given by the limit

ϕ = lim
n→∞

ϕ(n), i.e.
∥∥ϕ− ϕ(n)

∥∥
L2
−→ 0 , n→∞ ,

of the non-anticipating simple functions ϕ(n), n = 1, 2, ..., defined along the
nth -series of sets ∆ ⊆ Θ × (s, u] of the partitions of Θ × T - cf. (3), as

ϕ(n) =
∑

ϕ(n) · 1∆, with ϕ(n) =
1

M(∆)
E
(∫∫

∆

ϕM(dθ dt)
∣∣As

)
. (24)

Proof. At first, let us show that any function ϕ ∈ L2(Θ × T×Ω) is the limit
ϕ = limn→∞ ϕ(n) of simple approximations of the form

ϕ(n) =
∑

ϕ(n) · 1∆ with ϕ(n) =
1

M(∆)

∫∫
∆

ϕM(dθ dt), (25)

where the sum is taken on the sets ∆ ⊆ Θ × (s, u] of the nth -series of the
partitions of Θ × T. For ϕ ∈ L2(Θ × T×Ω), there are some simple functions

ψ(n) =
∑

ψ(n)1∆ with ∆ ⊆ Θ × (s, u] ,

such that

ϕ = lim
n→∞

ψ(n), i.e.
∥∥ϕ− ψ(n)

∥∥
L2
−→ 0 , n→∞ .

For the indicated values ϕ(n), ψ(n) on the nth -series sets ∆, we have∥∥ϕ(n) − ψ(n)
∥∥2 =

∥∥∥ 1
M(∆)

∫∫
∆

(ϕ− ψ(n))M(dθ dt)
∥∥∥2

≤ 1
M(∆)

∫∫
∆

‖ϕ− ψ(n)‖2M(dθ dt) . (26)
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So, we also have∥∥ϕ(n) − ψ(n)
∥∥2

L2
≤
∑∫∫

∆

‖ϕ− ψ(n)‖2M(dθ dt) ≤
∥∥ϕ− ψ(n)

∥∥2

L2

which implies that∥∥ϕ− ϕ(n)
∥∥

L2
≤ 2

∥∥ϕ− ψ(n)
∥∥

L2
−→ 0 , n→∞ .

Next, let us turn to the non-anticipating functions ϕ such that, on some (which
can be any) nth -series sets ∆ ⊆ Θ × (s, u] of the considered (3)-partitions,
the values ϕ(θ, t) for (θ, t) ∈ ∆ are measurable with respect to the σ-algebras
As. For these functions, when n is large enough (n→∞), the approximations
(24) are identical to the approximations (25). Any non-anticipating function
ϕ admits its approximations in L2(Θ × T × Ω) by the above type functions.
To explain, for any (θ, t) ∈ Θ × T and any set ∆ ⊆ Θ × (s, u] f the nth -
series of partitions of Θ×T such that (θ, t) ∈ ∆, the corresponding increasing
σ-algebras As have limit limn→∞ As = At. Thus

ϕ(θ, t) = E
(
ϕ(θ, t)|At

)
= lim

n→∞
E
(
ϕ(θ, t)

∣∣As

)
in L2(Ω) and

ϕ = lim
n→∞

∑
E
(
ϕ(θ, t)|As

)
· 1∆

in L2(Θ × T × Ω). Cf. (3)-(5) and (16). So, we can see that ϕ is the limit
ϕ = limn→∞ ψ(n) in L2(Θ × T×Ω) of some non-anticipating simple functions
ψ(n), n = 1, 2, ..., of the form

ψ(n) =
∑

ψ(n) · 1∆

related to the sets ∆ ⊆ Θ × (s, u] of the nth -series of the partitions of Θ × T
- see (3). Hence, by the same arguments applied for the approximations (25),
we can conclude that ϕ is the limit ϕ = limn→∞ ϕ(n) of the non-anticipating
simple functions (24). �

Now, let us consider the simple functions ϕ =
∑
ϕ · 1∆ where for each

component ϕ · 1∆ the indicated value ϕ on ∆ ⊆ Θ × T is measurable with
respect to the corresponding σ-algebra

A]∆[ : ]∆[ = Θ × T \∆ , (27)

generated by the stochastic measure µ over the complement set ]∆[ to ∆ - cf.
(11). We have the following result - see [18].

Theorem 4. Any function ϕ ∈ L2(Θ × T×Ω) is the limit

ϕ = lim
n→∞

ϕ(n), i.e.
∥∥ϕ− ϕ(n)

∥∥
L2
−→ 0 , n→∞,
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of the simple functions ϕ(n), n = 1, 2, ..., defined along the sets of the nth -
series of the partitions (3) as

ϕ(n) =
∑

ϕ(n) · 1∆ with ϕ(n) =
1

M(∆)
E
(∫∫

∆

ϕM(dθ dt)
∣∣∣A]∆[

)
. (28)

Proof. The proof uses the same arguments as in the proof of Theorem 1.3.
Here, to explain, we just note that for any (θ, t) ∈ Θ × T and any set ∆ of
the nth -series of the partitions of Θ × T such that (θ, t) ∈ ∆, we have

ϕ(θ, t) = lim
n→∞

E
(
ϕ(θ, t)|A]∆[

)
.

In fact the increasing σ-algebras A]∆[ have limit limn→∞ A]∆[ = A, where
A = AΘ×T represents all the events in Ω. Cf. (3)-(5) and (13). �

2 The Itô non-anticipating integral.

2.1 A general definition and related properties.

The Itô integration scheme [26] (see also e.g. [39]) can be applied to the non-
anticipating integration on the general space-time product Θ × T with respect
to the stochastic measure µ = µ(dθ dt), (θ, t) ∈ Θ × T, of type (9): Eµ =
0, Eµ2 = M . In particular, it can be applied in the modeling of stochastic
processes of the form

ξ(t) =
∫∫

Θ×(0,t]

ϕµ(dθ ds) , t ∈ T . (1)

The term non-anticipating is referred to the family of σ-algebras

At, t ∈ T,

which represent the flow of events in time - cf. (15). The integrands ϕ in
(1) are the non-anticipating stochastic functions treated as elements of the
functional space L2(Θ × T × Ω) - cf. (20). The non-anticipating functions
ϕ = ϕ(θ, t), (θ, t) ∈ Θ × T, with ϕ(θ, t) ∈ L2(Ω) At-measurable, for any (θ, t),
constitute the subspace

LI
2(Θ × T×Ω) ⊆ L2(Θ × T×Ω) (2)

of all the integrands. To be more precise, this subspace is the closure of all
the non-anticipating simple functions (24). Cf. Theorem 1.3.

Let us consider non-anticipating simple functions

ϕ =
∑

ϕ · 1∆
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where the sum is taken on a finite series of disjoint sets ∆ ⊆ Θ × (s, u]
M(∆) < ∞, and, for each component ϕ · 1∆, the As-measurable random
variable ϕ ∈ L2(Ω) is the value of µ on the indicated set ∆. The integration
results in the random variable

Iϕ =
∑

ϕ · µ(∆) (3)

belonging to L2(Ω). And here we have∥∥Iϕ∥∥ =
∥∥ϕ∥∥

L2
.

Cf. (7) and (20). So, the integration formula (3) defines the isometric linear
operator I:

LI
2(Θ × T×Ω) 3 ϕ =⇒ Iϕ ∈ L2(Ω)

on the domain of all the non-anticipating simple functions, dense in LI
2(Θ × T×

Ω). The standard extension of this linear operator on LI
2(Θ × T × Ω) is the

non-anticipating integral

Iϕ =
∫∫

Θ×T
ϕµ(dθ dt) .

Namely, for any ϕ ∈ LI
2(Θ × T×Ω), i.e. the limit

ϕ = lim
n→∞

ϕ(n) i.e.
∥∥ϕ− ϕ(n)

∥∥
L2
−→ 0 , n→∞,

of the non-anticipating simple functions ϕ(n), n = 1, 2, ... , we have

Iϕ = lim
n→∞

Iϕ(n), i.e. ‖Iϕ− Iϕ(n)‖ −→ 0 n→∞. (4)

In particular, the integration can be carried through via the standard non-
anticipating simple approximations of type (24).

For all the integrands, the integral∫∫
∆

ϕµ(dθ dt) :=
∫∫

Θ×T
(ϕ · 1∆)µ(dθ dt) , ∆ ⊆ Θ × T, (5)

is well-defined. Cf. (3)-(4).
In this line, all the functions ϕ of form

ϕ =
∑

k

ϕk =
∑

k

ϕ1Θk×T where
∑

k

Θk × T = Θ × T,

with the components ϕk = ϕ1Θk×T, k = 1, ...,K (K ≤ ∞), represent the
integrands with respect to the measure µ as integrator on Θk × T - cf. (10).

We remark that

E

(∫∫
∆

ϕµ(dθ dt)
∣∣∣As

)
= 0 (6)
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and

E

(∫∫
∆

ϕµ(dθ dt) ·
∫∫

∆′
ϕ′ µ(dθ dt)

∣∣∣As

)
=
∫∫

∆
T

∆′
E
(
ϕ · ϕ′

∣∣As

)
M(dθ dt)

(7)
for the integrands ϕ, ϕ′ and ∆, ∆′ ⊆ Θ × (s, T ], 0 ≤ s < T .

The non-anticipating integration on general product spaces with the time
component T was considered in [15]. With respect to a particular generaliza-
tion of the Itô stochastic integral on the product space of the form T× T we
can refer for example to [5].
Example 2.1. Let us consider the optional (stopping) time τ :

{τ ≤ t} ∈ At, t ∈ T,

and the optional σ-algebra Aτ of the events A ⊆ Ω such that

A ∩ {τ ≤ t} ∈ At, t ∈ T.

Thanks to the right-continuity of At, t ∈ T, we have that the stochastic
functions

ξ · 1(τ,T ] · ϕ ∈ L2(Θ × T×Ω)

are integrands whatever At-measurable random variables ξ and integrands ϕ
be applied. Moreover we have∫∫

Θ×T
ξ · 1(τ,T ]ϕµ(dθdt) = ξ ·

∫∫
Θ×T

1(τ,T ]ϕµ(dθdt).

2.2 The stochastic Poisson integral.

As continuation of Example 1.2, we specify the Itô non-anticipating integral
with respect to the Poisson (centred) stochastic measure µ := ν −Eν treated
through its Poisson components

ν = ν(·, ω), ω ∈ Ω : Eν = M .

Here, the pure discrete measures

ν(·, ω) = ν(∆,ω) , ∆ ⊆ Θ × T , (8)

which depend on ω ∈ Ω as parameter, are concentrated on the atoms

(θω, tω) : ν(θω, tω, ω) ≡ 1.

All these atoms are in one-to-one correspondence

Θ × T 3 (θω, tω) ⇐⇒ tω ∈ T
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with their time components.
The integrands ϕ are predictable functions in L2(Θ × T×Ω). We assume

that they satisfy ∫∫
Θ×T

(
E |ϕ|

)
M(dθ dt) <∞. (9)

Note that (9) holds for all the integrands in the case M is a finite measure -
cf. (20). Now let us consider the Poisson stochastic measure

ν = ν(∆,ω) , ∆ ⊆ Θ × T (ω ∈ Ω),

and the product-measure ν × P on Θ × T×Ω with values

(ν × P )(∆×A) =
∫∫∫

∆×A
ν(dθ dt, ω)× P (dω)

on the product-sets ∆ × A: ∆ ⊆ Θ × T, A ⊆ Ω - cf. (21). In particular we
can see that

ν × P ≡ M × P

on the predictable σ-algebra, i.e. the σ-algebra generated by the product-sets
∆×A: ∆ ⊆ Θ × (s, u], A ⊆ As - cf. (23). To explain, we have∫∫∫

∆×A
ν(dθ dt, ω)× P (dω)

= E
(
1A × ν(∆)

)
= E 1A × E ν(∆) =

∫∫∫
∆×A

M(dθ dt)× P (dω)

since the values ν(∆) : ∆ ⊆ Θ × (s, u], are independent from the events A ∈
As. For the predictable function ϕ which, we recall, is a function measurable
with respect to the predictable σ-algebra, the condition (9) says that∫∫∫

Θ×T×Ω

|ϕ| ν(dθ dt, ω)× P (dω) =
∫∫

Θ×T

(
E|ϕ|

)
M(dθ dt) <∞ .

Accordingly, the stochastic Poisson integral∫∫
∆

ϕν(dθ dt) :=
∫∫

∆

ϕ(·, ω) ν(dθ dt, ω) , ω ∈ Ω ,

is well-defined via the realizations (trajectories) ϕ(·, ω) = ϕ(θ, t, ω), (θ, t) ∈
Θ × T, integrable with respect to the measures ν(·, ω) for almost all ω ∈ Ω.
In this scheme, we can see that the Itô non-anticipating integral with respect
to the integrator µ = ν −M is related to the stochastic Poisson integral in
the following way:∫∫

∆

ϕµ(dθ dt) =
∫∫

∆

ϕν(dθ dt) −
∫∫

∆

ϕM(dθ dt) , ∆ ⊆ Θ × T . (10)
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This is obvious for the non-anticipating simple functions ϕ and it is true in
general via the limit

ϕ = lim
n→∞

ϕ(n), i.e.
∥∥ϕ− ϕ(n)

∥∥
L2
−→ 0 , n→∞ ,

of the non-anticipating simple functions ϕ(n), n = 1, 2, ..., thanks to the iden-
tity∫∫∫

Θ×T×Ω

∣∣ϕ− ϕ(n)
∣∣2M(dθ dt)× P (dω)

=
∫∫∫

Θ×T×Ω

∣∣ϕ− ϕ(n)
∣∣2ν(dθ dt, ω)× P (dω).

With respect to the representation (10), we remark that the stochastic Poisson
integral is actually∫∫

∆

ϕν(dθ dt) =
∑

(θω,tω)∈∆

ϕ(θω, tω, ω) , ω ∈ Ω, (11)

and the above stochastic series converges absolutely with∫
Ω

[ ∑
(θω,tω)∈∆

∣∣ϕ(θω, tω, ω)
∣∣]P (dω) =

∫∫
∆

(
E|ϕ|

)
M(dθ dt) <∞ .

Cf. (8)-(9).

2.3 The jumping stochastic processes.

To continue the scheme (8)-(11), we apply it to the cadlag stochastic processes

ξ(t) =
∫∫

Θ×(0,t]

ϕµ(dθ ds) , t ∈ T ,

- cf. (1), where ϕ = ϕ(θ, t, ω), (θ, t, ω) ∈ Θ × T × Ω, are the real predictable
integrands with respect to the Poisson (centred) stochastic measure µ of the
type Eµ = 0, Eµ2 = M , treated as µ = ν−Eν through its Poisson component
ν = ν(·, ω), ω ∈ Ω : Eν = M . Recall that the involved pure discrete measures
ν(·, ω) = ν(∆,ω), ∆ ⊆ Θ × T, have atoms (θω, tω) ∈ Θ × T which are in one-
to-one correspondence (θω, tω) ⇔ tω with the times tω ∈ T. Hence we can
see that all the jumps of the realizations (trajectories) of the above process
ξ(t), t ∈ T:

ξ(t, ω) =
∑

0<tω≤t

ϕ(θω, tω, ω)

−
∫∫

Θ×(0,t]

ϕ(·, ω)M(dθ dt) , t ∈ T (ω ∈ Ω) , (12)
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are

ρω := ξ(tω, ω) − ξ(tω − 0, ω) ≡ ϕ(θω, tω, ω) , (θω, tω) ∈ Θ × T .

Cf. (10)-(11). Accordingly, whatever real function

F (x, ·) = F (x, θ, t, ω) , (x, θ, t, ω) ∈ R×Θ × T×Ω ,

be considered such that F (ϕ, ·) is a predictable integrand with∫∫
Θ×T

(
E
∣∣F (ϕ, ·)

∣∣)M(dθ dt) <∞

- cf. (9), we obtain that, for all the jumps ρω := ξ(tω, ω)− ξ(tω − 0, ω) of the
trajectories (12), the corresponding trajectories

η(t, ω) =
∑

0<tω≤t

F (ρω, θω, tω, ω)

−
∫∫

Θ×(0,t]

F (ϕ, ·)M(dθ dt), t ∈ T (ω ∈ Ω), (13)

represent the stochastic process

η(t) =
∫∫

Θ×(0,t]

F (ϕ, ·)µ(dθ ds), t ∈ T.

Now let ϕ and F (ϕ, ·) = F (ϕ(θ, t), θ, t), (θ, t) ∈ Θ × T, be deterministic
real functions. Then η(t), t ∈ T, here above is the process with independent
increments characterized by the infinitely-divisible probability law

log eiλη(t) =
∫∫

Θ×(0,t]

(
eiλF (ϕ,·) − 1− iλF (ϕ, ·)

)
M(dθ ds), λ ∈ R (t ∈ T).

Example 2.2. In relation to the probability law (17), let us turn to the
Poisson (centred) stochastic measure µ on the space-time product (R \ [0])×
Θ × T:

Eµ = 0 , Eµ2 = L×M ,

with the variance represented by the standard product-measure L ×M on
(R \ [0])×Θ × T with the component L = L(B, θ, t), B ⊆ R \ [0] such that∫

R\[0]
x2L(dx, θ, t) ≤ 1 .

Assuming that Θ is a complete separable metric space, we can apply the
scheme generally described in (8)-(13) and consider the stochastic measure
µ = ν − Eν, with the Poisson component
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ν = ν(·, ω), ω ∈ Ω : Eν = L×M

on (R \ [0])×Θ × T represented by the pure discrete measures ν(·, ω) having
atoms

(xω, θω, ω) ∈ (R \ [0])×Θ × T.
For the sets

∆ ⊆ Θ × (s, u] : M(∆) <∞
in Θ × T and

B ⊆ {|x| > r} : r > ε > 0

in R \ [0], let us consider the function

ϕ = 1∆(θ, t)x 1{|x|>ε} , (x, θ, t) ∈ (R \ [0])×Θ × T ,

and the integrand
F (ϕ, ·) := 1B(ϕ) ≡ 1B×∆

on (R \ [0])×Θ × T. Let

ξ(t) =
∫∫∫

(R\[0])×Θ×(0,t]

1∆x 1{|x|>ε}µ(dx dθ ds) , t ∈ T ,

be the corresponding cadlag process. We can see that

µ(B ×∆) =
∑

s<tω≤u

1B(ρω)−
∫∫

∆

L(B, θ, t)×M(dθ dt), (14)

where ρω are the jumps of ξ(t, ω), t ∈ T. Note that here the actually involved
jumps

ρω = xω : (xω, θω, tω) ∈ B ×∆

are the same for all ε : 0 < ε < r. Cf. (13). Accordingly, formula (14) holds
true for any r > 0 and ε = 0, i.e. for

ρω = ξ(tω, ω)− ξ(tω − 0, ω)

as the jumps of the cadlag process

ξ(t) =
∫∫∫

(R\[0])×Θ×(0,t]

1∆xµ(dx dθ ds) , t ∈ T . (15)

In fact the component

ξε(t) :=
∫∫∫

(R\[0])×Θ×(0,t]

1∆x 1{|x|≤ε} µ(dx dθ ds) , t ∈ T,

is negligible, for ε→ 0, in the above process ξ(t), t ∈ T, with

ξ(t) =
∫∫∫

(R\[0])×Θ×(0,t]

1∆x 1{|x|>ε}µ(dx dθ ds)

+
∫∫∫

(R\[0])×Θ×(0,t]

1∆x 1{|x|≤ε}µ(dx dθ dt).
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2.4 Gaussian-Poisson stochastic measures.

Let us turn to the Gaussian stochastic measure µG on Θ × T:

EµG = 0 , E(µG)2 = σ2 ·M ,

and the Poisson (centred) stochastic measure µP on (R \ [0])×Θ × T:

EµP = 0 , E(µP )2 = L×M .

The formula

µ(∆) :=
∫∫

∆

µG(dθ dt)+
∫∫∫

(R\[0])×∆

xµP (dx dθ dt) , ∆ ⊆ Θ × T , (16)

defines the stochastic measure µ on Θ × T characterized by the infinitely-
divisible probability law (17) with the above parameters σ2, L and M such
that Eµ = 0 and Eµ2 = M . Here, we treat µP as in the general framework
of Example 2.2.

The Poisson (centred) stochastic measure µP can be determined as

µP (B ×∆) =
∑

s<tω≤u

1B(ρP
ω )−

∫∫
∆

L(B, θ, t)×M(dθ dt) , (17)

on the sets of form

B ×∆ : B ⊆ {|x| > r} , r > 0, ∆ ⊆ Θ × (s, u] : M(∆) <∞,

via the jumps ρP
ω := ξP (tω, ω)− ξP (tω− 0, ω) of the trajectories ξP (t, ω), t ∈

T, of the processes of type

ξP (t) :=
∫∫∫

(R\[0])×Θ×(0,t]

1∆xµ
P (dx dθ ds) , t ∈ T .

Cf. (14)-(15). For any ∆ ⊆ Θ × T: M(∆) < ∞, the above process is a com-
ponent in

ξ(t) :=
∫∫

Θ×(0,t]

1∆µ(dθ ds) = ξG(t) + ξP (t) , t ∈ T , (18)

- cf. (16). Here, the other component

ξG(t) =
∫∫

Θ×(0,t]

1∆ µG(dθ ds) , t ∈ T ,

is a Gaussian process with independent increments having continuous vari-
ance - cf. (3). These Gaussian processes are similar to the Wiener pro-
cess. In particular, their cadlag versions have actually continuous trajec-
tories ξG(t, ω), t ∈ T, for almost all ω ∈ Ω. Accordingly, the trajectories
ξ(t, ω), t ∈ T, of the processes (18) have jumps as
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ρω := ξ(tω, ω)− ξ(tω − 0, ω) ≡ ξP (tω, ω)− ξP (tω − 0, ω) = ρP
ω .

Hence, the stochastic measure µP can be determined through the stochastic
processes (18) as

µP (B ×∆) =
∑

s<tω≤u

1B(ρω)−
∫∫

∆

L(B, θ, t)×M(dθ dt), ω ∈ Ω. (19)

Cf. (17). So, the stochastic measures µG, µP in the representation (16) are
uniquely determined by µ.

Moreover, let us consider the Gaussian-Poisson mixture µG,P on the space-
time product

R×Θ × T =
(
[0]×Θ × T

)
∪
(
(R \ [0])×Θ × T

)
of the independent Gaussian stochastic measure µG on Θ × T, identified with
[0] × Θ × T, and the Poisson (centred) stochastic measure µP on (R \ [0]) ×
Θ × T - cf. (10). We can see that

AR×Θ×(0,t] ≡ AΘ×(0,t] , t ∈ T , (20)

for the σ-algebras generated in the course of time by µG,P and µ, correspond-
ingly. Cf. (15)-(16).

Let Θ be a general complete separable metric space. Within the framework
described in (8)-(20), we obtain the following result. See e.g. [25], [51] in the
case of stochastic processes.

Theorem 5. The representation (16) holds for a general stochastic measure
with independent values characterized by the probability law (17).

Proof. Let µ be a general stochastic measure with independent values char-
acterized by the probability law (17). For an appropriate probability space
Ω̃ there exist the independent Gaussian stochastic measure µ̃G and Poisson
(centred) stochastic measure µ̃P for which

µ̃(∆) =
∫∫

∆

µ̃G(dθ dt) +
∫∫∫

(R\[0])×∆

x µ̃P (dx dθ dt) , ∆ ⊆ Θ × T ,

is a stochastic measure with the same probability law as µ. We have

Ã(R\[0])×Θ×T = ÃΘ×T

for the σ-algebras generated by the Gaussian-Poisson mixture µ̃G,P over (R \
[0])×Θ × T and the stochastic measure µ̃ over Θ × T - cf. (20). For the random
variables ξ̃ on Ω̃, measurable with respect to the σ-algebra ÃΘ×T generated
by µ̃, we have the linear isometry
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L2(Ω̃) 3 ξ̃ =⇒ ξ ∈ L2(Ω) ,

defined through the mapping

ξ̃ = F
(
µ̃(∆1), ..., µ̃(∆m)

)
=⇒ F

(
µ(∆1), ..., µ(∆m)

)
= ξ

of all the functions of all the values of µ̃, µ. This mapping preserves the finite-
dimensional probability distributions. Hence the above isometry yields

µG(∆) : µ̃G(∆) =⇒ µG(∆) , ∆ ⊆ Θ × T ,

and

µP (B ×∆) : µ̃P (B ×∆) =⇒ µP (B ×∆), B ×∆ ⊆ (R \ [0])×Θ × T,

as the independent Gaussian and Poisson (centred) stochastic measures for
which we have

µ(∆) =
∫∫

∆

µG(dθ dt) +
∫∫∫

(R\[0])×∆

xµP (dx dθ dt), ∆ ⊆ Θ × T. �

3 The non-anticipating integral representation.

3.1 Multilinear polynomials and Itô multiple integrals.

For being able to model stochastic processes via stochastic integration in the
course of time - cf. (1), it is fundamental to characterize the random variables
ξ ∈ L2(Ω) which admit the non-anticipating integral representation

ξ = Eξ +
∫∫

Θ×T
ϕµ(dθ dt). (1)

Let µ be a general stochastic measure of the type Eµ = 0, Eµ2 = M -
cf. (9). In the sequel, we focus on the random variables which are limits in
L2(Ω) of multilinear polynomials of the values of µ (hereafter µ-values). By
multilinear polynomial we mean a linear combination of the p-power (p =
1, 2, ...) multilinear forms

ξ =
p∏

j=1

ξj with ξj = µ(∆j), j = 1, ..., p, (2)

of the µ-values taken on the disjoint sets ∆j ⊆ Θ × T : M(∆j) < ∞, j =
1, ..., p, plus the constants (which formally correspond to p = 0).

Theorem 6. The multilinear polynomials admit the non-anticipating integral
representation (1).
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Proof. The result is immediate for the multilinear forms (2) of the µ-values
on the sets ∆j ⊆ Θ× (sj , uj ], j = 1, ..., p, related to the disjoint time intervals
(sj , uj ] ⊆ T, j = 1, ..., p, on T = (0, T ]. Indeed, taking these intervals ordered
in time 0 < s1 < u1 ≤ ... ≤ sp < up ≤ T , we can see that

ξ =
∫∫

∆p

(
p−1∏
j=1

ξj

)
µ(dθ dt) .

The range of the non-anticipating integral, as an isometric linear operator, is
closed. Cf. (1)-(4). So, ξ admits the representation (1) if ξ = limn→∞ ξ(n) is
the limit in L2(Ω) of the linear combinations of the above type multilinear
forms of the µ-values. Hereafter we refer to the limit ξ = limn→∞ ξ(n) as the
proper approximation, when ξ is a general multilinear form (2) of the µ-values
on the disjoint sets ∆j , j = 1, ..., p and ξ(n), n = 1, 2, ..., are multilinear forms
which involve only the µ-values on the subsets in ∆ =

∑p
j=1∆j .

In general, for the limits ξk = limn→∞ ξ
(n)
k , k = 1, ...,m, with the inde-

pendent approximations {ξ(n)
k , n = 1, 2, ...}, k = 1, ...,m, we have

m∏
k=1

ξk = lim
n→∞

m∏
k=1

ξ
(n)
k ,

i.e.
∥∥∏ ξ −

∏
ξ(n)

∥∥ ≤ const ·max
k

∥∥ξk − ξ
(n)
k

∥∥ −→ 0, n→∞.

Keeping this in mind, let us suppose that all multilinear forms of the power
p < q (q > 1) admit a proper approximation. The claim trivially holds for
p = 1. Considering ξ =

∏q
k=1 µ(∆k) as a general q-power multilinear form (2)

through the nth -partitions

∆k =
∑(

∆k∩
(
Θ×(s, u]

))
,
∑

(s, u] = T : max(u−s) −→ 0 , n→∞ ,

we can see that

∥∥ξ(n)
0

∥∥2 :=
∑ q∏

k=1

M
(
∆k ∩

(
Θ × (s, u]

))
≤ const ·maxM

(
∆k ∩

(
Θ × (s, u]

))
→ 0, n→∞,

for

ξ
(n)
0 :=

∑ q∏
k=1

µ
(
∆k ∩

(
Θ × (s, u]

))
, n = 1, 2, ...

- cf. (5). We can also see that the differences
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ξ(n) := ξ − ξ
(n)
0 =

q∏
k=1

[∑
µ
(
∆k ∩

(
Θ × (s, u]

))]
−
∑ q∏

k=1

µ
(
∆k ∩

(
Θ × (s, u]

))
admit proper approximation. The same holds for ξ as the limit

ξ = lim
n→∞

ξ(n)

in L2(Ω). �

Let us now turn to Hp ⊆ L2(Ω) as the linear closure of all the p-power
multilinear forms (2). The subspaces Hp (p = 1, 2, ...) are orthogonal. Let us
consider

H :=
∞∑

p=0

⊕Hp (3)

which is the standard orthogonal sum of Hp, p = 1, 2, ..., in L2(Ω) where H0

represents the set of all the constants. We remark that all random variables
ξ ∈ H admit the non-anticipating integral representation (1). Cf. Theorem
3.1.

The representation (1) of the elements in ξ ∈ Hp, p > 1, can be specified
by means of the Itô type multiple integrals [27] (see also e.g. [53]). Here, we
have in mind the p-multiple integrals

Ipϕp =
∫
...

∫
{t1<...<tp}

ϕp µ(dθ1 dt1)× ...× µ(dθp dtp) , p > 1 , (4)

over the indicated domain {t1 < ... < tp} in the p-times product (Θ × T)p

which consists of

(θ1, t1, ..., θp, tp) ∈ (Θ × T)p : t1 < ... < tp.

The integrator in (4) is the standard type stochastic measure with orthogonal
values defined on the product-sets

∆1 × ...×∆p ⊆ {t1 < ... < tp}

as the product µ(∆1)× ...× µ(∆p) :

E
(
µ(∆1)× ...× µ(∆p)

)
= 0 ,

E
(
µ(∆1)× ...× µ(∆p)

)2

= M(∆1)× ...×M(∆p) .

The integrands ϕp are the deterministic functions

ϕp = ϕp(θ1, t1, ..., θp, tp), (θ1, t1, ..., θp, tp) ∈ {t1 < ... < tp},
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in the standard (complex) L2-space with the norm∥∥ϕp

∥∥
L2

=
(∫

...

∫
{t1<...<tp}

|ϕp|2M(dθ1 dt1)× ...×M(dθp dtp)
)1/2

.

So, in (4) we have the standard stochastic integral Ipϕp: ‖Ipϕp‖ = ‖ϕ‖L2 . The
p-power multilinear forms (2) of the µ-values on ∆j ⊆ Θ×(sj , uj ], j = 1, ..., p,
related to the disjoint time intervals (ordered according to 0 ≤ s1 < u1 ≤ ... ≤
sp < up ≤ T ) are identical to the p-multiple integrals (4) with the indicators
ϕp = 1∆1×...×∆p as integrands. Hence, following the proof of Theorem 3.1, we
can see that all ξp ∈ Hp are represented by all the p-multiple integrals Ipϕp.
For ξp = Ipϕp, the non-anticipating integral representation (1) can be given
as

ξp =
∫∫

Θ×T
Ip−1ϕp(·, θ, t)µ(dθ dt). (5)

Here the function

ϕp(·, θ, t) = ϕp(θ1, t1, ..., θp−1, tp−1, θ, t),
(θ1, t1, ..., θp−1, tp−1) ∈ {t1 < ... < tp−1},

with (θ, t) ∈ Θ × T as parameter, is the integrand in the (p − 1)-multiple
integral.

Of course, in the case p = 1, the non-anticipating integral representation
(1) of the elements ξ ∈ Hp is trivial:

ξ1 =
∫∫

Θ×T
ϕ1 µ(dθ dt),

with the deterministic integrands ϕ1: ‖ϕ1‖L2 = (
∫∫

Θ×T |ϕ1|2M(dθ dt))1/2. In
line with the case p > 1, we write ξ1 = I1ϕ1: ϕ1 = I0ϕ1(·, θ, t), (θ, t) ∈ Θ×T,
for the above stochastic integral. Clearly, the representation (1) of all ξ ∈ H
in the subspace H ∈ L2(Ω) - cf. (3), is obtained via the orthogonal sum

ξ =
∞∑

p=0

⊕ ξp : ξp ∈ Hp, p = 0, 1, ...,

with ξ0 = Eξ and

ξp =
∫∫

Θ×T
Ip−1ϕp(·, θ, t)µ(dθ dt). p = 1, 2, ...,

This yields

ξ = Eξ ⊕
∫∫

Θ×T

[ ∞∑
p=1

⊕Ip−1ϕp(·, θ, t)
]
µ(dθ dt). (6)

Here we refer to [16] and [28]. See also e.g. [42] for some results on Lévy
processes.
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3.2 Integral representations with Gaussian-Poisson integrators.

Let µ = µ(∆), ∆ ⊆ Θ × T, be a general Gaussian-Poisson mixture, i.e. the
mixture of the components µk, k = 0, 1, ... , which are either Gaussian or
Poisson (centred) stochastic measures multiplied by scalars - cf. (10) and
(16)-(19). Let us consider the subspaces

Hq :=
q∑

p=0

⊕Hp, q = 1, 2, ...,

in L2(Ω). Cf. (3).

Theorem 7. The q-power polynomials of the values of µ belong to Hq, q =
1, 2, ... .

Proof. The proof is quite similar to the one of Theorem 3.1. All the q-power
multilinear polynomials belong to Hq (q = 1, 2, ...). So ξ ∈ Hq if it can be
represented as limit ξ = limn→∞ ξ(n) in L2(Ω) of the q-power multilinear
polynomials ξ(n), n = 1, 2, ... . Let ξ be a q-power polynomial of µ-values, we
can treat ξ as the q-power polynomial of the values µ(∆j), j = 1, ...,m, on
appropriately choosen disjoint sets ∆j ⊆ Θ × T, j = 1, ...,m. Accordingly,
we refer to the limit ξ = limn→∞ ξ(n) of the q-power multilinear polynomials
ξ(n), n = 1, 2, ..., of the values of µ just on the subsets in ∆ =

∑m
j=1∆j as the

proper approximation. The proper approximation holds for p = 1. Suppose it
holds for the polynomials of power p < q, (q > 1). Than we can see that the
proper approximation does hold for all the q-power polynomials, if it holds
for

ξ = µ(∆)q , ∆ ⊆ Θ × T.

Moreover, note that here it is enough to consider the sets ∆ where µ is either
the Gaussian or the Poisson (centred) stochastic measure. Let us take the
nth -partitions

∆ =
∑

∆ ∩ (Θ × (s, u]),
∑

(s, u] = T : max(u− s) −→ 0, n→∞,

into account. We can see that the limit limn→∞ ξ
(n)
0 = ξ0 in L2(Ω) with

ξ
(n)
0 :=

∑
µ
(
∆ ∩

(
Θ × (s, u]

))q

, n = 1, 2, ... ,

has the following form: ξ0 = µ(∆), q = 2, or ξ0 = 0, q > 2, if µ is Gaussian
and ξ0 = µ(∆) + M(∆) if µ is the Poisson (centred) stochastic measure.
In all cases we can say that ξ0 admits proper approximation. Following the
arguments applied in the proof of Theorem 3.1, we can also see that the
differences

ξ−ξ(n)
0 =

[∑
µ
(
∆∩

(
Θ×(s, u]

))]q
−
∑

µ
(
∆∩

(
Θ×(s, u]

))q

, n = 1, 2, ... ,
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admit proper approximation as well. So, such approximation holds also for
ξ = µ(∆)q as the limit

ξ = lim
n→∞

ξ(n) with ξ(n) = (ξ − ξ
(n)
0 ) + ξ0, n = 1, 2, ... ,

in L2(Ω). �

In the sequel it is important that the σ-algebra is generated by the stochas-
tic measure µ, i.e.

A := AΘ×T

- cf. (12), and that the flow of events in the course of time is represented by
the σ-algebras (15)

At := AΘ×(0,t], t ∈ T.

Note that the polynomials of the values µ(∆), ∆ ⊆ Θ × T, are dense in
L2(Ω) when µ is a general stochastic measure with independent values which
obeys the probability law (17) and restricted by the condition

Eeλµ(∆) = exp
∫∫

∆

[λ2

2
σ2(θ, t)

+
∫

R\[0]
(eλx − 1− λx)L(dx, θ, t)

]
M(dθ dt) <∞, λ ∈ R. (7)

To explain, for the complete system of functions of the form

ei
Pm

k=1 λkξk (λk ∈ R, k = 1, ...,m),

with the values ξk = µ(∆k), k = 1, ...,m, taken on all finite combinations of
disjoint sets in Θ × T, we have∥∥∥ei

Pm
k=1 λkξk −

q∑
p=0

(i
∑m

k=1 λkξk)p

p!

∥∥∥ −→ 0 , q →∞.

In the following result we do consider that, for a general Gaussian-Poisson
mixture µ, the polynomials of the values of µ are dense in L2(Ω). See e.g.
[10], [11], [16], [28], [42].

Theorem 8. All the elements ξ ∈ L2(Ω):

L2(Ω) =
∞∑

p=0

⊕Hp , (8)

admit the non-anticipating integral representation (1).

Proof. Cf. (6) and Theorem 3.2. �



26 Giulia Di Nunno and Yuri A. Rozanov

3.3 Homogeneous integrators.

In the Theorem 3.3 we have seen that, for a given Gaussian-Poisson mixture
and a flow of events generated by the values of this measure in the course
of time, all the elements of the corresponding L2-space L2(Ω) admit integral
representation (1). However, in general, for a given stochastic measure, though
with homogeneous (see below) and independent values, and a filtration gen-
erated by the measure itself, we cannot claim that all the elements in the
corresponding L2(Ω) space admit the representation (1). This fact finds evi-
dence and consequences in many applied situations, we can refer as an example
to the incompleteness of certain well-known market models in mathematical
finance. The next result addresses the issue of characterizing the stochastic
measures for which it is possible that all the elements of the corresponding
L2(Ω) admit the representation (1).

Let us turn our attention to the measure µ = µ(∆), ∆ ⊆ Θ × T, of the
type Eµ = 0, Eµ2 = M satisfying (7), which is homogeneous, in the sense that
all the values µ(∆) on the sets ∆ ⊆ Θ × T of the same measure M(∆) obey
the same probability law. Accordingly, they follow the infinetely-divisible law
of the form (17) with parameters σ2, L that do not depend on (θ, t) ∈ Θ × T.
Namely we have

logEeiλµ(∆) =
[
− λ2

2
σ2 +

∫
R\[0]

(
eiλx−1− iλx

)
L(dx)

]
·M(∆), λ ∈ R : (9)

σ2 +
∫

R\[0]
x2L(dx) = 1

with σ2 constant and L(dx), x ∈ R \ [0], measure on R \ [0]. Let Θ be a
complete separable metric space. For the following result see e.g. [2], [6], [15].

Theorem 9. The non-anticipating integral representation (1) holds for all
ξ ∈ L2(Ω) if and only if µ is either Gaussian or Poisson (centred) stochastic
measure multiplied by a scalar.

Proof. Let us treat µ as

µ(∆) =
∫∫

∆

µG(dθ dt) +
∫∫∫

R\[0]×∆

xµP (dx dθ dt), ∆ ∈ Θ × T ,

in relation to the Gaussian-Poisson mixture µG,P . Cf. (16)-(20) and Theorem
2.1. For all ξ ∈ L2(Ω), the non-anticipating integral representation has the
form

ξ = E ξ ⊕
∫∫

Θ×T
ϕG µ

G(dθ dt)⊕
∫∫∫

(R\[0])×Θ×T
ϕP µ

P (dx dθ dt) (10)

which is here considered with respect to µG,P as integrator Cf. Theorem 3.3.
For all those ξ which admit the non-anticipating integral representation
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ξ = E ξ +
∫∫

Θ×T
ϕµ(dθ dt)

= E ξ ⊕
∫∫

Θ×T
ϕµG(dθ dt)⊕

∫∫
Θ×T

ϕ · xµP (dx dθ dt)

with respect to µ, the identity

ϕ(θ, t) ≡ ϕG(θ, t) ≡ x−1ϕP (x, θ, t) , (x, θ, t) ∈ (R \ [0])×Θ × T,

must hold for all the integrands ϕG and ϕP . Clearly, this identity can only
hold for all the different integrands ϕG, ϕP as elements of the corresponding
functional L2-spaces (related to the measures σ2 ·M and L ×M) if either
σ2 = 1, L = 0 or σ2 = 0 and L is concentrated at the single point x ∈ R \ [0],
with L(x) = x−2. In other terms it means that either µ = µG or µ = xµP . Here
µP is the Poisson (centred) measure concentrated on the product [x]×Θ × T,
which can be identified with Θ × T. �

Let us now consider the cadlag processes of type

ξ(t) =
∫∫

Θ×(0,t]

1∆µ(dθdt), t ∈ T

(∆ ⊆ Θ × T), for the stochastic measure µ the values of which follow the
probability law (9). The jumps of the trajectories of these processes are

ρω = ξ(tω, ω)− ξ(tω − 0, ω), tω ∈ T.

In relation to these jumps we can define the stochastic measure µF = µF (∆),
∆ ⊆ Θ × T: M(∆) <∞, as

µF (∆) :=
∑
tω∈T

F (ρω)−
∫

R\[0]
F · L(dx) ·M(∆) (11)

by means of the deterministic real function F = F (x), x ∈ R, such that
F (0) = 0 and ∫

R\[0]
|F (x)|pL(dx) <∞, p = 1, 2.

Here µF is a homogeneous stochastic measure with independent values of form

µF (∆) =
∫∫∫

(R\[0])×∆

FµP (dxdθdt), ∆ ⊆ Θ × T,

where µP is the Poisson (centred) stochastic component of µ. Accordingly we
have that the random variable µF (∆) has distribution characterized by

logEeiλµF (∆) =
∫

R\[0]

(
eiλF (x) − 1− iλF (x)

)
L(dx) ·M(∆), λ ∈ R.
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To explain the statement above it is enough to observe that

F (1∆x) = F (x)1∆(θ, t), (x, θ, t) ∈ (R \ [0])×Θ × T,

and refer to the argument used in (16)-(19).
Now let us consider an orthogonal basis Fk, k = 1, 2, ..., in the standard

(complex) space L2(R \ [0]):

‖F‖L2(R\[0]) =
(∫

R\[0]
|F |2L(dx)

)1/2

.

For each Fk, one can apply the arguments above and define the stochastic
measures

µFk = µFk(dθdt), (θ, t) ∈ Θ × T, k = 1, 2, ... .

Theorem 10. Let ξ ∈ L2(Ω). In the representation (10) the integral with
respect to the Poisson (centred) component µP can be written as∫∫∫

(R\[0])×Θ×T
ϕPµ

P (dxdθdt) =
∞∑

k=1

∫∫
Θ×T

ϕkµ
Fk(dθdt). (12)

Proof. The integrands ϕP in the stochastic integral with respect to the Pois-
son (centred) stochastic measure µP are elements of the subspace

LI
2((R \ [0])×Θ × T×Ω) ⊆ L2(R \ [0]×Θ × T×Ω)

in the standard L2-space related to the integrator

L(dx)×M(dθdt)× P (dω), (x, θ, t, ω) ∈ (R \ [0])×Θ × T×Ω

- cf. (20) and (2)-(5). The elements of the form

Fk · Φ : Φ ∈ L1(Θ × T×Ω), k = 1, 2, ...,

constitute a complete system in the above space. Hence, the orthogonal pro-
jections

Fk · ϕ : ϕ = E
(
Φ(θ, t)|At

)
, (θ, t) ∈ Θ × T,

of the elements Fk ·Φ, k = 1, 2, ..., on the subspace LI
2((R \ [0])×Θ × T×Ω)

constitute a complete system in this subspace. Any linear combination of the
above elements is represented as the orthogonal sum∑

k

⊕ϕk · Fk : ϕk ∈ L2(Θ × T× ω).

Thus any integrand ϕP for µP can be represented as the orthogonal series

ϕP =
∞∑

k=1

⊕ϕk · Fk
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in LI
2((R \ [0])×Θ × T×Ω) and this yields the representation (12), i.e.∫∫∫

(R\[0])×Θ×T
ϕPµ

P (dxdθdt) =
∞∑

k=1

⊕
∫∫∫

(R\[0])×Θ×T
(ϕk · Fk)µP (dxdθdt)

=
∞∑

k=1

⊕
∫∫

Θ×T
ϕkµ

Fk(dθdt),

as the standard orthogonal series (11) in L2(Ω). �

In the sequel we will introduce the non-anticipating derivative. Here we
would however note straightaway that the integrands in the representation
(12) are the non-anticipating derivatives ϕk = Dkξ of ξ ∈ L2(Ω) with respect
to the stochastic measure µFk , k = 1, 2, ....

We also would like to note that in the case the stochastic measure µ has
no Gaussian component µG, i.e. µ is following the probability law (9) with
σ2 = 0, then the representation (12) can be applied directly with µF1 = µ
and with the µFk , k = 2, 3, ..., given by (11). Here F1 = x, x ∈ R \ [0] and
Fk, k = 2, 3, ..., constitute an orthogonal system in L2(R \ [0]). The same
arguments used in the proof of Theorem 3.5 lead to the following result. See
also [42].

Corollary 11. Let stochastic measure µ follow the probability law (9) with
σ2 = 0. All the elements ξ ∈ L2(Ω) admit the following representation via the
orthogonal sum

ξ = Eξ ⊕
∞∑

k=1

⊕
∫∫

Θ×T
ϕkµ

Fk(dθdt) : µF1 = µ. (13)

4 The non-anticipating derivative.

4.1 A general definition and related properties.

Let us consider the non-anticipating integral as the isometric linear operator
I:

LI
2(Θ × T×Ω) 3 ϕ =⇒ Iϕ ∈ L2(Ω) ,

on the subspace of the non-anticipating functions ϕ - cf. (2). In relation to
I, we can define the non-anticipating derivative as the adjoint linear operator
D = I∗:

L2(Ω) 3 ξ =⇒ Dξ ∈ LI
2(Θ × T×Ω) . (1)

Note that we have
‖D‖ = ‖I‖ = 1

for the operator norm of the adjoint linear operators D = I∗, I = D∗. It is
Dξ = 0 for ξ orthogonal to all the non-anticipating integrals
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Θ×T

ϕµ(dθ dt) , ϕ ∈ LI
2(Θ × T×Ω).

Accordingly, for any random variable ξ ∈ L2(Ω), the non-anticipating deriva-
tive provides the best approximation

ξ̂ =
∫∫

Θ×T
Dξµ(dθ dt) (2)

to ξ in L2(Ω) by non-anticipating integrals, i.e.∥∥ξ − ξ̂
∥∥ = min

ϕ∈LI
2(Θ×T×Ω)

∥∥∥ξ − ∫∫
Θ×T

ϕµ(dθ dt)
∥∥∥ .

We obtain the following result - cf. [15] and [14], see also [22]. We can also
refer to [52] for some results in this direction in the case of the Wiener process
as integrator and to [45] for the space-time Brownian sheet.

Theorem 12. For all ξ ∈ L2(Ω), the non-anticipating differentiation can be
carried through via the limit

Dξ = lim
n→∞

∑
E
[ 1
M(∆)

E
(
ξ · µ(∆)

∣∣As

)]
· 1∆ (3)

in LI
2(Θ × T × Ω). Here the sum is on the nth -series sets ∆ ⊆ Θ × (s, u] of

some (which can be any) partition in Θ × T - cf. (3).

Proof. In the representation

ξ = ξ0 ⊕
∫∫

Θ×T
ϕµ(dθ dt)

with ϕ = Dξ - cf.(2), the component ξ0 is orthogonal to all the non-
anticipating integrals (thus Dξ0 = 0). This implies

E
((

1Aµ(∆)
)
· ξ0
)

= 0, ∆ ⊆ Θ × (s, u] , A ∈ As

- cf.(3), thus it is E(ξ0 · µ(∆)|As) = 0. With the use of

E
(∫∫

Θ×T
ϕµ(dθ dt) ·µ(∆)

∣∣∣As

)
= E

(∫∫
∆

ϕM(dθ dt)
∣∣∣As

)
, ∆ ⊆ Θ×(s, u]

- cf.(6) and (7), we can see that the limit (3) for ϕ = Dξ is identical to
the limit of the approximations ϕ(n), n = 1, 2..., characterized in (24) - cf.
Theorem 1.3. �

Example 4.1. Let µ be the mixture of the stochastic measures µk = µk(∆),
∆ ⊆ Θk × T, k = 1, 2, ... - cf. (10). Then, whatever ξ ∈ L2(Ω) be, the non-
anticipating derivative Dξ is
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Dξ =
∑

k

⊕Dkξ 1Θk×T

where, for any k, Dkξ is the non-anticipating derivative with respect to the
measure µk.

Example 4.2. For a general µ following the law (17), the non-anticipating
derivative of the element ξ ∈ L2(Ω):

ξ = Dξ ⊕
∞∑

p=1

⊕Ipϕp

can be determined by the formula

Dξ =
∞∑

p=1

⊕Ip−1ϕp(·, θ, t), (θ, t) ∈ Θ × T.

4.2 Differentiation formulae.

The random variables ξ ∈ L2(Ω) are functions of the values µ(∆), ∆ ⊆ Θ×T,
of the stochastic measure. In fact the elements ξ are measurable with respect
to the σ-algebra A = AΘ×T generated by the values of µ - cf. (12). Let us now
turn to the ξ which can be treated as functions of a finite number of values
µ(∆), ∆ ⊆ Θ × T. Any such random variable admits the representation

ξ = F (ξ1, ..., ξm) (4)

as a function of the values ξk = µ(∆k), k = 1, ...,m, on the appropriately
chosen disjoint sets ∆k, k = 1, ...,m, in Θ × T. Of course, the representation
(4) is not unique. So, for any finite number of any particular group of disjoint
sets

∆k ⊆ Θ × T : M(∆k) <∞, k = 1, ...,m,

we consider ξ = F - cf. (4), for the functions

F = F (ξ1, ..., ξm), (ξ1, ..., ξm) ∈ Rm,

which are characterized as follows. First of all, we assume that F ∈ C1(Rm),
and we write

∂x
k F :=

{
∂

∂ξk
F (..., ξk, ...), x 6= 0,

1
x

[
F (..., ξk + x, ...)− F (..., ξk, ...)

]
, x = 0.

According to the characterization of the stochastic measure µ by the infinitely-
divisible law - cf. (17), we define
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Dξ(θ, t) :=
m∑

k=1

[
∂0

kF · σ2(θ, t)

+
∫

R\[0]
∂x

kF · x2L(dx, θ, t)
]
· 1∆k

(θ, t), (θ, t) ∈ Θ × T, (5)

for the elements ξ = F of the type above. And we assumed that

Dξ = Dξ(θ, t), (θ, t) ∈ Θ × T,

satisfy the condition

|||Dξ|||2 :=
m∑

k=1

∫∫
∆k

[
‖∂0

kF‖2 · σ2(θ, t)

+
∫

R\[0]
‖∂x

kF‖2 · x2L(dx, θ, t)
]
M(dθ dt) <∞ . (6)

Hence we have in particular that Dξ ∈ L2(Ω ×Θ × T), since

‖Dξ‖L2 ≤ |||Dξ|||. (7)

The following result was first published in [18].

Theorem 13. The non-anticipating derivative of the random variable ξ = F
of type (4) defined by the limit (3) can be computed by

D ξ(θ, t) = E
(
Dξ(θ, t)

∣∣At

)
, (θ, t) ∈ θ × T. (8)

Proof. The proof is subdivided in several steps in which the statement is
shown for more and more general random variables ξ, see steps A, B, C.
Finally an appropriate approximation argument leads to the conclusion, see
step D.
A. Let us take ξ = F = F (ξi, ..., ξm) with

F (ξ1, ..., ξm) = ei
Pm

k=1 λkξk , (λk ∈ R, k = 1, ...,m) (9)

into account. In this case formula (5) gives

D ξ(θ, t) = ξ

m∑
k=1

[
iλkσ

2(θ, t)

+
∫

R\[0]

(
eiλkx − 1

)
xL(dx, θ, t)

]
1∆k

(θ, t), (θ, t) ∈ Θ × T.

We consider ξk = µ(∆k), k = 1, ...,m, with the disjoint simple sets ∆k, k =
1, ...,m. Then, for n→∞, any set ∆ ⊆ Θ× (s, u] of the nth-series of the (3)-
partitions either belongs to some ∆k or it is disjoint with all ∆k, k = 1, ...,m.
In this last case we have
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E
(
ξ µ(∆)|A]∆[

)
= ξ E µ(∆) = 0

- cf.(27). Otherwise, if ∆ ⊆ ∆k, for some k, it is

E
(
ξ µ(∆)

∣∣A]∆[

)
= e−iλkµ(∆)ξ E

(
µ(∆)eiλkµ(∆)

)
=e−iλkµ(∆)ξ Eeiλkµ(∆)

∫∫
∆

[
iλkσ

2(θ, t)

+
∫

R\[0]

(
eiλkx − 1

)
xL(dx, θ, t)

]
M(dθdt)

=E
(∫∫

∆

Dξ(θ, t)M(dθ dt)
∣∣A]∆[

)
.

According to Theorem 1.4 the stochastic function Dξ admits the representa-
tion

Dξ = lim
n→∞

∑ 1
M(∆)

E
(
ξ · µ(∆)

∣∣A]∆[

)
1∆ (10)

as a limit in L2(Ω × Θ × T). Here the sum refers to all the elements of the
same nth -series of partitions of Θ × T. By use of an appropriate sub-sequence
we have convergence in L2(Ω) for almost all (θ, t) ∈ Θ × T:

Dξ(θ, t) = lim
n→∞

1
M(∆)

E
(
ξ · µ(∆)

∣∣As

)
, (θ, t) ∈ ∆

and
Dξ(θ, t) = lim

n→∞

1
M(∆)

E
(
ξ · µ(∆)

∣∣A]∆[

)
, (θ, t) ∈ ∆

for ∆ ⊆ Θ × (s, u]: ∆ 3 (θ, t). Moreover taking t− < t, we obtain

E
(
Dξ(θ, t)

∣∣At−

)
= lim

n→∞

1
M(∆)

E
(
ξµ(∆)

∣∣At−

)
= E

(
Dξ(θ, t)

∣∣At−

)
.

Let t− → t in the above relations then we have

Dξ(θ, t) = E
(
Dξ(θ, t)|At

)
= lim

t−→t
E
(
Dξ(θ, t)|At−

)
= lim

t−→t
E
(
Dξ(θ, t)|At−

)
= E

(
Dξ(θ, t)|At

)
,

since limt−→t At− = At - cf. (16). Thus, formula (8) holds for ξ = F with F
of form (9) and the ξk = µ(∆k) with ∆k, k = 1, ...,m, as disjoint simple sets.
B. Indeed the above result holds for any group of measurable disjoint sets
∆1, ...,∆m. In fact it is enough to apply an approximation argument with
∆k = limn→∞∆

(n)
k , k = 1, ...,m, by disjoint simple sets ∆(n)

k , k = 1, ...,m
(n = 1, 2, ...), such that µ(∆k) = limn→∞ µ(∆(n)

k ) holds true in L2(Ω) and
for almost all ω ∈ Ω. Cf. (6) and (8). Accordingly for ξ and ξ(n) of type (9)
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with ξk = µ(∆k), k = 1, ...,m, and ξ
(n)
k = µ(∆(n)

k ), k = 1, ...,m, respectively
we have also ξ = limn→∞ ξ(n) in L2(Ω) and

Dξ = lim
n→∞

Dξ(n) , Dξ = lim
n→∞

Dξ(n) (11)

in L2(Θ × T×Ω). Thus

Dξ(θ, t) = E
(
Dξ(θ, t)

∣∣At

)
for almost all (θ, t) ∈ Θ × T, i.e. formula (8) holds for Dξ as the element in
LI

2(Θ × T×Ω) ⊆ L2(Θ × T×Ω).
C. Clearly, formula (8) is valid for all ξ = F which are linear combinations of
functions (9) with ξk = µ(∆k) on disjoint measurable sets ∆k, k = 1, ...,m.
D. The formula (8) can be extended on all the functions characterized in the
scheme (4)-(7). Let us define the scalar functions

Dξ :=
m∑

k=1

∂x
kF · 1∆k

on the product space R × ∆ × Ω: ∆ =
∑m

k=1∆k, equipped with the finite
product-type measure

L0(dx, θ, t)×M(dθdt)× P (dω), (x, θ, t, ω) ∈ R×∆×Ω.

Here L0(dx, θ, t), (θ, t) ∈ Θ × T, is equal to σ2(θ, t) at the atom x = 0 and to
x2L(dx, θ, t) on R \ [0]. The functions

Dξ = Dξ(x, θ, t, ω), (x, θ, t, ω) ∈ R×∆×Ω,

are elements of the standard space L2(R×∆×Ω) with norm

∥∥∥∥∥∥Dξ∥∥∥∥∥∥L2 :=
(∫∫∫

R×∆×Ω

|Dξ|2L0(dx, θ, t)×M(dθdt)× P (dω)
)1/2

.

We have
‖‖‖Dξ‖‖‖L2 = |||Dξ|||

for
Dξ =

∫
R

DξL0(dx, θ, t), (θ, t, ω) ∈ ∆×Ω.

Cf. (5)-(7). The key-point of the approximation argument which will be ap-
plied is that, for ξ = F and ξ(n) = F (n), n = 1, 2, ..., the convergences

‖ξ − ξ(n)‖ −→ 0 and ‖‖‖Dξ − Dξ(n)‖‖‖L2 −→ 0, n→∞, (12)

imply the limits
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Dξ = lim
n→∞

Dξ(n) and Dξ = lim
n→∞

Dξ(n)

in L2(Θ×T×Ω). Note that in the coming considerations, we apply dominated
point-wise with the appropriate corresponding majorants in order to prove the
convergences (12). To simplify the notation, we give the proof in the case k = 1
(m = 1), i.e. for ξ1 = µ(∆1).
For F ∈ C∞0 (R), the convergence (12) holds with ξ(n) = F (n) given by the
partial sums F (n) = Φn(F ) of the Fourier series of F on |ξ1| ≤ hn (hn →∞,
n→∞). In fact note that, for n→∞, we have

∂x
1F

(n) := ∂x
1Φn(F ) = Φn(∂x

1F )

whatever x ∈ R be. Next, for ξ = F : F ∈ C1
0 (R) the convergence (12) holds

with ξ(n) = F (n):

F (n) := F ∗ δn =
∫

R
F (ξ1 − x1)δn(x1)dx1 ∈ C∞0 (R)

with δn ∈ C∞0 (R) as the standard approximations to the delta-function. Here
we have

∂x
1F

(n) := ∂x
1 (F ∗ δn) = (∂x

1F ) ∗ δn, n = 1, 2, ...

In general, for ξ = F : F ∈ C1(R), the convergence (12) holds with ξ(n) =
F (n) as the truncations F (n) = F · wn ∈ C1

0 (R). Here wn is an appropriate
approximation wn ∈ C1

0 (R) of the unit. Note that

∂x
1F

(n) := ∂x
1 (F · wn) = (∂x

1F ) · wn + F · (∂x
1wn), n = 1, 2, ... �

Example 4.3. Let µ be a mixture of the Gaussian stochastic measure on
Θ0×T and Poisson (centred) stochastic measures (multiplied by the different
scalars x 6= 0) on the corresponding space-time products Θx × T. So, µ is a
stochastic measure on the space-time product

Θ × T =
(
Θ0 × T

)
∪
∑
x6=0

(
Θx × T

)
- cf. (10). For ξ = F as a function in C1(Rm) of the values ξk = µ(∆k),
k = 1, ...,m, on the disjoint sets ∆k, k = 1, ...,m, in Θ × T, the formula (8)
can be written

Dξ =
m∑

k=1

[
∂0

kF1Θ0×T +
∑
x6=0

∂x
kF1Θx×T

]
· 1∆k

.

Remark 4.1. The formula (8) is in general not valid if in ξ = F the function
F is evaluated on values of µ which are not on disjoint sets.
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5 The anticipating derivative and integral.

5.1 Definition and related properties.

Following the discussion of the previous section we can now turn our attention
to all the random variables ξ = F where F is a linear combination of the ran-
dom variables considered in the scheme (4)-(7). Also these linear combinations
fit the scheme (4)-(7). Moreover we write

domD ⊆ L2(Ω) (1)

for the linear domain of all elements in L2(Ω) of the type ξ = F characterized
in (4)-(7), plus the limits ξ = limn→∞ ξ(n) in L2(Ω) of the above type elements
ξ(n), n = 1, 2, ..., for which the corresponding limits

Dξ := lim
n→∞

Dξ(n)

exist L2(Θ × T×Ω).
Note that whatever the representation ξ = F (4) be, the corresponding

stochastic function Dξ is a unique well-defined element of L2(Θ × T × Ω).
Moreover, we obtain the following result. See [19].

Theorem 14. For all ξ ∈ domD, the stochastic functions Dξ are given by the
well defined closed linear operator D:

L2(Ω) ⊇ domD 3 ξ =⇒ Dξ ∈ L2(Θ × T×Ω), (2)

with domain domD dense in L2(Ω).

Proof For some (which can be any) partitions of Θ × T, let us fix a family
of the elements in L2(Ω) which are of type (9) with the µ-values taken on
disjoint simple sets in Θ × T. Any linear combination of these elements admits
the representation

ξ = F (ξ1, ..., ξm)

with F as linear combination of the different elements

ei
Pm

k=1 λkξk , ξk = µ(∆k), k = 1, ...,m,

Accordingly, we can see that for all these linear combinations the correspond-
ing formula (5) is given by the limit

Dξ = lim
n→∞

∑ 1
M(∆)

E
(
ξµ(∆)|A]∆[

)
1∆ (3)

taken in L2(Θ × T × Ω). The sum is here taken on the sets ∆ of the nth -
series of the partitions of Θ × T. Cf. (10). Clearly, this limit defines the linear
operator D:
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domD 3 ξ =⇒ Dξ ∈ L2(Θ × T×Ω) (4)

on the linear domain domD ⊆ L2(Ω). Let us show that this linear operator D
is closable. Let ∆0 ⊆ Θ×T be a simple set and ϕ0 · 1∆0 be a simple function
the element ϕ0 ∈ L2(Ω) as A]∆0[-measurable values on ∆0. The limit (3)
implies that∫∫

Θ×T
E
[(
ϕ01∆0

)
Dξ
]
M(dθdt)

= lim
n→∞

∑
∆⊆∆0

E
[
ϕ0E

(
ξµ(∆)

∣∣A]∆[

)]
= E

[(
ϕ0µ(∆0)

)
ξ
]
. (5)

Hence, for the elements ξ(n) = F (n), n = 1, 2, ... in domD such that
limn→∞ ξ(n) = 0 in L2(Ω) and limn→∞Dξ(n) = ϕ in L2(Θ × T × Ω), we
have ∫∫

Θ×T
E
[(
ϕ0 · 1∆0

)
· ϕ
]
M(dθdt) = 0 .

The considered simple functions ϕ0 · 1∆0 constitute a complete system in
L2(Θ×T×Ω). Cf. Theorem 1.4. Hence, the above equation implies that ϕ = 0.
Thus the linear operator (3)-(4) is closable. Hence it admits the standard
extension on all the random variables ξ = F as functions of the type (9)
involving all the disjoint sets ∆k ⊆ Θ × T : M(∆k) < ∞, k = 1, ...,m. Cf.
(11). The next standard extension of the closable linear operator (3)-(4) up
to the closed linear operator (1)-(2) is done by approximation arguments with
respect to the limits (11)-(12), see the proof of Theorem 4.2. �

Note that formula (8) holds for all the elements ξ ∈ domD in the domain
of the closed linear operator (1)-(2) and, to repeat, it is

Dξ(θ, t) = E
[
Dξ(θ, t)|At

]
, (θ, t) ∈ Θ × T. (6)

According to this relationships with the non-anticipating derivative D, we call
D the anticipating derivative.
Remark 5.1. In general, the formula (5) for the anticipating derivative Dξ
of the random variable (4): ξ = F as a function of the values of µ, is non valid
if these values are taken on sets in Θ × T which are not disjoint.

In addition to the scheme (4)-(7), let us consider the functions ξ =
F (ξ1, ..., ξm) with F ∈ C1(Rm) and where ξk, k = 2, ...,m, are the stochastic
integrals

ξk =
∫∫

Θ×T
ϕkµ(dθ dt)

with the deterministic integrands ϕk having the disjoint supports ∆k =
{(θ, t) : ϕk(θ, t) 6= 0}, k = 1, ...,m. We introduce the stochastic functions
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Dξ :=
m∑

k=1

[
∂0

kF σ
2(θ, t) +

∫
R\[0]

∂x
kF x

2L(dx, θ, t)
]
1∆k

(θ, t), (θ, t) ∈ Θ × T.

(7)
with a new definition for the functions

∂x
k F :=

{
∂

∂ξk
F (..., ξk, ...)ϕk(θ, t), x 6= 0,

1
x

[
F (..., ξk + xϕ(θ, t), ...)− F (..., ξk, ...)

]
, x = 0.

The stochastic functions Dξ introduced above satisfy the condition (6)
with the newly defined components ∂x

kF, k = 1, ...,m. In this setting Theorem
5.1 implies the following result.

Corollary 15. The elements ξ = F ∈ L2(Ω), defined here above belong to
domD and the formula (7) represents the anticipating derivative Dξ.

Proof. In the case F ∈ C1
b (Rm) and the integrands ϕk, k = 1, ...,m, are linear

combinations of indicators of the disjoint sets∆jk, j = 1, ...,mk (k = 1, ...,m),
i.e.

ϕk =
mk∑
j=1

cjk · 1∆jk
,

the formula (7) gives the anticipating derivative Dξ of ξ = F (ξ1, ..., ξm) as
function of ξjk = µ(∆jk), j = 1, ...,mk (k = 1, ...,m). Cf. (5). By standard ap-
proximation arguments with respect to the limit (12) - cf. also (1), formula (7)
admits extension on all elements characterized by the condition (6) involving
the newly here above defined components ∂x

k F, k = 1, ...,m. �

Example 5.1. Let Ipϕp, p = 1, 2, ..., be the Itô p-multiple integrals with re-
spect to a general stochastic measure µ in the scheme (3)-(5). The anticipating
derivative is

DIpϕp = Ip−1ϕ̂p(·, θ, t), (θ, t) ∈ Θ × T,

with the integrands

ϕ̂p :=
p∑

j=1

ϕp(..., θ, t, ...)

depending on (θ, t) ∈ Θ × T as parameter. The couple (θ, t) comes in at the
place of the corresponding couples (θj , tj), j = 1, ..., p. Here we have

‖Dξ‖L2 = p1/2‖ξ‖, p = 1, 2, ... .

All the elements

ξ =
∞∑

p=0

⊕ ξp : ξ0 = Eξ, ξp = Ipϕp, p = 0, 1, ...,

with
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∞∑
p=1

p ‖ξp‖2 <∞

belong to the domain domD of the anticipating derivative and

Dξ =
∞∑

p=1

⊕Ip−1ϕ̂p. (8)

See e.g. [16], [19].
Example 5.2. For µ as a general Gaussian-Poisson mixture, the elements
ξ ∈ domD characterized in Example 5.1 represent the whole domain domD.
A key-point to show this is that, for all random variables of the form ξ =
ei

Pm
k=1 λkξk - cf. (9), the approximations

ξ = lim
q→∞

ξ(q), Dξ = lim
q→∞

Dξ(q)

hold with the polynomials

ξ(q) =
q∑

p=0

(
i

m∑
k=1

λkξk

)p

∈ domD, q = 1, 2, ...,

of the values of µ. Cf. Theorem 3.2 and Theorem 3.3.
The anticipating derivative (1)-(2) and its relationship (6) with the non-

anticipating derivative can be regarded as in the same line as the Malliavin
derivative [38] and the Clark-Haussmann-Ocone formula [7], [23], [43] within
the stochastic calculus for the Wiener process. Here we would like also to
refer to e.g. [1], [2], [4], [9], [12], [20], [21], [32], [37], [40], [41], [44], [46], [48],
[47] and references therein, for some further developments of the Malliavin
calculus with respect to the Wiener process and the Poisson process and
Poisson (centred) random measure. See [35] for some results in the case of
Lévy processes.

5.2 The closed anticipating extension of the Itô non-anticipating
integral.

In this final section we present some results of anticipating calculus. In the
framework of Wiener processes, we have the Skorohod integral [50] as the
adjoint operator to the Malliavin derivative Similar arguments can be achieved
in the case of Poisson (centred) random measures. We can refer e.g. [12], [29],
[31], [40], [41] and references therein.

Here as usual in this paper we consider a general stochastic measure of
type (17) on Θ × T. See [19], see also [17].

Theorem 16. The closed linear operator J = D∗, adjoint to the anticipating
derivtive (1)-(2):
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L2(Θ × T×Ω) ⊇ domJ 3 ϕ =⇒ Jϕ 3 L2(Ω) (9)

represents the extension

Jϕ =
∫∫

Θ×T
ϕµ(dθ dt)

of the Itô non-anticipating integral on all the stochastic functions ϕ in the
domain domJ of J dense in L2(Θ × T×Ω).

Proof. The key-point of the proof is equation (5) which can be extended by
the standard approximation arguments to hold on all the simple functions of
the form ϕ·1∆ with A]∆[-measurable values ϕ on the indicated sets∆ ⊆ Θ × T:
M(∆) <∞, i.e.∫∫

Θ×T
E
[
(ϕ · 1∆) · Dξ

]
M(dθ dt) = E

[(
ϕ · µ(∆)

)
· ξ
]
, ξ ∈ domD. (10)

The linear combinations of the above type simple functions are dense in
L2(Θ × T×Ω). Cf. Theorem 1.4. Equation (10) shows that the simple func-
tions ϕ · 1∆ belong to the domain domJ of the adjoint linear operator J = D∗
and that

J(ϕ · 1∆) = ϕ · µ(∆). (11)

Clearly, J coincides with the non-anticipating integral I on the non-antici-
pating simple functions and also on any non-anticipating function thanks to
the limit

ϕ = lim
n→∞

ϕ(n), i.e. ‖ϕ− ϕ(n)‖L2 −→ 0, n→∞,

in L2(Θ × T × Ω) of the non-anticipating simple functions ϕ(n), n = 1, 2, ....
The corresponding limit

Iϕ = lim
n→∞

Iϕ(n) = lim
n→∞

Jϕ(n)

in L2(Ω) implies that ϕ belongs to the domain of the closed linear operator
J and that Jϕ = Iϕ. Cf. (3)-(4). �

In relation to the anticipating derivative D, we call J = D∗ the anticipating
integral. Note that D = J∗ is the adjoint linear operator to J. Cf. the duality
D = I∗ for the non-anticipating derivative D and the Itô non-anticipating
integral I = D∗.
Example 5.3. In case µ is the Gaussian-Poisson mixture, the anticipating in-
tegral J can be completety characterized in terms of the multiple Itô integrals
Ipϕp, p = 2, ..., and the anticipating derivatives

DIpϕp = Ip−1ϕ̂p, p = 1, 2, ... .
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Cf. Example 5.1 and Example 5.2. Namely, the domain domJ consists of all
stochastic functions admitting the representation

ϕ = ϕ0 ⊕
∞∑

p=1

⊕Dξp,

ξp = Ipϕp, p = 1, 2, ... such that
∞∑

p=1

p2‖ξp‖2 <∞.

Here the components ϕ0 are orthogonal to the range of the anticipating deriva-
tive D. Correspondingly, we have

Jϕ =
∞∑

p=1

⊕ pξp.

See [16], [19].
Remark 5.2. In general, for an integrand of the form ϕ ·1∆ where its value ϕ
on ∆ ⊆ Θ × T is an element in L2(Ω) which is not A]∆[-measurable, it occurs
that

J (ϕ · 1∆) 6= ϕ · µ(∆).

To illustrate we can mention that

J
(
µ(∆) · 1∆

)
= µ(∆)2 −M(∆),

if µ is Gaussian, and

J
(
µ(∆) · 1∆

)
= µ(∆)2 − µ(∆)−M(∆),

if µ is a Poisson (centred) stochastic measure. Remind that µ is of the type
Eµ = 0, Eµ2 = M .
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cesses, Journal of Functional Analysis, 206 (2004), 109-148.

21. G. Di Nunno, B. Øksendal and F. Proske, Malliavin calculus for Lévy processes
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27. K. Itô, Multiple Wiener integral, J. Math. Soc. Japan, 3 (1951), 157-169.



Stochastic Integrals and Adjoint Derivatives. 43
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