
Power variation analysis of some integral
long-memory processes

José Manuel Corcuera

University of Barcelona

Summary. We show some results about the asymptotic behavior of the power vari-
ation and how they can be used for statistical purposes in the context of some integral
long-memory processes. These processes are obtained as integrals with respect to a
fractional Brownian motion with Hurst parameter H > 1/2.

1 Introduction

Let {Zt, t ≥ 0} be a stochastic process. The realized power variation of order
p > 0 is defined as

V n
p (Z)t =

[nt]∑
i=1

∣∣Zi/n − Z(i−1)/n

∣∣p .

For p = 2 we have the realized quadratic variation that has been widely used
in statistics of random processes.

For any p > 0 the p-variation of a real valued function f on an interval
[a, b] is defined as

Varp(f ; [a, b]) = sup
π

(
n∑

i=1

|f(ti)− f(ti−1)|p
)1/p

,

where the supremum runs over all partitions π = {a = t0 < t1 < · · · < tn = b}.
Young (1936) proved that the Riemann–Stieltjes integral

∫ b

a
fdg exists if f

and g have finite p-variation and finite q-variation, respectively, in the interval
[a, b] and 1

p + 1
q > 1. Moreover, the following inequality holds∣∣∣∣∣

∫ b

a

fdg − f(a)(g(b)− g(a))

∣∣∣∣∣
≤ cp,qVarp(f ; [a, b])Varq(g; [a, b]),
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where cp,q = ζ( 1
q + 1

p ), with ζ(s) :=
∑

n≥1 n−s.

We consider processes of the form Zt =
∫ t

0
usdBH

s , where BH is a fractional
Brownian motion with Hurst parameter H > 1

2 , and u is a stochastic process
with paths of finite q-variation, q < 1

1−H . The integral is a pathwise Riemann–
Stieltjes integral and we are interested in the asymptotic behavior of the
realized power variation conveniently scaled

n−1+pH

[nt]∑
i=1

∣∣Zi/n − Z(i−1)/n

∣∣p = n−1+pH

[nt]∑
i=1

∣∣∣∣∣
∫ i/n

(i−1)/n

usdBH
s

∣∣∣∣∣
p

.

If BH = {BH
t , t ≥ 0} is a fBm with Hurst parameter H ∈

(
1
2 , 1
)
, then it is a

zero mean Gaussian process with covariance function

E(BH
t BH

s ) =
1
2
(t2H + s2H − |t− s|2H), s, t ≥ 0.

Also BH is self-similar with exponent H and the fractional Gaussian noise:
{BH

n −BH
n−1, n ∈ N} is a ergodic sequence with positive correlation function:

ρH(n) =
(n + 1)2H + (n− 1)2H − 2n2H

2
∼ cn2H−2. (1)

2 The results

Theorem 1. Suppose that u = {ut, t ∈ [0, T ]} is a stochastic process with
finite q-variation, where q < 1

1−H . Set Zt =
∫ t

0
usdBH

s . Then,

n−1+pHV n
p (Z)t

P−→
n→∞

cp

∫ t

0

|us|pds.

where cp = E(|N(0, 1)|p) = 2p/2Γ ( p+1
2 )

Γ (1/2) .

Proof. (A simple case) Assume first that us ≡ 1. Then Zt = BH
t and

n−1+pHV n
p (Z)t

=
(

1
n

)1−pH [nt]∑
i=1

∣∣∣BH
i
n
−BH

i−1
n

∣∣∣p
=

1
n

[nt]∑
i=1

∣∣∣∣∣B
H
i
n

−BH
i−1

n(
1
n

)H
∣∣∣∣∣
p

∼ 1
n

[nt]∑
i=1

∣∣BH
i −BH

i−1

∣∣p (self-similarity)

a.s→
L1

tE(|BH
1 |p) = cpt (ergodicity)
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For the general case we can consider two step sizes 1/m and 1/n, nt integer,
then for any m ≥ n we have the following decomposition

m−1+pHV m
p (Z)t − cp

Z t

0

|us|pds

= m−1+pH

[mt]X
j=1

 ˛̨̨̨
˛
Z j

m

j−1
m

usdBH
s

˛̨̨̨
˛
p

−
˛̨̨
u j−1

m
(BH

j
m
−BH

j−1
m

)
˛̨̨p!

+m−1+pH

[mt]X
j=1

˛̨̨
u j−1

m
(BH

j
m
−BH

j−1
m

)
˛̨̨p
−

ntX
i=1

˛̨̨
u i−1

n

˛̨̨p X
j∈I(i)

˛̨̨
BH

j
m
−BH

j−1
m

˛̨̨p
+m−1+pH

ntX
i=1

˛̨̨
u i−1

n

˛̨̨p X
j∈I(i)

˛̨̨
BH

j
m
−BH

j−1
m

˛̨̨p
− cpn−1

ntX
i=1

˛̨̨
u i−1

n

˛̨̨p
+cpn−1

ntX
i=1

˛̨̨
u i−1

n

˛̨̨p
− cp

Z t

0

|us|pds

= Am + Bn,m + Cn,m + Dn, where I(i) = {j :
j

m
∈ (

i− 1

n
,

i

n
]}, 1 ≤ i ≤ nt,

and we have to show that each term goes to zero as n, m goes to infinity (see
Corcuera et al. (2005) for the details).

Corollary 2. Consider a stochastic process Y = {Yt, t ≥ 0} such that

n−1+pHV n
p (Y )t

P→ 0

as n tends to infinity. Then

n−1+pHV n
p (Z + Y )t

P−→ cp

∫ t

0

|us|pds,

as n tends to infinity.

Proof. (For p ≤ 1). By the triangular inequality and the fact that

|V n
p (Z + Y )t − V n

p (Z)t| < V n
p (Y )t

For H ∈ ( 1
2 , 3

4 ] the fluctuations of the power variation, properly normal-
ized, have conditionally Gaussian asymptotic distributions. Set

v2
1 := lim

n→∞
Var

(
1√
n

n∑
i=1

∣∣BH
i −BH

i−1

∣∣p) .

It is not difficult to see that

v2
1 = δp + 2

∑
j≥1

(γp(ρH(j))− γp(0)) ,

with ρH(n) given by (1),
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δp = 2p(
1√
π

Γ (p +
1
2
)− 1

π
Γ (

p + 1
2

)2)

and γp(x) = (1− x2)p+ 1
2 2p

π Γ (p+1
2 )2 1F1(p+1

2 ; 1
2 ;x2), where 1F1 the confluent

hyper-geometric function, that is

1F1(a; b; z) = 1 +
az

b
+

a(a + 1)
b(b + 1)

z2

2!
+ ...

Theorem 3. Fix p > 0. Assume 1/2 < H < 3/4. Then

(BH
t , n−1/2+pH V n

p (BH)t − cptn
1/2) L→ (BH

t , v1Wt),

as n tends to infinity, where W = {Wt, t ∈ [0, T ]} is a Brownian motion
independent of the process BH , and the convergence is in the space D([0, T ])2

equipped with the Skorohod topology.

Proof. (Sketch of the proof) First we show the convergence of the finite dimen-
sional distributions. Let Jk = (ak, bk] , k = 1, . . . , N be pairwise disjoint inter-
vals contained in [0, T ]. Define the random vectors B = (BH

b1
−BH

a1
, . . . , BH

bN
−

BH
aN

) and X(n) = (X(n)
1 , . . . , X

(n)
N ), where

X
(n)
k = n−1/2+pH

∑
[nak]<j≤[nbk]

∣∣∣BH
j/n −BH

(j−1)/n

∣∣∣p − n1/2cp|Jk|,

k = 1, . . . , N and |Jk| = bk − ak. We claim that

(B,X(n)) L→ (B, V ),

where B and V are independent and V is a Gaussian random vector with
zero mean and with independent components of variances v2

1 |Jk|. By the self-
similarity of the fBm, the convergence is equivalent to the convergence in
distribution of (B(n), Y (n)) to (B, V ), where

B
(n)
k = n−H

∑
[nak]<j≤[nbk]

Xj , 1 ≤ k ≤ N

Y
(n)
k =

1√
n

∑
[nak]<j≤[nbk]

H(Xj), 1 ≤ k ≤ N.

Xj = BH
j −BH

j−1 and H(x) = |x|p − cp. The function H(x) can be expanded
in the form

H(x) =
∞∑

m=2

cmHm(x),

where Hm is the mth Hermite polynomial. Let H1 be the closed subspace of
L2 generated by {Xj}, and for any m ≥ 2 denote by Hm the closed subspace
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of L2 generated by Hm(X), where X ∈ H1, E(X2) = 1. Let H�m
1 be the

symmetric tensor product equipped with the norm
√

m! ‖·‖H⊗m
1

. We know
that the mapping

Im : H�m
1 → Hm

defined by Im(X⊗m) = Hm(X), is a linear isometry. We will denote by Jm

the projection operator on Hm(X).
Now by the works of Nualart and Peccati (2005), Peccati and Tudor (2005)

and Hu and Nualart (2005) we simply have to check that:
For any m ≥ 2 and k = 1, . . . , N , the limit limn→∞E(|JmY

(n)
k |2) = σ2

m,k

exists and
∑∞

m=2 supn E(|JmY
(n)
k |2) < ∞.

For any m ≥ 2 and k 6= h limn→∞E(JmY
(n)
k JmY

(n)
h ) = 0.

For any m ≥ 2, k = 1, . . . , N and 1 ≤ p ≤ m− 1,

lim
n→∞

I−1
m JmY

(n)
k ⊗p I−1

m JmY
(n)
k = 0,

where ⊗p denotes the contraction of p indices. (i), (ii) and (iii) are true because

∞∑
j=1

ρH(j)m ∼
∞∑

j=1

j(2H−2)m < ∞

since m ≥ 2 and 1/2 < H < 3/4. For the tightness condition is sufficient to
show that the sequence of processes

Z
∗(n)
t = n−1/2+pH V n

p (BH)t − cp[nt]/n1/2.

is tight in D([0, T ]). Then we can compute for s < t

E(
∣∣∣Z∗(n)

t − Z∗(n)
s

∣∣∣4) = n−2E


∣∣∣∣∣∣

[nt]∑
j=[ns]+1

H(Xj)

∣∣∣∣∣∣
4
 .

By Taqqu (1977) we know that, for all N ≥ 1

1
N2

E


∣∣∣∣∣∣

N∑
j=1

H(Xj)

∣∣∣∣∣∣
4
 ≤ K(

∞∑
u=0

ρ2
H(u))2.

As a consequence,

sup
n

E(
∣∣∣Z∗(n)

t − Z∗(n)
s

∣∣∣4) ≤ C|t− s|2,

and by Billingsley (1968) we get the desired tightness property.

As a consequence we have the following Theorem
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Theorem 4. Fix p > 0. Let BH be a fBm with Hurst parameter H ∈
(1/2, 3/4). Suppose that u = {ut, t ∈ [0, T ]} is a stochastic process measur-
able with respect to FH

T , and with Hölder continuous trajectories of order
a > 1

2(p∧1) . Set Zt =
∫ t

0
usdBH

s . Then

n−1/2+pHV n
p (Z)t − cp

√
n

∫ t

0

|us|pds
L→ v1

∫ t

0

|us|pdWs,

as n tends to infinity, where W = {Wt, t ∈ [0, T ]} is a Brownian motion
independent of FH

T , and the convergence is stable and in D([0, T ]).

For the notion of stable converge see Aldous and Eagleson (1978). The
following corollary gives the distributional effect of adding a process Y to the
process Z, see also Corollary 2 above.

Corollary 5. Assume the same conditions as in the previous Theorem. Con-
sider a stochastic process Y = {Yt, t ∈ [0, T ]} such that

n−
1
2+pHV n

p (Y )T
P→ 0,

as n tends to infinity. Then,

n−1/2+pHV n
p (Y + Z)t − cp

√
n

∫ t

0

|us|pds
L→ v1

∫ t

0

|us|pdWs

as n tends to infinity, where W = {Wt, t ≥ 0} is a Brownian motion indepen-
dent of the process BH , and the convergence is stable and in D([0, T ]).

We can also derive the following convergence in distribution for the fluc-
tuations of the power variation of stochastic integrals, in the case H = 3

4 .

Theorem 6. Suppose that H = 3/4 and u = {ut, t ∈ [0, T ]} is a stochastic
process measurable with respect to FH

T with Hölder continuous trajectories of
the order a > 1

2(p∧1) . Then,

(log n)−1/2

(
n−1/2+pHV n

p (Z)t − cp

√
n

∫ t

0

|us|pds

)
L→ v2

∫ t

0

|us|pdWs,

as n →∞, where W = {Wt, t ∈ [0, T ]} is a Brownian motion independent of
FH

T and v2 is given by

v2
2 := lim

n→∞
Var

(
1√

n log n

n∑
i=1

∣∣BH
i −BH

i−1

∣∣p) .

Where the converge is stable in the Skorohod space D([0, T ]).

If H > 3
4 , the fluctuations of the power variation converge to a process in

the second chaos which is called the Rosenblatt process.
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Theorem 7. Fix p > 0 and assume that 3
4 < H < 1. Then, in D([0, T ]),

n2−2H(n−1+pHV n
p (BH)t − cpt)

L→ Zt

where

Zt =
1

Γ (2− 2H) cos((1−H)π)
dp

×
∫ ∞

0

∫ x2

0

ei(x1+x2)t − 1
i(x1 + x2)

|x1|1/2−H |x2|1/2−HdWx1dWx2 ,

is the Rosenblatt process, {Wt, t ∈ [0, T ]} is a Brownian motion and

dp = E(|BH
1 |2+p)− E(|BH

1 |p).

3 Applications

Many statistical analysis of financial and temperature data have shown the
presence of significant power at low frequencies in their spectral analysis,
which means long-range dependence (see Willinger et al. (1999), Cutland et
al. (1995), Brody et al. (2002) and the references in Shiryaev (1999). But these
investigations have produced controversies, specially because if we use these
models to describe the evolution of stock prices, then the resulting market has
arbitrage opportunities and the lack of arbitrage is a paradigm in the modern
financial economics (see Rogers (1997)).

We have seen that, under certain assumptions, the values of V n
p (Z)t os-

cillate around cnpH−1. This can be used to give a consistent estimator of H.
Then, we shall study the behavior of this estimator by simulating a fractional
Brownian motion and a geometric fractional Brownian motion and we will try
to corroborate the theoretical results of the previous section. In the case the
model is not completely specified by H because the process u is unknown, we
will estimate H by a regression of log V n

p (Z)t against log n for different values
of n. We shall consider real data of the stocks prices in the Spanish financial
market and we will compare the results with the power variation analysis with
the results using the well known R/S analysis.

3.1 The method

Let Z1/n, Z2/n, ..., Z1 be,a sample of n observations. Then by Theorem 1 we
have

V n
p (Z)1 ∼ cp

(∫ 1

0

|us|pds

)
n1−pH

Therefore a consistent estimator of H is given by
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Ĥ =
1
p
−

log V n
p (Z)1 − log cp − log

∫ 1

0
|us|pds

p log n
.

Note that this estimator requires the process u to be observable to evaluate∫ 1

0
|us|pds, this is not true in general, however if the process is, for instance,

a solution of the stochastic differential equation

dZt = Zt(bdt + σdBH
t )

with σ known then u = σZ. Nevertheless Z is observed in discrete times
1/n, 2/n, ..., so

∫ 1

0
|us|pds has to be estimated by, for instance, 1

n

∑n
i=1 |Z i

n
|p.

It can be easily seen that if H > 1
2(p∧1) this estimation does not affect to the

asymptotic distribution of Ĥ.

Asymptotic behavior of Ĥ

By Theorem 4 and assuming that the estimation of
∫ 1

0
|us|pds does not affect

the asymptotic behavior, we have the conditional converge

n−1/2+pHV n
p (Z)1 − cp

1√
n

∑n
i=1 |u i

n
|p√

v2
1

1
n

∑n
i=1 |u i

n
|2p

L→ N(0, 1),

from here it is easy to obtain the approximate confidence interval of coefficient
γ

Ĥ ± kγv1

pcp log n

√∑n
i=1 |u i

n
|2p∑n

i=1 |u i
n
|p

(2)

where kγ = Φ−1( 1−γ
2 ) and Φ denotes the c.d.f. of the standard normal distri-

bution.
Note that v1 depends on p as it is shown in Figure 1.
The following table gives the values of Ĥ for different values of p and H in

the case we have a sample of size n = 2000 of equally spaced observations of
fBm, in parenthesis we have the radius of a confidence interval with γ = 0.95
.

H
p 0.6 0.65 0.7
0.75 0.602(0.005) 0.651(0.005) 0.701(0.007)
1 0.603(0.004) 0.652(0.005) 0.702(0.006)
2 0.605(0.005) 0.654(0.004) 0.703(0.004)

The following table gives the values of Ĥ for different values of p and H
in the case that Z is a geometrical fBm with σ = 1 and b = 0, the sample size
of equally spaced observations is n = 2000. In parenthesis we have the radius
of a confidence interval with γ = 0.95.
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1 1.5 2 2.5 3
p

1

1.5

2

2.5

3

3.5

v
1

Fig. 1. Behavior of v1 with p for H = 0.7

H
p 0.6 0.65 0.7
0.75 0.602(0.005) 0.651(0.005) 0.701(0.007)
1 0.603(0.004) 0.652(0.005) 0.702(0.006)
2 0.605(0.005) 0.654(0.004) 0.703(0.004)

3.2 Estimation of H when u is unknown

In case of the process u is not known we can consider the statistics

V [n/m]
p (Z)1 =

[n/m]∑
i=1

∣∣Zim/n − Z(i−1)m/n

∣∣p
for different values of m, 1 ≤ m ≤ mu. The results of the previous section
imply that, under the assumptions on the process Zt =

∫ t

0
usdBH

s , 0 ≤ t ≤ 1,

V [n/m]
p (Z)1 ∼ cp

(∫ 1

0

|us|pds

)
(
m

n
)pH−1

whenever n/m is large enough. This is why we only consider values of m ≤ mu.
Then this can be used to estimate H by a log-log plot also called pox plot. We
shall denote H̃ the corresponding estimator.

Figure 2 depicts the pox plot of the power variation of order 1 corre-
sponding to a sample of size 2.000 of a fractional Brownian motion of Hurst
parameter 0.7 series and results in an estimate of H=0.698. Figure 3 is similar
but considering a geometrical fractional Brownian motion of Hurst parameter
0.7 and results also in an estimate of H=0.697. In both cases we have taken
mu = 40 and p = 1. We have use the method of Davies and Harte (1987) for
simulating a Gaussian stationary sequence.
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Fig. 2. Data corresponding to a fBm with H=0.7, H̃ = 0.698.

Fig. 3. Data corresponding to a geometrical fBm with H = 0.7, H̃ = 0.697

In the following examples we consider the prices of certain stocks in the
Spanish market as the process Z, and we estimate H by a log-log plot. Figure
4 corresponds to the index IBEX35, the estimation of H is H̃ = 0.533, Figure
5 corresponds to the shares of the bank BBVA, resulting in H̃ = 0.517, and
Figure 6 to the shares of the Spanish Telephone company ”Telefónica” and
H̃ = 0.513.
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Fig. 4. Data corresponding to the Spanish index Ibex35 from 1992-2001, n = 2465,
H̃ = 0.533

Fig. 5. Daily data for the price of the shares of the Spanish bank Bbva, from
1990-2001, n = 2909, H̃ = 0.517

Asymptotic behavior of H̃

The problem with the previous method is that it provides only a point esti-
mation of H but we do not have a confidence interval. However we can try to
relate H̃ with the estimations Ĥn for different values of n and from here we
can get a confidence interval for H̃.

If we consider different values of n, n1 ≤ n2... ≤ nr we have that
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Fig. 6. Daily data for the price of shares of ”Telefónica”, from 1990-2001, n = 3009,
H̃ = 0.513

Ĥni =
1
p
−

log V ni
p (Z)1 − log cp − log

∫ 1

0
|us|pds

p log ni
.

On the other hand

1− pH̃ =
∑r

i=1(log V ni
p (Z)1 − ¯log V n

p (Z)1)(log ni − ¯log n)∑r
i=1(log ni − ¯log n)2

,

where the bar denotes the mean. Then, by straightforward calculations, we
obtain that

H̃ =
r∑

i=1

Ĥni

(log ni − ¯log n)2∑r
i=1(log ni − ¯log n)2

+ ¯log n

r∑
i=1

Ĥni

(log ni − ¯log n)∑r
i=1(log ni − ¯log n)2

and consequently

H̃ −H =
r∑

i=1

(Ĥni
−H)

(log ni − ¯log n)2∑r
i=1(log ni − ¯log n)2

+ ¯log n

r∑
i=1

(Ĥni −H)
(log ni − ¯log n)∑r

i=1(log ni − ¯log n)2

Then if ∆n1 is the radius of a confidence interval for Ĥn1 , and we take
only two values of n, n1 = [n/2] and n2 = n, we obtain

∆ =
log n

log 2
(∆[n/2] + ∆n).
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and ∆n1 can be obtained from (2) if we know u except for a scale factor. This is
the case of a geometric fractional Brownian motion. Note that we have to use
the union-intersection principle to determine the confidence of the interval.

By considering that the data follow a geometric fractional Brownian mo-
tion and taking logarithms to estimate H we obtain the following estima-
tions and, in parenthesis, we estimate the radius of a confidence interval with
γ = 0.95. The data obtained for a simulation of a fractional Brownian motion
with H = 0.7 serve as a control.

Ibex35 Telefónica Bbva Fbm (H = 0.7)
0.538 (0.123) 0.550 (0.112) 0.574 (0.115) 0.703 (0.179).

Then, here data do not show evidence in favor of the ”fractality”, but the
intervals we obtain are very conservative.

3.3 The R/S method

The graphical implementation of the classical R/S-statistic given by

maxk≤n(
∑k

i=1 Zi − k
n

∑n
i=1 Zi)−mink≤n(

∑k
i=1 Zi − k

n

∑n
i=1 Zi)√

1
n

∑n
i=1 Z2

i −
(

1
n

∑n
i=1 Zi

)2 ,

exploit the fact that if Z is a fractional Gaussian noise with H > 1/2 for large
n its values oscillate around cnH and we can also use this to estimate H by a
log-log plot .

More specifically, given sample of n observations is subdivided into k
blocks, each of size [n/k]. Then, for each lag ni, ni ≤ n, estimates R(km, ni)/
S(km, ni) of R(ni)/S(ni) are computed by starting at the points, km =
(m− 1)[n/k] + 1,m = 1, 2, ..., k, and such that km + ni ≤ nN . Thus, for any
given m, all the data points before km = (m−1)[n/k]+1 are ignored. For values
of ni smaller than [n/k], there are k different estimates of R(n)/S(n); for val-
ues of ni approaching n, there are fewer values, as few as 1 when n ≥ n−[n/k].

The graphical R/S-approach consists of calculating R(km, ni)/S(km, ni)
for logarithmically spaced values of ni, and plotting log R(km, ni)/S(km, ni)
versus log(ni), for all starting points km. This results in the rescaled adjusted
range plot, also known as the pox plot of R/S. See Willinger et al. (1999) for
more details. The problem with the R/S method is that we do not have a
distributional theory to give confidence intervals. The next figures show this
method applied to the same data we used in the power variation analysis. We
also denote by Ĥ the R/S estimator. Note that the results are quite similar
to that using the power variation.
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Fig. 7. Data corresponding to a fBm with H = 0.7, Ĥ = 0.716

Fig. 8. Data corresponding to the Spanish Index Ibex35, Ĥ = 0.588
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Fig. 10. Data corresponding to the shares of the Spanish Bank ”Bbva”, Ĥ = 0.582
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