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1 Introduction

Professor K. Itô’s work on the topic of infinite dimensional oscillatory integrals
has been very germinal and stimulated much the subsequent research in this
area. It is therefore a special honour and pleasure to be able to dedicate the
present pages to him. We shall give a short exposition of the theory of a
particular class of functionals, the oscillatory integrals:

I
Φ
ε (f) = “

∫
Γ

ei Φ
ε (γ)f(γ)dγ ” (1)

where Γ denotes either a finite dimensional space (e.g. Rs, or an s-dimensional
differential manifold Ms), or an infinite dimensional space (e.g. a “path
space”). Φ : Γ → R is called phase function, while f : Γ → C is the function to
be integrated and ε ∈ R \ {0} is a parameter. The symbol dγ denotes a “flat”
measure. In particular, if dim(Γ ) < ∞ then dγ is the Riemann-Lebesgue
volume measure, while if dim(Γ ) = ∞ an analogue of Riemann-Lebesgue
measure is not mathematically defined and dγ is just an heuristic expression.
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1.1 Finite dimensional oscillatory integrals

In the case where Γ is a finite dimensional vector space, i.e. Γ = Rs, s ∈ N,
the expression (1)

“

∫
Rs

ei Φ
ε (γ)f(γ)dγ” (2)

can be defined as an improper Riemann integral. The study of finite dimen-
sional oscillatory integrals of the type (2) is a classical topic, largely developed
in connection with several applications in mathematics (such as the theory of
Fourier integral operators [48]) and physics. Interesting examples of integrals
of the form (2) in the case s = 1, ε = 1, f = χ[0,w], w > 0, and Φ(x) = π

2x
2,

are the Fresnel integrals, that are applied in optics and in the theory of wave
diffraction. If Φ(x) = x3 + ax, a ∈ R we obtain the Airy integrals, introduced
in 1838 in connection with the theory of the rainbow.
Particular interest has been devoted to the study of the asymptotic behavior
of integrals (2) when ε is regarded as a small parameter converging to 0. Orig-
inally introduced by Stokes and Kelvin and successively developed by several
mathematicians, in particular van der Corput, the “stationary phase method”
provides a powerful tool to handle the asymptotics of (2) as ε ↓ 0. According
to it, the main contribution to the asymptotic behavior of the integral should
come from those points γ ∈ Rs which belong to the critical manifold:

ΓΦ
c := {γ ∈ Rs, | Φ′(γ) = 0},

that is the points which make stationary the phase function Φ. Beautiful
mathematical work on oscillatory integrals and the method of stationary phase
is connected with the mathematical classification of singularities of algebraic
and geometric structures (Coxeter indices, catastrophe theory), see, e.g. [31].

1.2 Infinite dimensional oscillatory integrals

The extension of the results valid for Γ = Rs to the case where Γ is an infinite
dimensional space is not trivial. The main motivation is the study of the
“Feynman path integrals”, a class of (heuristic) functional integrals introduced
by R.P Feynman in 19423 in order to propose an alternative, Lagrangian,
formulation of quantum mechanics. According to Feynman, the solution of the
Schrödinger equation describing the time evolution of the state ψ ∈ L2(Rd)
of a quantum particle moving in a potential V{

i~ ∂
∂tψ = − ~2

2m∆ψ + V ψ
ψ(0, x) = ψ0(x)

(3)

3 The first proposal going in the direction of Feynman’s formulation can be found
in work by P. Dirac in 1935, which inspired Feynman’s own work.
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(where m > 0 is the mass of the particle, ~ is the reduced Planck constant,
t ≥ 0, x ∈ Rd) can be represented by a “sum over all possible histories”, that
is an integral over the space of paths γ with fixed end point

ψ(t, x) = “

∫
{γ|γ(t)=x}

e
i
~ St(γ)ψ0(γ(0))dγ ” (4)

St(γ) = S0(γ)−
∫ t

0
V (s, γ(s))ds, S0(γ) = m

2

∫ t

0
|γ̇(s)|2ds, is the classical action

of the system evaluated along the path γ and dγ a heuristic “flat” measure on
the space of paths (see e.g. [40] for a physical discussion of Feynman’s approach
and its applications). The Feynman path integrals (4) can be regarded as
oscillatory integrals of the form (1), where

Γ = { paths γ : [0, t] → Rs, γ(t) = x ∈ Rs},

the phase function Φ is the classical action functional St, f(γ) = ψ0(γ(0)),
the parameter ε is the reduced Planck constant ~ and dγ denotes heuristically

dγ = “C
∏

s∈[0,t]

dγ(s) ”, (5)

C := “(
∫
{γ|γ(t)=x} e

i
~ S0(γ)dγ)−1” being a normalization constant.

The Feynman’s path integral representation (4) for the solution of the
Schrödinger equation is particularly suggestive. Indeed it creates a connection
between the classical (Lagrangian) description of the physical world and the
quantum one and makes intuitive the study of the semiclassical limit of quan-
tum mechanics, that is the study of the detailed behavior of the wave function
ψ in the case where the Planck constant ~ is regarded as a small parameter.
According to an (heuristic) application of the stationary phase method, in the
limit ~ ↓ 0 the main contribution to the integral (4) should come from those
paths γ which make stationary the action functional St. These, by Hamilton’s
least action principle, are exactly the classical orbits of the system.

Despite its powerful physical applications, formula (4) lacks mathematical
rigour, in particular the “flat” measure dγ given by (5) has no mathematical
meaning.

In 1949 Kac [54, 55] observed that, by considering the heat equation (with
m = ~ = 1 for simplicity) {

∂
∂tu = 1

2∆u− V u
u(0, x) = u0(x)

(6)

instead of the Schrödinger equation and by replacing the oscillatory factor
eiSt(γ)dγ by the non oscillatory e−1St(γ)dγ, one can give (for “good” V ) a
mathematical meaning to Feynman’s formula in terms of a well defined Gaus-
sian integral on the space of continuous paths: an integral with respect to the
well known Wiener measure
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u(t, x) = “
∫
e−St(ω)u0(ω(t))dω“ = E

[
e−

R t
0 V (ω(s)+x)ds)u0(ω(t) + x)

]
(7)

(with E standing for expectation with respect to the standard Wiener process
(mathematical Brownian motion) ω started at time 0 at the origin). Equation
(7) is called Feynman-Kac formula.

In 1956 I.M. Gelfand and A.M. Yaglom [44] tried to realize Feynman’s
heuristic complex measure e

i
~ Φ(γ)dγ by means of a limiting procedure:

e
i
~ Φ(γ)dγ := lim

σ↓0
e

i
~−iσ Φ(γ)dγ

In 1960 Cameron [34] proved however that the resulting measure cannot be
σ− additive and of bounded variation, even on very “nice” subsets of paths’
space, and it is not possible to implement an integration in the Lebesgue’s
traditional sense (not even locally in space). As a consequence mathematicians
tried to realize the integral (4) as a linear continuous functional on a suitable
Banach algebra of integrable functions.

A particularly interesting approach can be found in the two pioneering
papers by K. Itô [51, 52]. Itô was aware of the interest of Feynman’s formula,
as well as of the mathematical problems involved in it:
“It is easy to see that (4) solves (3) unless we require mathematical rigour.”
[51]
In the first paper in 1961 the author starts to study the problem by assum-
ing that the potential V has a simple form, postponing the study of a more
general case:
“It is our purpose to define the generalized measure dγ (that, in our terms,
is the integral I

Φ
ε (f)) rigorously and prove (4) solves (3) in the case V ≡ 0

(case of no force) or V (x) = x (case of constant force). We hope that this fact
will be proven for a general V with some appropriate regularity conditions.”
Very shortly, what Itô does is to define rigorously the “generalized mea-
sure” (5), hence the heuristic integral (4), for V of above form and ψ0 hav-
ing a Fourier transform of compact support as a linear functional, taken
to be the limit for n → ∞ of finite dimensional approximations In(ψ0) =
Cn

∫
Lx
e

i
2~

R t
0 γ̇(s)2dsψ0(γ(t))P

(x)
n (dγ), with Lx the “translate by x of Cameron-

Martin space”, P (x)
n a suitable Gaussian measure associated with a certain

compact operator T concentrated on Lx and Cn ≡
∏

j (1− inνj~)
1
2 , {νj} be-

ing the eigenvalues of T . In the second paper [52] on the subject in 1967 K.
Itô extended the class of potentials which can be handled and covers the case
where the function V : Rd → C is the Fourier transform of a complex bounded
variation measure on Rd.
Itô’s definition of the heuristic integral (4) is of the form

lim
V

∞∏
j=1

(1− iµj)
1
2E

(
e

i
2~

R t
0 γ̇(s)2dsψ0(γ(t)); a;V

)
,
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with E meaning expectation with respect to the Gaussian measure with mean
a in Lx and a nuclear covariance operator V with eigenvalues µj (lim being
taken along the directed system of all such V ’s, being independent of a).
Itô’s method for the definition of the Feynman’s functional applies also to the
Wiener integral and to the path integral representation (7) of the solution of
the heat equation: “Our definition is also applicable to the Wiener integral;
namely, using it, we shall prove that the solution of the heat equation (6) is
given by

u(t, x) =
∫

Γ

e−
R t
0

(
γ̇2(s)

2 +V (γ(s)
)
dsu0(γ(t))dγ

for any bounded continuous function V (x).. . .This should be called the Feyn-
man’s version of Kac’s theorem”.
“Now that Kac’s theorem is well known to probabilists, no one bothers with its
Feynman version. However it is interesting that Kac had the Feynman version
. . . in mind and formulated it as . . . to make it rigorous”.

1.3 Other examples of “Feynman type formulae”

The path integral representation (4) has been extended to more general dy-
namical systems. As we have already seen, its probabilistic version, i.e. the
Feynman-Kac formula (7), is a representation of the solution of the heat equa-
tion. More generally probabilistic type integrals, which can be heuristically
represented by expressions of the following form

“
∫

Γ

e−
Φ
ε f(γ)dγ” (8)

(with the function Φ : Γ → R lower bounded and ε > 0) have several applica-
tions, e.g. in stochastic analysis, statistical mechanics, hydrodynamics and in
the theory of acoustic and electromagnetic waves.
The original Feynman path integral representation (4) for the solution of the
Schrödinger equation and, more generally, heuristic oscillatory integrals of the
type

“
∫

Γ

ei Φ
ε f(γ)dγ” (9)

can also be extended to the study of more general quantum systems. Feynman
himself generalized formula (4) to a corresponding formula describing (rela-
tivistic) quantum fields. Recent applications of heuristic path integrals can
be found in gauge theory (Yang-Mills fields), quantum gravity and in string
theory.

Particularly interesting is the application to topological field theory, e.g.
Chern-Simons’ model. In this case the integration is performed on a space Γ
of geometric objects, i.e. on the space of connection 1-forms on the principal
fiber bundle over a 3-dimensional manifold M . The phase function Φ is the
Chern-Simons action functional:
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Φ(γ) ≡ k

4π

∫
M

(
〈γ ∧ dγ〉+

1
3
〈γ ∧ [γ ∧ γ]〉

)
, (10)

where γ denotes a g−valued connection 1-form, g being the Lie algebra of
a compact Lie group G (the “gauge group”). Φ is metric independent. The
function f to be integrated is given by

f(γ) :=
n∏

i=1

Tr(Hol(γ, li)) ∈ C, (11)

where (l1, ..., ln), n ∈ N, are loops in M whose arcs are pairwise disjoint and
Hol(γ, l) denotes the holonomy of γ around l. According to a conjecture by
Witten [70] and Schwartz the integral IΦ(f) should represent a topological
invariant. In particular, if M = S3 and G = SU(2) resp. G = SU(N) resp.
G = SO(N), IΦ(f) gives the Jones polynomials, resp. the Homfly polynomials
resp. the Kauffmann polynomials. In the next section we shall see how a good
part of these statements can be rigorously implemented using an adequate
mathematical definition of Feynman path integrals.

2 Mathematical definition of infinite dimensional
oscillatory integrals

The heuristic Feynman integrals given by formula (4) and its generalization
(9) have lead to fascinating and fruitful applications in physics and mathe-
matics, even though as as they stand they do not have a well defined math-
ematical meaning. The present section is devoted to the description of the
mathematical definition of the Feynman functional, and more generally of the
infinite dimensional oscillatory integrals. In order to mirror the features of the
heuristic Feynman measure, the Feynman functional should have some basic
properties:

1. It should behave in a simple way under “translations and rotations in Γ”,
reflecting the fact that dγ is a “flat” measure.

2. It should satisfy a Fubini type theorem, concerning iterated integrations
along subspaces of Γ (allowing the construction, in physical applications,
of a one-parameter group of unitary operators).

3. It should be approximable by finite dimensional oscillatory integrals, al-
lowing a sequential approach in the spirit of Feynman’s original work.

4. It should be related to probabilistic integrals with respect to the Wiener
measure, allowing an “analytic continuation approach to Feynman path
integrals from Wiener type integrals”.

5. It should be sufficiently flexible to yield a rigorous mathematical im-
plementation of an infinite dimensional version of the stationary phase
method and the corresponding study of the semiclassical limit of quan-
tum mechanics.
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2.1 Finite dimensional case

The first step is the definition of the oscillatory integrals on a finite dimen-
sional space Γ := Rn, whose elements will be denoted by x ∈ Rn:

“

∫
Rn

ei Φ
ε (x)f(x)dx” (12)

If the function f : Rn → C is Lebesgue integrable, then the integral (12) is
well defined in Lebesgue’s sense. However, for suitable non integrable functions
f , e.g. f ≡ 1, it is still possible to define expression (12) by exploiting the
cancellations due to the oscillatory term ei Φ

ε (x). The following definition was
proposed in [38] and is a modification of the one introduced by Hörmander
[48].

Definition 1 The oscillatory integral of a Borel function f : Rn → C with
respect to a phase function Φ : Rn → R is well defined if and only if for each
test function φ ∈ S(Rn) such that φ(0) = 1 the integral

Iδ(f, φ) :=
∫

Rn

(2πiε)−n/2ei
Φ(x)

ε f(x)φ(δx)dx

exists for all δ > 0 and the limit limδ→0 Iδ(f, φ) exists and is independent of
φ. In this case the limit is called the oscillatory integral of f with respect to Φ
and denoted by

IΦ(f) ≡
∫̃

Rn

ei
Φ(x)

ε f(x)dx. (13)

The symbol
∫̃

recalls the normalization factor (2πiε)−n/2 which makes the
integral “normalized” in the case Φ(x) = |x|2

2 , in the sense that IΦ(1) = 1 for
such a Φ.

A “complete direct characterization” of the class of functions f and phases
Φ for which the integral (13) is well defined is still an open problem. However,
for suitable Φ, it is possible to find an interesting set of “integrable functions”
f, for which the oscillatory integral IΦ(f) is well defined and can be explicitly
computed in terms of an absolutely convergent integral thanks to a Parseval-
type equality.
We shall shortly introduce a setting first presented in [15]. Given a (finite or
infinite dimensional) real separable Hilbert space (H, 〈 , 〉), let us denote by
M(H) the Banach space of the complex bounded variation measures on H,
endowed with the total variation norm, that is:

µ ∈M(H), ‖µ‖ = sup
∑

i

|µ(Ei)|,

where the supremum is taken over all sequences {Ei} of pairwise disjoint
Borel subsets of H, such that ∪iEi = H. M(H) is a Banach algebra, where
the product of two measures µ ∗ ν is by definition their convolution:
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µ ∗ ν(E) =
∫
H
µ(E − x)ν(dx), µ, ν ∈M(H)

and the unit element is the Dirac point measure δ0 (with support at the
origin).
Let F(H) be the space of complex functions onH which are Fourier transforms
of measures belonging to M(H), that is:

f : H → C f(x) =
∫

H

ei〈x,β〉µf (dβ) ≡ µ̂f (x).

F(H) is a Banach algebra of functions, where the product is the pointwise
one; the unit element is the function 1, i.e. 1(x) = 1 ∀x ∈ H and the norm is
given by ‖f‖ = ‖µf‖.
It is possible to prove [19] that if H ∈ Rn and f ∈ F(Rn), f = µ̂f , and if

the phase function Φ is such that FΦ ≡ ei Φ
ε

(2πiε)n/2 has a Fourier transform F̂Φ

having the property that the integral∫
Rn

F̂Φ(α)dµf (α)

exists, then the oscillatory integral IΦ(f) exists (in the sense of definition 1)
and it is given by the following “Parseval formula”:

IΦ(f) =
∫

Rn

F̂Φ(α)dµf (α) (14)

Equation (14) holds for smooth phase functions Φ of at most even polynomial
growth at infinity (see [19] for more details). It is worthwhile to recall that
IΦ(f) can be defined for more general f as proved in [48], but in this case
formula (14) is no longer valid in general.
It is interesting to analyze two particular cases, which we in sect. 3 shall
extend to the infinite dimensional case. Let us assume that ε > 0 and Φ has
one of the following forms

Φ(x) :=
1
2
〈x,Qx〉 − V (x), (15)

Φ(x) :=
1
2
〈x,Qx〉 − V (x)− λP (x), (16)

where V ∈ F(Rn), Q : RN → Rn is a linear, symmetric invertible operator,
λ < 0 and P is an homogeneous 4-degree polynomial. Since the function eiV f
belongs to F(Rn) for V, f ∈ F(Rn), we do not loose generality in setting
V ≡ 0 (which simplifies notations). If Φ is of the type (15), then formula (14)
assumes the following form [38, 6]:

IΦ(f) = detQ−1/2

∫
Rn

e−i ε
2 〈α,Q−1α〉dµf (α) (17)
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while in the case where Φ is of the type (16), with Q > 0, then formula (14)
is still valid with F̂Φ given by

F̂Φ(α) = (2πε)−n/2

∫
Rn

eiei π
4 〈α,x〉e−

1
2ε 〈x,Qx〉ei λ

ε P (x)dx

= E(eiei π
4 〈α,x〉e

1
2ε 〈x,(I−Q)x〉ei λ

ε P (x)), (18)

α ∈ Rn, where the expectation is taken with respect to the standard Gaus-
sian measure N(0, εIRn). Moreover under some analyticity assumptions on
the function f , the integral IΦ(f) can be computed by means of the following
formula:

IΦ(f) = E(f(ei π
4 x)e

1
2ε 〈x,(I−Q)x〉ei λ

ε P (x)). (19)

The r.h.s. of formula (19) extends to an analytic function of the variable λ,
for Im(λ) > 0, and is still continuous for Im(λ) = 0 [20, 21].
The leading idea of the proof is the computation of the Fourier transform FΦ

by means of a rotation of π/4 in counterclock direction of the integration con-

tour. This operation maps the quadratic part ei
|x|2
2ε of ei Φ

ε into the Gaussian

density e−
|x|2
2ε while the quartic part e−i

λP (x)
ε of ei Φ

ε remains bounded, going
over to ei

λP (x)
ε . For more details see [20]

2.2 Infinite dimensional case

The results of the previous section can be partially extended to the case where
Γ is an infinite dimensional real separable Hilbert space (H, 〈 , 〉. An infinite
dimensional oscillatory integral can be defined as the limit of a sequence of
finite dimensional approximations, as proposed in [38, 6].

Definition 2 A function f : H → C is said to be integrable with respect to
the phase function Φ : H → R if for any sequence Pn of projectors onto n-
dimensional subspaces of H, such that Pn ≤ Pn+1 and Pn → 1 strongly as n→
∞ (1 being the identity operator in H), the finite dimensional approximations∫̃

PnH
ei

Φ(Pnx)
ε f(Pnx)d(Pnx),

are well defined (in the sense of definition 1) and the limit

lim
n→∞

∫̃
PnH

ei
Φ(Pnx)

ε f(Pnx)d(Pnx) (20)

exists and is independent of the sequence {Pn}.
In this case the limit is called oscillatory integral of f with respect to the phase
function Φ and is denoted by

IΦ(f) ≡
∫̃
H
ei

Φ(x)
ε f(x)dx.
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Again it is important to find classes of functions f and phases Φ, for which
IΦ(f) is well defined. All basic properties valid in the finite dimensional case
remain valid in the infinite dimensional case. Indeed the fundamental space is
again F(H), the space of functions which are Fourier transforms of complex
bounded variation measures on H. K. Itô was first in understanding the im-
portant role of this space in connection with the mathematical definition of
Feynman path integrals. He introduced F(H) in his second paper on the topic
[52], where he generalized the results of [51] to the case where the potential
V belongs to F(Rd). Itô’s results were extensively developed by S. Albeverio
and R. Høegh-Krohn [15, 16] and later by D. Elworthy and A. Truman [38].
In the case where the phase function Φ is of the form

Φ(x) =
1
2
〈x,Qx〉+ 〈a, x〉+ Φint(x), (21)

where Q : H → H linear invertible self-adjoint operator, I − Q trace class,
a ∈ H and Φint ∈ F(H), and, moreover, f ∈ F(H), these authors prove that
IΦ(f) is well defined and can be explicitly computed in terms of a well defined
absolutely convergent integral with respect to a bounded variation measure
by means of a Parseval-type equality similar to (17). Some time later the defi-
nition of IΦ(f) was generalized to unbounded functions Φint that are Laplace
transforms of complex bounded variation measures on H [8, 59, 17]. More
recently a breakthrough in handling the case where Φint is a fourth-order
polynomial has been achieved [20, 21]. In fact formula (19) valid in the finite
dimensional case has been generalized to the infinite dimensional case. Let us
describe in more details this newer development, because of its relevance for
applications (the quartic potential model is one of the most discussed ones in
the physical literature).
Given a real separable infinite dimensional Hilbert space (H, 〈 , 〉) with norm
| |, let ν be the finitely additive cylinder measure on H, defined by its charac-
teristic functional ν̂(x) = e−

1
2 |x|

2
. Let ‖ ‖ be a “measurable” norm on H, that

is ‖ ‖ is such that for every δ > 0 there exist a finite-dimensional projection
Pδ : H → H, such that for all P ⊥ Pδ one has ν({x ∈ H| ‖P (x)‖ > δ}) < δ,
where P and Pδ are called orthogonal (P ⊥ Pδ) if their ranges are orthogonal
in (H, 〈 , 〉). One can easily verify that ‖ ‖ is weaker than | |. Denoting by B
the completion of H in the ‖ ‖-norm and by i the continuous inclusion of H
in B, one proves that µ ≡ ν ◦ i−1 is a countably additive Gaussian measure on
the Borel subsets of B. The triple (i,H,B) is called an abstract Wiener space
(in the sense of L. Gross). Let us consider a phase function of the following
form:

Φ(x) =
1
2
〈x,Qx〉 − λP (x), (22)

with Q : H → H a self-adjoint strictly positive operator such that I − Q
is trace class, and P : H → R is given by P (x) = B(x, x, x, x), with B :
H×H×H×H → R a completely symmetric positive covariant tensor operator
on H such that the map V : H → R+, x 7→ V (x) ≡ B(x, x, x, x) is continuous
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in the ‖ ‖ norm. Under these assumptions, it is possible to prove that the
functions on H defined by

x ∈ H 7→ 〈k, x〉 resp. 〈x, (I −Q)x〉 resp. P (x),

can be lifted to random variables on B, denoted by

ω ∈ B 7→ 〈n(k)(ω)〉 resp. 〈ω, (I −Q)ω〉 resp. P (ω) (with k ∈ H)

Moreover the following holds [20]:

Theorem 1 Let f : H → C be the Fourier transform of a measure µf ∈
M(H), f ≡ µ̂f , satisfying the following assumption∫

H
e

ε
4 〈k,Q−1k〉|µf |(dk) < +∞. (23)

Then the infinite dimensional oscillatory integral∫̃
H
e

i
2ε 〈x,Qx〉e−i λ

ε P (x)f(x)dx (24)

exists and is given by:∫
H

E[ein(k)(ω)eiπ/4
e

1
2ε 〈ω,(I−Q)ω〉ei λ

ε P (ω)]µf (dk) (25)

It is also equal to:

E[e
1
2ε 〈ω,(I−Q)ω〉ei λ

ε P (ω)f(eiπ/4ω)] (26)

E denotes the expectation value with respect to the Gaussian measure µ on B
(described before the statement of the theorem).

2.3 Properties and comparison with other approaches

The infinite dimensional oscillatory integral IΦ(f), with Φ ≡ |x|2
2 and f ∈

F(H), was originally defined [15] by “duality” by means of the Parseval type
equality (17). The more recent definition of IΦ(f) (see definition 2, based on
[37], [38]) by means of finite dimensional approximations maintains this prop-
erty: indeed for suitable Φ the application f 7→ IΦ(f) is a linear continuous
functional on F(H).

The realization of the integral IΦ(f) by means of a duality relation is
typical of several approaches to the definition of the Feynman path integral.
In other words one tries to define the Feynman density eiΦ(γ) as an “infinite
dimensional distribution”. Besides [15] origins of this idea can be found in work
by C. DeWitt-Morette (see, e.g. [35], see also e.g. [57]). It was systematically
developed in the framework of white noise calculus by T.Hida and L.Streit
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[47, 59]. In the latter setting the integral IΦ(f) is realized as the pairing
〈TΦ, f〉 with respect to the standard Gaussian measure N(0, IL2(Rn)) of a
white noise distribution Tφ ∈ (S′) (which, heuristically, can be interpreted
as e

i
2 Φ(γ)+ 1

2 〈γ,γ)) and a regular f ∈ (S) , where (S), (S′) are elements of the
Gelfand triple (S) ⊂ L2(N(0, IL2(Rn))) ⊂ (S′) (see [47] for details).

It is interesting to note that formula (26) shows a deep connection be-
tween infinite dimensional oscillatory integrals and probabilistic Gaussian in-
tegrals. Indeed, under suitable assumptions on the function f that is inte-
grated and on the phase function Φ, the oscillatory integral of f with re-
spect to Φ is equal to a Gaussian integral. On the other hand one of the
first approaches to the rigorous mathematical definition of Feynman path in-
tegrals was by means of analytic continuation of Gaussian Wiener integrals
[34, 64, 51, 53, 69, 56, 37, 62, 67]. The leading idea of this approach is the
analogy between Schrödinger and heat equation on one hand, and between the
rigorous Feynman-Kac formula (7) and the heuristic Feynman representation
(4) on the other hand. By introducing in the heat equation (6) and in the
corresponding path integral solution (7) a suitable parameter λ, proportional
for instance to the time, or to the mass, or to the Planck constant, and by
allowing λ to assume complex values, then one gets, at least heuristically, the
Schrödinger equation and its solution. This procedure can be made completely
rigorous under suitable conditions on the potential V and initial datum ψ0.

Another approach to the mathematical definition of Feynman path inte-
grals, which is very close to Feynman’s original derivation, is the “sequential
approach”. It was originally proposed by A. Truman [68] and further ex-
tensively developed by D. Fujiwara and N. Kumano-go [41, 42, 43]. In this
approach the paths γ in formula (4) are approximated by piecewise linear
paths and the Feynman path integral is correspondingly approximated by a
finite dimensional integral.

Two other alternative approaches to the mathematical definition of Feyn-
man path integrals are based on Poisson measures respectively on nonstan-
dard analysis. The first one was originally proposed by A.M. Chebotarev and
V.P. Maslov [63] and further developed by several authors as S. Albeverio, Ph.
Blanchard, Ph. Combe, R. Høegh-Krohn, M. Sirugue [3, 2] and V. Kolokol′tsov
[58]. The second was proposed in the 80’s by S. Albeverio, J.E. Fenstad, R.
Høegh-Krohn and T. Lindstrøm [13], but it has not been much further devel-
oped yet.

2.4 The method of stationary phase

One of the main motivations for the rigorous mathematical definition of the in-
finite dimensional oscillatory integrals is the implementation of a correspond-
ing infinite dimensional version of the method of the stationary phase and its
application to the study of the asymptotic behavior of the expressions in for-
mula (4) in the limit ~ → 0. The first results were obtained in [16] and further
developed in [65] [6] (see also e.g. [3]-[5]). Up to now, only the case where
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the phase function Φ is of the form (21) has been handled rigorously. In this
case the detailed asymptotic expansion of the infinite dimensional oscillatory
integral has been computed, and, in the case where the phase function has
a unique stationary point, the Borel summability of the expansion has been
proved [65].

For results on the study of the asymptotic behavior of infinite dimen-
sional probabilistic integrals and its connection with the semiclassical limit of
Schrödinger equation see e.g. [33, 50, 61, 66, 26, 27, 18, 32].

3 Applications

3.1 The Schrödinger equation

Infinite dimensional oscillatory integrals, as defined in section 1.2, provided
a rigorous mathematical realization of the heuristic Feynman path integral
representation (4) for the solution of the following Schrödinger equation{

i~ ∂
∂tψ = Hψ

ψ(0, x) = ψ0(x)
(27)

where

H = − ~2

2m
∆+

1
2
xA2x+ V (x) + λP (x),

V, ψ0 ∈ F(Rd), A : Rd → Rd is a symmetric positive operator, λ ≥ 0, P is an
homogeneous fourth order polynomial. In other words, under the assumptions
above, the heuristic path integral (4) can be realized as a well defined infinite
dimensional oscillatory integral on a suitable Hilbert space H with parameter
ε ≡ ~. We describe here the result in the case λ = 0 [15, 16, 38, 6], recalling
that the general case with λ 6= 0 has been recently handled in [20]
Let us consider the Cameron-Martin space (Ht, 〈 , 〉), i.e. the Hilbert space
of absolutely continuous paths γ : [0, t] → Rd such that γ(t) = 0 and γ̇ ∈
L2([0, t]; Rd), endowed with the inner product

〈γ1, γ2〈=
∫ t

0

γ̇1(s)γ̇2(s)ds.

From now on we shall assume for notational simplicity that m = 1. Let us
consider the operator L on Ht given by

〈γ, Lγ〉 ≡
∫ t

0

γ(s)A2γ(s)ds,

and the function v : Ht → C

v(γ) ≡
∫ t

0

V (γ(s) + x)ds+ 2xA2

∫ t

0

γ(s)dsτ, γ ∈ Ht.

By analyzing the spectrum of the operator L (see [38]) one can easily verify
that L is trace class and I − L is invertible. The following holds:
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Theorem 2 Under the assumptions above, the function f : Ht → C given by

f(γ) := e−
i
~ v(γ)ψ0(γ(0) + x)

is the Fourier transform of a complex bounded variation measure µf on
Ht and the infinite dimensional oscillatory integral of the function g(γ) =
e−

i
2~ 〈γ,Lγ〉f(γ) ∫̃

Hte
i
2~ 〈γ,(I−L)γ〉e−

i
~ v(γ)ψ0(γ(0) + x)dγ. (28)

is well defined (in the sense of definition (2)) and it is equal to

det(I − L)−1/2

∫
Ht

e
−
i~ 2〈γ,(I−L)−1γ〉dµf (γ),

det(I − L) being the Fredholm determinant of the operator (I − L).
Moreover it is a representation of the solution of the Schrödinger equation
(27) evaluated at x ∈ Rd at time t.

For a proof see [38]. An extension of this result to the case of the presence of
a a polynomial potential (i.e. λ 6= 0) has been obtained in [20] (on the basis
of theorem 1) In this case the Borel summability of the asymptotic expansion
of IΦ(f) in powers of the coupling constant λ has also been proven.

The method of the stationary phase in infinite dimensions has been applied
to the study of the asymptotic behavior of the integral (28) in the limit ~ → 0,
in the case λ = 0 [16, 6, 65] (for other methods leading to similar results, see
e.g. [32]).
The result of theorem 2 has been recently generalized to the case where the
potential V , the matrix A and the coupling constant λ are explicitly time
dependent [23, 25, 30]. The case λ 6= 0 requires special attention because of
the growth of the term λP (x) at infinity which excludes the possibility of
applying the usual methods of the theory of hyperbolic evolution equations.

Let us also mention that infinite dimensional oscillatory integrals are a flex-
ible tool and provide a rigorous mathematical realization for other large classes
of Feynman path integral representations, such as the “phase space Feynman
path integrals” [10] and the “Feynman path integrals with complex phase
functions” that are applied to the solution of a stochastic Schrödinger equa-
tion [11, 12]. Other interesting applications are the solution of the Schrödinger
equation with a magnetic field [7], the trace formula for the Schrödinger group
[4, 5] (which includes a rigorous proof of “Gutzwiller’s trace formula”, of basic
importance in the study of quantum chaos, and with interesting connections
with number theory), the dynamics of Dirac systems [49] and of quantum
open systems [9, 39].

3.2 The Chern-Simons model

The application of the infinite dimensional oscillatory integrals to the mathe-
matical definition of the Chern-Simons functional integral described in section
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1.3 has been realized in [28] in the case where the gauge group G is abelian.
It has been proven in particular that if H1(M) = 0 then IΦ(f) gives the
linking numbers. The same results were obtained in [60] in the framework of
white noise calculus. These result have been extended to the case where G
is not abelian and M = R3 in [29, 45] by means of white noise analysis (see
also [14] for a detailed exposition of this topic). The case M = S1 × S2 has
been recently handled in [46]. There is certainly still a large gap between the
extensive and productive heuristic use of Feynman type integrals in this area
(and in related areas connected with quantum gravity and string theory) and
what can be achieved rigorously. This is a great challenge for the future.
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