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Summary. Itô calculus has been generalized in white noise analysis and in quantum
stochastic calculus. Quantum white noise calculus is a third generalization, unifying
the two above mentioned ones and bringing some unexpected insight into some old
problems studied in different fields, such as the renormalization problem in physics
and the representation theory of Lie algebras. The present paper is an attempt to
explain the motivations of these extensions with emphasis on open challenges.

The last section includes a result obtained after the Abel Symposium. Namely
that, after introducing a new renormalization technique, the RHPWN Lie algebra in-
cludes (in fact we will prove elsewhere that this inclusion is an identification) a second
quantized version of the extended Virasoro algebra, i.e. the Virasoro–Zamolodchikov
∗–Lie algebra w∞, which has been widely studied in string theory and in conformal
field theory. 3

1 Introduction

The year 2005 marks Kiyosi Itô’s 90th birthday and, with it, the 63th birthday
of stochastic calculus. The present Abel symposium, devoted to the celebration
of these events, offers to all mathematicians an important occasion to meditate
on this important development in their discipline whose influence is going
to follow the times of history, even in a period when the pace of scientific
development has reached a level in which most papers have a life time of less
than one year.

The applications of Itô’s work have been so many, ranging from physics to
biology, from logistics and operation research to engineering, from meteorology
to mathematical finance, . . . , that an exhaustive list is impossible.

3 Talk given by L.A. at the Abel symposium: Stochastic analysis and applications:
A symposium in honor of Kiyosi Itô (on the occasion of his 90th birthday) Oslo,
Friday 29 July–Thursday 4 August, 2005 Organized by: the Norwegian Mathe-
matical Society and the Center of Mathematics for Applications (CMA), Oslo
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From the mathematical point of view it is someteimes underestimated the
fact that Itô calculus, with its radical innovation of the two basic operations
of calculus – differentiation and integration – has been one of the few real con-
ceptual breakthroughs in the development of classical analysis after Newton.

Itô laid down the foundations of stochastic calculus in his 1942 thesis
[Itô42a], [Itô42b] and the first systematic exposition of these ideas in English
language appeared almost ten years later in [Itô51] and preceeded of about 15
years the now classical monograph [ItôMcKn65]. This gave rise to an impetu-
ous development which has seen as protagonists several of the participants to
the present conference and which will be reviewed by them.

My talk will take the move from one of the basic achievements of this
development, completed in the late 1960’s, and which led to the mathematical
substantiation of a limpid and intuitive picture of the structure of a classical
stochastic process indexed by the real line (interpreted as time) and with
values in Rd (interpreted as a generalized phase space).

The sample space of a generic process of this type is identified to a space of
Rd–valued functions, interpreted as trajectories of a dynamical system, and
each trajectory is canonically decomposed into a sum of two parts: a reg-
ular (bounded variation) part, corresponding to the drift in the stochastic
equation and a pure fluctuation term, corresponding to the martingale part
in the stochastic equation. The former part is handled with classical, New-
tonian, calculus; the latter with Itô calculus. The picture is completed by
the Kunita–Watanabe martingale representation theorem [KunWat67], which
characterizes the generic martingales as stochastic integrals with respect to
some stationary, independent increment process and by the Lévy–Itô decom-
position of a stationary, independent increment process (Zt):

Zt = mt+ σBt +Xt

where m is a constant, Bt is a Brownian motion and Xt is a compound Poisson
process, i.e. an integral

XT =
∫ T

0

dt

∫
Pu,tdβ(u)

of independent Poisson processes Pu,t with intensity of jumps equal to u, with
respect to a measure dβ(u), called the Levy measure and with support in
R \ {0}.

The early generalizations of Itô calculus had gone in the direction of ex-
tending it to more general state spaces thus passing from Rd to manifolds or
to infinite dimensions or both. Another, less developed extension was from
vector valued to operator valued classical stochastic processes [Skor84]. How-
ever these extensions did not change the basic conceptual framework of the
theory.

The situation changed in the past 30 years when three qualitative inno-
vations appeared. This drastically enlarged not only the conceptual status of
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Itô calculus, and more generally of stochastic analysis, but also its technical
apparatus. The traditional bridges between probability, classical analysis and
combinatorics became an intricate network including practically every field
of mathematics, from operator theory to graph theory, from Hopf algebras to
group representations,...

The traditional applications to the classical world (physics, information,
communications, engineering, finance,...) have now been expanded to the cor-
responding sectors in the quantum world thus bringing a remedy to the his-
torical paradox according to which the mathematical discipline, dealing with
the laws of chance, was not powerful enough to include into its framework the
most advanced physical theory, quantum mechanics, in which chance enters
in a much more intrinsic way than in any other physical theory.

These innovations begun with two, initially quite separated and indepen-
dent, lines of research: white noise analysis, (1975) and quantum stochastic
calculus (1982) and found their unification, starting from 1993, in quantum
white noise calculus.

The rate of progression of these events, as well as the merging of different
generalizations into a single, unified picture, has been so swift that, even for
those who actively participated in the construction of these developments, it
is quite hard to follow all the new ideas and to embrace the whole landscape
in a single eyesight.

It is precisely on this broad picture that the present paper will be focused.
Not only details, but also several important achievements, will be omitted
from the exposition, in the attempt to convey an idea of some of the exciting
new perspectives of quantum stochastic analysis.

The first attempts to go beyond the Itô calculus framework and to include
processes which, although much more singular, were frequently used in the
physics and engineering literature, was Hida white noise theory , first proposed
in his Carleton lectures of 1975 [Hida75], [Hida92].

The second conceptual generalization of Itô calculus took place in 1982
when Hudson and Parthasarathy developed their quantum stochastic calcu-
lus [HuPa82a], [HuPa84c]. In it for the first time, the noises themselves (i.e.
the martingales driving the stochastic differential equations) were no longer
classical additive independent increment processes but quantum independent
increment processes. This was the first quantum generalization of Itô calculus
and opened the way to all subsequent ones. The culmination of the theory is
the determination of the structure of those stochastic equations which admit
a unitary solution. The reason why this result has fundamental implications
both for quantum mechanics and for classical probability, will be explained
starting from section (7).

The Hudson–Parthasarathy theory inspired, directly or indirectly, most of
the developments of quantum probability for the decade after its appearance.
Its importance can be compared to the original Itô paper and the multiplicity
of investigations it motivated was surveyed in [Partha92].
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But the story does not end here: a third conceptual generalization, mo-
tivated by the stochastic limit of quantum theory, was developed between
1993 and 1995 and can be described as the unification of the white noise and
the quantum stochastic approach: the non triviality of this unification will be
clear starting from section (12) of the present exposition. In particular this
third step threw a new and unexpected light on the microscopic structure of
quantum, hence in particular classical, stochastic equations as a consequence
of:

(i) the discovery of the Hamiltonian structure of the (classical and quan-
tum) stochastic differential equations

(ii) the discovery of the translation code between white noise and stochastic
differential equations. This required the development of the theory of distri-
butions on the standard simplex [AcLuVo99] which is the mathematical coun-
terpart of the time consecutive principle of the stochastic limit of quantum
theory.

However the main point of the new development was not so much the
deeper understanding of the structure of classical and quantum stochastic
calculus, but the possibilities it opened of further extensions, which cannot
be obtained with the traditional tools of stochastic analysis. In fact the white
noise extension of the Itô table opened the way to the nonlinear generalizations
of Itô calculus to which is devoted the second part of the present report.

The beautiful landscape emerging from the simplest of these extensions,
i.e. the one dealing with the second power of white noise, and the subse-
quent, totally unexpected unification of the five Meixner classes as classical
subprocesses (algebraically: Cartan ∗–sub algebras) respectively of the first
and second order white noise, rose strong hopes that this hierarchy could be
extended from the second powers of white noise to its higher powers. This
would lead to a new, interesting class of infinitely divisible processes (for a
short while there was even the hope to obtain a new parametrization of all
these processes).

This hope however collided with the wall of the no go theorems described
in the last part of the present paper. Although negative results, these the-
orems are very interesting because they have revealed an hitherto unknown
phenomenon relating stochastic analysis to two different fields, each of which
has been the object of a huge literature outside probability theory namely:

(i) the representation theory of infinite dimensional Lie algebras
(ii) renormalization theory.
These two theories are at the core of contemporary theoretical physics

and the fact that some developments, motivated by quantum white noise
analysis, could bring new insight and new results in such a fundamental issue,
which resisted decades of efforts from the best minds of theoretical physics,
is an indication that this direction is deep and worth being pursued. For this
reason while the first part of the present paper consists in an exposition of
already established results, in the second part emphasis has been laid on the
formulation of the problems facing the construction of a satisfactory theory
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of the higher powers of white noise. This has led to the introduction of some
new notions, such as Fock representation of a Lie algebra, which are going to
play an essential role in the development of the theory.

All these developments show that Itô calculus shares, with the richest and
deepest mathematical theories, the germs of its radical innovation. Historical
experience shows that these innovations often occur in directions which are
quite unexpected for the experts of the field and this sometimes generates a
feeling of extraneousness.

An instructive example is given by the theory of elliptic functions, origi-
nated from a deep intuition of Abel and initially developed within a purely
analytical context, but now stably settled in a purely algebraic and geomet-
rical framework.

The story we are going to tell shows that Itô calculus gives another im-
portant example in this direction.

2 Plan of the present paper

The goal of the present section is twofold: (i) to give a more analytical out-
line of the content of the present paper; (ii) to catch this occasion to say a
few words about the motivations and the inner logic underlying the develop-
ments described here as well as about their connections with other sectors of
quantum probability which could not be dealt with for reasons of space.

Section (3) defines the notion of quantum (Boson Fock) white noise and
illustrates, in this basic particular case, one of the main ideas of quantum
probability, i.e. the idea that algebra implies statistics. Let me just mention
here that also the converse statement, i.e. that statistics implies algebra (e.g.
commutation or anti commutation relations), is true and it lies at a deeper
level. The first result in this direction was proved by von Waldenfels in the
Bose and Fermi case [voWaGi78], [voWa78] and about 20 years later, with the
introduction of the notion of interacting Fock space [AcLuVo97b], this prin-
ciple became a quite universal principle of probability theory and opened the
way to the program of a full algebraic classification of probability measures.
This is a quite interesting direction, and is also deeply related to the main
topic of the present paper, stochastic and white noise calculus, but we will
not discuss this connection and we refer the interested reader to [AcBo98],
[AcKuSt02], [AcKuSt05a].

Section (4) describes another important new idea of quantum probability,
i.e. the notion of quantum decomposition of a classical random variable (or
stochastic process). This idea is illustrated in the important particular case
of classical white noise and extended, in Section (6), to the Poisson noise.

The two above mentioned decompositions are at the root of Hudson–
Parthasarathy’s quantum extension of classical Itô calculus, briefly outlined
in Section (6).
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Section (7) briefly describes the classical Schrödinger and Heisenberg equa-
tions as a preparation to their stochastic and white noise versions.

The algebraic form of a classical stochastic process is described in sec-
tion (8). This leads to a reformulation, explained in section (10), of classical
stochastic differential equations, that makes quite transparent their equiv-
alence to stochastic versions of the classical Schrödinger or of Heisenberg
equations.

In sections (9), (10) it is briefly outlined how this reformulation is noth-
ing but a stochastic analogue of Koopman’s algebraization of the theory of
classical, deterministic dynamical systems.

Combining the content of section (8) with the quantum decomposition of
classical white and Poisson noise, described in sections (4), (6), one arrives,
in section (11), to the full quantum versions of the stochastic Schrödinger
and Heisenberg equations, which are the main object of study of the Hudson–
Parthasarathy theory.

These equations are not of Hamiltonian type and they were developed by
Hudson and Parthasarathy on the basis of a purely mathematical analogy
with the classical Itô calculus. Hence their connection with the Hamiltonian
equations of quantum physics was obscure and the early applications of these
equations to physical problems, proposed by Barchielli [Barc88], Belavkin
[Bela86a], Gardiner and Collet [GaCo85], . . . , were built on a purely phe-
nomenological basis. This led to some misgivings among physicists on the
meaning of these models and their relations to the fundamental laws of quan-
tum mechanics.

On the other hand, combining the main results of Hudson and Parthasa-
rathy (construction of unitary Markovian cocycles) with the quantum Feyn-
man–Kac formula of [Ac78b] we see that, by quantum conditioning of a
stochastic Heisenberg evolution X0 7→ UtX0U

∗
t on the time zero algebra, one

obtains quantum Markov semigroup (P t):

E0] (UtX0U
∗
t ) = P t(X0) (1)

just as the analogue classical conditioning leads to a classical Markov semi-
group. It was also known, since the early results of Pauli and van Hove,
that quantum Markov semigroups (P t) (and the associated master equations,
which are the quantum analogue of the Chapman–Kolmogorov equations) can
arise as appropriate time–scaling limits of reduced Heisenberg evolutions. The
time–scaling being the same one used in classical stochastic homogenization
(i.e. t → t/λ2), and known in the physical literature as van Hove or 1/λ2–
scaling, and the limit being taken for λ→ 0. Since (in this particular context)
the physical operation of reducing an Heisenberg evolution to a subsystem,
used in these papers, is mathematically equivalent to conditioning on the
time zero algebra, the above statement can be rewritten as:

lim
λ→0

E0]

(
U

(λ)
t/λ2X0U

(λ)∗
t/λ2

)
= P t(X0) (2)
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Comparing (1) with (2) it was therefore natural to conjecture that also the
unconditioned limits,

lim
λ→0

U
(λ)
t/λ2X0U

(λ)∗
t/λ2 = UtX0U

∗
t (3)

lim
λ→0

U
(λ)
t/λ2 = Ut (4)

of the original Schrödinger and Heisenberg evolutions should exist, for some
(at those times unspecified) topology, and satisfy some quantum stochastic
Schrödinger and Heisenberg equations of Hudson–Parthasarathy type.

This conjecture was formulated by Frigerio and Gorini immediately after
the development of quantum stochastic calculus [FrGo82a] and was proved a
few years later by Accardi, Frigerio and Lu [AcFrLu87].

This result marked the beginning of the stochastic limit of quantum the-
ory. It proved that quantum stochastic differential equations arise as physically
meaningful scaling and limiting procedures from the fundamental laws of quan-
tum mechanics, expressed in terms of Hamiltonian equations. This produced,
among other things, a microscopic interpretation not only of the coefficients
of the stochastic equations, but also of the fine structure of the driving mar-
tingales (quantum noises).

Several years later Accardi, Lu and Volovich [AcLuVo93] realized that in
fact stochastic differential equations (both classical and quantum) are them-
selves Hamiltonian equations but not of usual type: they are white noise
Hamiltonian equations. The identification of these two classes of equations
required the development of new mathematical techniques such as the notion
of causal normal order and the strictly related time consecutive principle and
theory of distributions on the standard simplex (cf. [AcLuVo02] for a discussion
of these notions).

The inclusion: classical and quantum SDE ⊆ WN Hamiltonian equations
is a consequence of this development and is described in Sections (12), (13).
These few pages condensate a series of developments which took place in
several years and in several papers. The interested reader is referred to
[AcLuVo99] (the first attempt to systematize the impetuous development of
the previous years) and to the more recent expositions [Ayed05] (thesis of
Wided Ayed) and the papers [AcAyOu03], [AcAyOu05a], [AcAyOu05b]. The
last of this papers deals with another one of the several interesting devel-
opments born from the stochastic limit of quantum theory which, for lack
of space, are not discussed in the present paper, namely the module gener-
alization of white noise calculus and the qualitatively new structure of the
quantum noises emerging from it (the reader, interested in the first and main
physical example of this new structure, is referred to [AcLuVo97b]).

Even more condensed is the description, in sections (14), (15), (16), (17), of
the renormalized square of WN. This is because the survey paper [AcBou04c]
is specifically devoted to this subject and the interested reader can find there
the necessary information.



8 Luigi Accardi and Andreas Boukas

On the contrary, since most of the material in sections from (18) to (22)
has not yet been published, we tried to give all the necessary definitions even
if proofs had to be omitted for reasons of space.

The general problem, concerning the renormalized higher powers of WN,
is formulated in section (21) with the related no–go theorems. As explained
in sections (22), this problem is also related with an old open problem of
classical probability, i.e. the infinite divisibility of the odd powers of a standard
Gaussian random variable.

Further investigations are needed to understand the effective impact of
these no–go theorems. Do they really close the hope of a general theory of
higher powers of white noise? Our feeling is that the answer to this question
is no! This hope is supported by the following considerations. The no–go
theorems heavily depend on:

(i) the choice of a renormalization procedure;
(ii) the fact that we restrict our attention to a very special representation,

i.e. the Fock one.
A way out of this conundrum has to be looked for in the relaxation of

one of these assumption, i.e. one has to look for either new renormalization
procedures or different representations. Both ways are now under investigation
and raise challenging but fascinating mathematical problems.

The last section of the present paper refers to a development that took
place after the end of the Abel Symposium and which shows that the idea to
look for different types of renormalization procedures turned out particularly
fruitful and brought to the fore a connection between the renormalized higher
powers of white noise and the Virasoro algebra which promises to be as rich
of developments as the connection between the renormalized square of white
noise and the Meixner classes.

3 Fock scalar White Noise (WN)

Definition 1. The standard d–dimensional Fock scalar White Noise (WN) is
defined by a quadruple

{H, bt, b+t , Φ} ; t ∈ Rd

where H is a Hilbert space, Φ ∈ H a unit vector called the (Fock) vacuum,
and bt, b+t are operator valued distributions (for an explanation of this no-
tion see the comment at the end of the present section and the discussion in
[AcLuVo02], section (2.1)) with the following properties.

The vectors of the form
b+tn . . . b

+
t1Φ (5)

called the number vectors are well defined in the distribution sense and total
in H.

bt is the adjoint of b+t on the linear span of the number vectors
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(b+t )+ = bt (6)

Weakly on the same domain and in the distribution sense:

[bs, b+t ] := bsb
+
t − b+t bs = δ(t− s) (7)

where, here and in the following, the symbol [ · , · ] will denote the commutator:

[A,B] := AB −BA

Finally bt and Φ are related by the Fock property (always meant in the distri-
bution sense):

btΦ = 0 (8)

The unit vector Φ determines the expectation value

〈Φ,XΦ〉 =: 〈X〉 (9)

which is well defined for any operator X acting on H and with Φ in its domain.

Remark. In the Fock case algebra implies statistics in the sense that the
algebraic rules (7), (6), (8) uniquely determine the restriction of the expec-
tation value (9) on the polynomial algebra generated by bt and b+t . This is
because, with the notation

Xε =

{
X , ε = −1
X∗ , ε = +1

(10)

the Fock prescription (8) implies that the expectation value

〈bεn
tn . . . b

ε1
t1 〉 (11)

of any monomial in bt and b+t is zero whenever either n is odd or bε1t1 = bt1
or bεn

tn = b+tn . If neither of these conditions is satisfied, then there is a k ∈
{2, . . . , n} such that the expectation value (11) is equal to

〈bεn
tn . . . b

ε1
t1 〉 = 〈bεn

tn . . . b
εk+1
tk+1

[btk , b
+
tk−1

. . . b+t1 ]〉 (12)

Using the derivation property of the commutator [btk , · ] (i.e. (24)) one then
reduces the expectation value (12) to a linear combination of expectation
values of monomials of order less or equal than n− 2. Iterating one sees that
only the scalar term can give a nonzero contribution.

Remark. The practical rule to deal with operator valued distri-
butions is the following: products of the form (11) are meant in the sense
that, after multiplication by ϕ(tn) · . . . ·ϕ(t1), where ϕ1, . . . , ϕn are elements of
an appropriate test function space (typically one chooses the space of smooth
functions decreasing at infinity faster than any polynomial), and integration
with respect to all variables dt1 · . . . · dtn (each of which runs over Rd) one
obtains a product of well defined operators whose products contain the vector
Φ in their domains. Here and in the following we will not repeat each time
when an identity has to be meant in the distribution sense.
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4 Classical real valued white noise

Lemma Let bt, b+t be a Fock scalar white noise. Then

wt := bt + b+t (13)

is a classical real random variable valued distribution satisfying:

wt = w+
t (14)

[ws, wt] = 0 ; ∀s, t (15)

〈wt〉 = 0 (16)

〈wswt〉 = δ(t− s) (17)

〈wt2n
. . . wt1〉 =

∑
{lα,rα}∈p.p.{1,...,2n}

n∏
α=1

〈wtlαwtrα
〉 (18)

moreover all odd moments vanish.
Remark. The self–adjointness condition (14) and the commutativity con-

dition (15) mean that (wt) is (isomorphic to) a classical real valued process.
Conditions (16) and (17) mean respectively that (wt) is mean zero and δ–
correlated. Finally (18), which follows from (8) and from the same arguments
used to deduce the explicit form of (11), shows that the classical process (wt)
is Gaussian.

Definition 2. The process (wt) satisfying (14),. . . , (17) (one can prove its
uniqueness up to stochastic equivalence) is called the standard d–dimensional
classical real valued White Noise (WN). The identity (13) is called the quan-
tum decomposition of the classical d–dimensional white noise.

Remark. Notice that, for the classical process (wt), it is not true that
algebra implies statistics: this becomes true only using the quantum decom-
position (13) combined with the Fock prescription (8).

Remark. In the case d = 1, integrating the classical WN one obtains the
classical Brownian motion with zero initial condition:

Wt = Bt +B+
t =

∫ t

0

ds(b+s + bs) (19)

Notice that (19) gives the q–decomposition of the classical BM just as (13)
gives the q–decomposition of the classical WN.

From now on we will only consider the case d = 1.
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5 Classical subprocesses associated to the first order
white noise

An important generalization of the quantum decomposition (13) of the clas-
sical white noise is the identity:

pt(λ) = bt + b+t + λb+t bt ; λ ≥ 0 (20)

which can be shown to define (in the sense of vacuum distribution) a 1–
parameter family of classical real valued distribution processes (i.e. pt(λ) =
pt(λ)+ and [ps(λ), pt(λ)] = 0). In fact this classical process can be identified,
up to a time rescaling, to the compensated scalar valued standard classical
Poisson noise with intensity 1/λ and the identity (20) gives a q–decomposition
of this process.

Integrating (20), in analogy with (19), one obtains the standard compen-
sated Poisson processes. Notice that the critical value

λ = 0

corresponds to the classical WN while any other value

λ 6= 0

gives a Poisson noise. As a preparation to the discussion of Section (17) notice
that λ = 0 is the only critical point, i.e. a point where the vacuum distribution
changes and that these two classes of stochastic processes exactly coincide with
the first two Meixner classes.

6 The Hudson–Parthasarathy quantum stochastic
calculus

In the previous sections we have seen that, integrating the densities

wt = bt + b+t

p(λ)t = bt + b+t + λb+t bt

one obtains the stochastic differentials (random measures) as WN integrals

dWt =
∫ t+dt

t

wsds =
∫ t+dt

t

(bs + b+s )ds =: dB+
t + dBt

dPt(λ) =
∫ t+dt

t

ps(λ)ds =
∫ t+dt

t

(bs + b+s + λb+s bs)ds = dB+
t + dBt + λdNt
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Starting from these one defines the classical stochastic integrals with the usual
constructions. ∫ t

0

FsdWs ;
∫ t

0

FsdPs(λ)

The passage to q–stochastic integrals consists in separating the stochastic
integrals corresponding to the different pieces. In other words, the quantum
decomposition (20) suggests to introduce separately the stochastic integrals∫ t

0

FsdBs ;
∫ t

0

FsdB
+
s ;

∫ t

0

FsdNs

This important development was due to Hudson and Parthasarathy and we
refer to the monograph [Partha92] for an exposition of the whole theory.

7 Schrödinger and Heisenberg equations

A Schrödinger equation (also called an operator Hamiltonian equation) is an
equation of the form:

∂tUt = −iHtUt ; U0 = 1 ; t ∈ R (21)

where the 1–parameter family of symmetric operators on a Hilbert space H

Ht = H∗
t

is called the Hamiltonian. In the pyhsics literature one often requires the
positivity of Ht. We do not follow this convenction in order to give a unified
treatment of the usual Schrödinger equation and of its so–called interaction
representation form. This approach is essential to underline the analogy with
the white noise Hamiltonian equations, to be discussed in section (12).

When Ht is a self–adjoint operator independent of t, the solution of equa-
tion (21) exists and is a 1–parameter group of unitary operators:

Ut ∈ Un(H) ; UsUt = Us+t ; U0 = 1 ;U∗t = U−1
t = U−t ; s, t ∈ R

Conversely every 1–parameter group of unitary operators is the solution of
equation (21) for some self–adjoint operator Ht = H independent of t.

An Heisenberg equation, associated to equation (21), is

∂tXt = δt(Xt) ; X0 = X ∈ B(H) (22)

where δt has the form

δt(Xt) := −i[Ht, Xt] ; X0 = X ∈ B(H) (23)

One can prove that δt is a ∗–derivation, i.e. a linear operator on an appropriate
subspace of the algebra B(H) of all the bounded operators on H, also called
the algebra of observables, satisfying (on this subspace):
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δt(ab) = δt(a)b+ aδt(b) (24)

δ∗t (a) := δt(a∗)∗ = δt(a)

Not all ∗–derivations δt on subspaces (or sub algebras) of B(H) have the
form (23). If this happens, then the ∗–derivation, δt, and sometimes also the
Heisenberg equation, is called inner and its solution has the form

Xt = UtXtU
∗
t (25)

where Ut is the solution of the corresponding Schrödinger equation (21). Con-
versely, every solution Ut of the Schrödinger equation (21) defines, through
(25), a solution of the Heisenberg equation (22) with δt given by (23).

Thus every Schrödinger equation is canonically associated to an Heisenberg
equation. The converse is in general false, i.e. there are Heisenberg equations
with no associated Schrödinger equation (equivalently: not always a derivation
is inner). The simplest physically relevant examples of this situation are given
by the quantum generalization of the so called interacting particle systems
[AcKo00b] which have been widely studied in classical probability.

8 Algebraic form of a classical stochastic process

Let (Xt) be a real valued stochastic process. Define

jt(f) := f(Xt)

In the spirit of quantum probability, we realize f as a multiplication op-
erator on L2(R) and f(Xt) as a multiplication operator on

L2(R×Ω,BR ×F , dx⊗ P ) ≡ L2(R)⊗ L2(Ω,F , P )

where (Ω,F , P ) is the probability space of the process (Xt) and BR denotes
the Borel σ–algebra on R. Sometimes we use the notation:

Mfϕ(x) := f(x)ϕ(x) ; ϕ ∈ L2(R)

The same notation will be used if x ∈ R is replaced by (x, ω) ∈ R×Ω.
Thus f(Xt) is realized as multiplication operator on L2(R)⊗L2(Ω,F , P ).

With these notations, for each t ≥ 0, jt is a ∗−homomorphism

jt : C2(R) ⊆ B(L2(R)) → B(L2(R)⊗ L2(Ω,F , P ))
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9 Koopman’s argument and quantum extensions of
classical deterministic dynamical systems

The following considerations, due to Koopman, constitute the basis of the
algebraic approach to dynamical systems which reduces the study of such
systems to the study of 1–parameter groups of unitary operators or of ∗–
automorphisms of appropriate commutative ∗–algebras or, at infinitesimal
level, to the study of appropriate Schrödinger or Heisenberg equations.

To every ordinary differential equation in Rd

dxt = b(xt)dt ; x(0) = x0 ∈ Rd

such that the initial value problem admits a unique solution for every initial
data x0 and for every t ≥ 0: one associates the 1–parameter family of maps

Tt : Rd → Rd

characterized by the property that the image of x0 under Tt is the value of
the solution at time t:

xt(x0) =: Ttx0 ; T0 = id

Uniqueness then implies the semigroup property:

TtTs = Tt+s

If the above properties hold not only for every t ≥ 0, but for every t ∈ R, then
the system is called reversible. In this case each Tt is invertible and

T−1
t = T−t

Typical examples of these systems are the classical Hamiltonian systems. They
have the additional property that the maps Tt preserve the Lebesgue measure
(Liouville’s theorem).

Abstracting the above notion to an arbitrary measure space leads to the
notion of (deterministic) dynamical system:

Definition 3. Let (S, µ) be a measure space. A classical, reversible, determin-
istic dynamical system is a pair:

{(S, µ) ; (Tt) t ∈ R}

where Tt : S → S (t ∈ R) is a 1–parameter group of invertible bi–measurable
maps of (S, µ) admitting µ as a quasi–invariant measure:

µ ◦ Tt ∼ µ
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The quasi–invariance of (S, µ) is equivalent to the existence of a µ–almost
everywhere invertible Radon–Nikodym derivative:

d(µ ◦ Tt)
dµ

=: pµ,t ∈ L1(S, µ)

pµ,t > 0 ;µ− a.e.;
∫
S

pµ,t(s)dµ(s) = 1

Therefore for any t ∈ R the linear map

ϕ 7→ Utϕ(s) := pµ,t(s)−1/2ϕ(T−1
t s)

is well defined for any measurable function ϕ. Moreover∫
S

(pµ,t(s))−1/2f(T−1
t (s))(pµ,t(s))−1/2g(T−1

t (s))dµ(s) =

=
∫
S

f(T−1
t s)g(T−1

t s)pµ,t(s)−1dµ(s)

=
∫
S

f(T−1
t s)g(T−1

t s)pµ,t(TtT−1
t s)−1dµ(TtT−1

t s)

and since
dµ(TtT−1

t s) =
dµTt
dµ

(T−1s)dµ(T−1s)

the change of variables
T−1
t s = s′

gives

〈Utf, Utg〉 =
∫
S

f(s′)g(s′)dµ(s′) = 〈f, g〉

i.e. the map

Ut : f ∈ L2(S, µ) → p
−1/2
µ,t f ◦ T−1

t ∈ L2(S, µ)

defines a unitary operator in L2(S, µ). Similarly one proves that the family
(Ut) is a 1–parameter unitary group:

UtUs = Ut+s ; U∗t = U−t ; U0 = id

By Stone’s theorem there exists a self–adjoint operator H, on L2(S, µ), which
is the infinitesimal generator of this 1–parameter group, i.e.

Ut = e−itH

and this is equivalent to the Schrödinger equation

∂tUt = −iHUt ; U0 = 1
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The unitarity implies that:

U∗t ϕ = U−1
t ϕ = pµ,t(s)1/2ϕ ◦ Tt

therefore, recalling that Mf denotes the multiplication operator by f (Mfϕ =
fϕ), one has

(UtMfU
∗
t ϕ)(s) = (pµ,t)(s)−1/2(MfU

∗
t ϕ)(T−1

t s)

= pµ,t(s)−1/2f(T−1
t s)pµ,t(s)1/2ϕ(s) = f(T−1

t s)ϕ(s)

In conclusion: the Heisenberg evolution on B(L2(S, µ)):

x 7→ UtxU
∗
t =: jt(x)

canonically associated to the family (Ut), satisfies the identity:

Mf◦T−1
t

= UtMfU
∗
t =: jt(Mf )

This implies that the Abelian algebra L∞(S, µ) (considered as a sub–algebra
of on B(L2(S, µ))) is left invariant by each jt:

jt(L∞(S, µ)) = UtL
∞(S, µ)U∗t ⊆ L∞(S, µ)

Replacing the multiplication operatorMf by an arbitrary bounded operator x,
acting on L2(S, µ) one obtains a quantum extension of a classical deterministic
system. Abstraction from this situation suggests the following definition:

Definition 4. A deterministic, reversible, dynamical system is a pair:

{A ; (jt) t ∈ R}

where A is a ∗–algebra and (jt) a 1–parameter group of automorphisms of
A. If A is a C∗ (W ∗) algebra, then one speaks of a C∗ (W ∗) dynamical
system. If A is Abelian the system is called classical; otherwise it is called
quantum. Finally, if A is non Abelian but it contains an Abelian sub–algebra
Acl left invariant by jt (jt(Acl) ⊆ A) then it is called a quantum extension of
a classical system.

10 Stochastic extension of Koopman’s approach:
emergence of Schrödinger and Heisenberg equations in
classical stochastic analysis

In the present section we will replace, in the above Koopman’s argument, the
deterministic trajectory (xt(x0)) by a stochastic process (Xt) and show how
the general algebraization procedure described in section (8), when applied to
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the simple and important example of a classical diffusion flow (Xt), naturally
leads to a classical stochastic generalization of the Heisenberg equation.

Let (Xt) denote the real valued solution of the classical stochastic differ-
ential equation

dXt = ldt + adWt ; X(0) = X0 (26)

driven by classical Brownian motion (Wt) and with adapted coefficients
l, a which guarantee the existence and uniqueness of a strong solution for all
initial data X0 in L2(R) and for all times. The initial value X0 is a random
variable independent of (Wt). By Itô’s formula equation (26) is equivalent to

df(Xt) = (l∂xf +
1
2
a2∂2

xf)dt+ a∂xfdWt (27)

where f : R → R varies in a space of sufficiently smooth functions.
Since Xt depends also on the initial condition x ∈ R, f(Xt) is realized as

multiplication operator on

L2(R)⊗ L2(Ω,F , P )

where (Ω,F , P ) is the probability space of the increment process of the Brow-
nian motion. In the following we shall simply write f or f(Xt)) to mean the
multiplication operator by f(or f(Xt)). When confusion can arise we shall
write Mf or Mf(Xt). With these notations one has:

[∂x, f ] = [∂x,Mf ] = ∂x · f − f · ∂x = ∂x f = M∂xf

Therefore

[∂x, [∂x, f ]] = [∂x, [∂x,Mf ]] = M∂2
xf

= ∆ f = M∆f

Introducing the momentum operator on L2(R):

p :=
1
i
∂x

defined on those functions in L2(R) with a derivative also in L2(R), we
can write

∂xf = i[p, f ] ; ∂2
xf = −[p, [p, f ]]

More generally, interpreting both f and l as multiplication operators and using
the fact that f commutes with l, one finds:

lf ′ = l∂xf = li[p, f ] =
i

2
l[p, f ] +

i

2
[p, f ]l = (28)

=
i

2
lpf − i

2
lfp+

i

2
pfl − i

2
fpl = i

[
1
2
lp+

1
2
pl, f

]
=: i[p(l), f ]
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and therefore:

a2∂2
xf = a∂xa∂xf − a(∂xa)∂xf = −[p(a), [p(a), f ]− i[p(a∂xa), f ]

Thus, with p(a) and p(l) defined by (28) equation (27) can be written in the
form

df(Xt) = i[p(a), f(Xt)]dWt +

+
(
i [p(l), f(Xt)]−

1
2
[p(a), [p(a), f(Xt)]]− i

[
p

(
1
4
∂xa

2

)
, f(Xt)

])
dt

In conclusion, denoting

l +
1
2
∂xa

2 =: l1 (29)

we write equation (27) in the form

df(Xt) = i[p(a), f(Xt)]dWt −
1
2

[p(a), [p(a), f(Xt)]]dt+ i[p(l1), f(Xt)]dt

and, recalling the notation f(Xt) = jt(f), this is equivalent to

djt(f) = i[p(a), jt(f)]dWt −
1
2

[p(a), [p(a), jt(f)]]dt+ i[p(l1), jt(f)]dt (30)

Since any operator acting on L2(R) can be identified to the operator T ⊗ 1,
acting on L2(R)⊗L2(Ω,F , P ), also the multiplication operators by functions
f in C2(R), can be realized as pre–closed operators acting on
L2(R)⊗ L2(Ω,F , P ). With this identification, the homomorphisms jt can be
considered as maps

jt : C2(R)⊗ 1 ⊆ B(L2(R))⊗ 1 ⊆ B(L2(R))⊗ B(L2(Ω,F , P ))

≡ B
(
L2(R)⊗ (L2(Ω,F , P )

)
i.e. as homomorphisms from the Abelian sub–algebra C2(R)⊗ 1 of B(L2(R)⊗
L2(Ω,F , P )) into B(L2(R)⊗L2(Ω,F , P )). These homomorphisms jt are char-
acterized by the property of being the unique solution of the stochastic equa-
tion (30) with initial condition

j0(f) = f

where we use the same symbol f to denote the function f and the multipli-
cation operator by the function f acting on L2(R).

Now notice that the SDE (30) continues to have a meaning even if the
multiplication operator by the function f is replaced by an arbitrary operator
x acting on L2(R):

djt(x) = i[p(a), jt(x)]dWt −
1
2

[p, (a), [p(a), jt(x)]]dt+ i[p(l1), jt(x)]dt
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and the initial condition by its natural generalization

j0(x) = x

Under general conditions one can extend the existence and uniqueness theorem
for the classical equation to the quantum equation, for example by proving
the convergence of the iterated series in an appropriate topology.
Then, by a standard application of the classical Itô table, we can conclude
that

jt(x)jt(y) = jt(xy)

Similarly, using again uniqueness and the identity

[a, b]∗ = [b∗, a∗]

one proves that
jt(x)∗ = jt(x∗)

and therefore jt is a ∗–homomorphism from B(L2(R)) ≡ B(L2(R)) ⊗ 1 to
B(L2(R))⊗ B(L2(Ω,F , P )).

To complete the analogy with Koopman’s argument we ask ourselves the
following question: does there exist a 1–parameter family of linear operators
Ut acting on L2(R) ⊗ L2(Wiener space) such that, for any random variable
X0, independent of (Wt) and with initial distribution absolutely continuous
with respect to the Lebesgue measure on R, and for any f ∈ L∞(R), one has

UtMf(X0)U
∗
t = Mf(Xt) (31)

Notice that, if such an Ut exist, then it must be unitary because:

(i) UtU∗t = 1 ⇔ jt(1) = 1
(ii) U∗t Ut = 1 ⇔ the map f 7→ UtMf(X0)U

∗
t is a ∗–homomorphism

To answer the above question one can argue as follows: if such Ut exists
it must be a functional of the (Ws)s≤t because of (31). Thus we postulate an
equation for Ut of the form

dUt = (αdt+ βdWt)Ut (32)

Then, differentiating the unitarity conditions for Ut, i.e. UtU∗t = U∗t Ut = 1
and using the classical Itô table, we deduce a relation between α and β. After
that we differentiate, again using the classical Itô table, both sides of the
identity

f(Xt) = jt(Mf ) = UtMf (X0)U∗t
and identify the coefficients of the differentials dWt and dt. The result is a
classical,i.e. driven by classical BM, stochastic Schrödinger equation (SSE):

dUt =
(
−iKdWt −

[
1
2
K2 + iH

]
dt

)
Ut (33)
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with (in the notations (28), (29):

H = H∗ = −p(l1) ; K = K∗ = −p(a)

In absence of noise, i.e. K = 0(⇔ a = 0 in (26)), equation (33) becomes an
usual Schrödinger equation (21). Notice that both H and K are symmetric
hence, without the dissipation term K2/2, equation (33) would be formally
Hamiltonian. However the dissipation term is essential for the unitarity of
the solution. Thus we see that, within the context of stochastic differential
equations, the requirement of unitarity of the solution is in contradiction with
the Hamiltonian character of the equation. This problem will persist in the
context of quantum stochastic differential equations: only the white noise
approach will be able to overcome this problem.

11 Quantum stochastic Schrödinger and Heisenberg
equations

The transition from classical to quantum stochastic Schrödinger and Heisen-
berg equations is now accomplished by using the quantum decomposition of
the classical Brownian motion dWt = dB+

t + dBt and allowing for different
coefficients of the quantum stochastic differentials dB+

t and dBt.
Differentiating the unitarity conditions for Ut and using the Hudson–

Parthasaraty Ito table, we deduce a relation between the coefficients of dB+
t ,

dBt and dt. The final form of the equation is then:

dUt =
(
DdB+

t −D+dBt −
[
1
2
D+D + iH

]
dt

)
Ut (34)

where D and H are arbitrary, say bounded, operators and H = H∗. The same
argument, applied to a more general equation, including also the number
differential dNt leads to the most general Hudson–Parthasaraty stochastic
Schrödinger equation:

dUt =
(
SDdB+

t −D∗dBt + (S − 1)dNt + (−1
2
D+D + iH)dt

)
Ut (35)

where D and H are as above and S must be a unitary operator. Notice
that, contrarily to the diffusion case (34), here the Hamiltonian nature of the
equation is lost even at the level of the martingale term: the non Hamiltonian
nature of equation (35) is not due only to the presence of the dissipative
term D+D/2 but also of the unitary operator S. The deep meaning of this
apparently strange structure can only be understood in terms of quantum
white noise calculus (see section (13) below).
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12 White Noise Schrödinger and Heisenberg equations

The white noise equations live on spaces of the form

H = HS ⊗ Γ

where the Hilbert space HS is called the initial (or system) space, and the
Hilbert space Γ is called the noise space.

For 1–st order white noise equations the typical Γ is the same as for
Hudson–Parthasarathy equations, i.e. a Fock space over a 1–particle space of
the form L2(R;K) where K is another Hilbert space, called the multiplicity
space (in mathematics) or polarization space (in physics). A WN Schrödinger
(or Hamiltonian) equation is an equation of the form

∂tUt = −iHtUt ; U0 = 1

where Ht = H∗
t is a symmetric functional of white noise and the associated

Heisenberg equation (from now on we will consider only the inner case)

∂tXt = −i[Ht, Xt] ; X0 = X ∈ B(H)

Since in the inner case, as explained in section (7), the solution of the Heisen-
berg equation has the form

Xt = UtXtU
∗
t

it will be sufficient to consider the Schrödinger equation

13 Stochastic equations associated to 1–st order WN
Schrödinger equations

The simplest WN equations are the 1–st order WN Schrödinger equations, for
which Ht has the form:

Ht = Db+t +D+bt + Tb+t bt + C = D ⊗ b+t + . . .

Notice that the right hand side is formally symmetric if

T+ = T ; C+ = C

Diffusion WN equations are characterized by the condition:

T = 0

Example.
∂tUt = −iHtUt = −i(Db+t +D+bt)Ut (36)
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if D = D+ this becomes

∂tUt = −iHtUt = −iD(b+t + bt)Ut = −iDwtUt

in terms of Brownian motion

d

dt
Ut = −iD d

dt
WtUt (37)

Warning: in section (4) one might be tempted to use the naive relation

d

dt
Wt = wt ⇔ dWt = wtdt (38)

and to conclude that the classical WN equation (37) is equivalent to the
classical stochastic differential equation

dUt = −iDdWtUt (39)

but this would lead to a contradiction because it can be proved that equation
(39), does not admit any unitary solution while WN Hamiltonian equations
of the form (36) can be shown to admit unitary solutions.

In fact it is true that WNH equations of the form (36) are canonically
associated to stochastic differential equations but, for the determination of
this stochastic equation, the naive prescription (38) is not sufficient and a
much subtler rule must be used. The correct answer is given by the following
theorem.

Theorem 5. Let A, C and T = T ∗ be bounded operators on the initial space
HS. Then the white noise Schrödinger equation

∂tUt = −i(Abt +A∗b+t + b+t Tbt + C)Ut ; U0 = 1 (40)

(T = T ∗;C = C∗) is equivalent to the following stochastic differential equation

dUt =
(
SDdB+

t −D∗dBt

+
1

2Re(γ−)
(S − 1)dNt + (−γ−D+D + i|γ−|2D+TD − iC)dt

)
Ut (41)

where the unitary operator

S :=
1− iT

1 + iT
(42)

is the Cayley transform of T and:

D+ := iA
1

1 + iT
(43)
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Remark. The two equations can be interpreted in the weak sense on the
total domain of extended number vectors with continuous test functions (the
vectors of the form ξS⊗n with ξS ∈ HS and n a number vector with continuous
test functions).

Once taken the matrix elements of both sides in a pair of such vectors
both equations become (numerical) ordinary differential equations. Equiva-
lence here means that the solutions of these two equations coincide.

The notion of weak solution of an equation is well established both in
classical and stochastic analysis. Much stronger notions can be introduced in
the present situation but, for the purpose of comparing the meaning and the
solutions of the equations (40), (41), this is sufficient.

The transition from (40) to (41) is achieved through the operation of causal
normal order which is also responsible for the emergence of the (complex)
constant γ−. This constant (and its generalizations to more complex systems)
have a fundamental importance in physics (where they are interpreted as
generalized susceptivities) but, in a purely mathematical treatment, they can
be absorbed in the notations.

The proof of the equivalence is based on one of the deepest analytical
principles emerged from the stochastic limit of quantum theory, the time con-
secutive principle, whose proof is based on another mathematical development
motivated by the same theory, the theory of distributions on the standard sim-
plex. These topics will not be discussed here. For additional information the
reader is referred to the references mentioned in section (2).

The most general unitary stochastic differential equation (35), in the sense
of Hudson–Parthasarathy, is obtained from (41) by putting γ− = 1

2 and by
the change of notation |γ−|2D+TD − C =: H

From formulae (42), (43), we can now understand in what sense the white
noise approach unveils the microscopic structure of the coefficients of the uni-
tary equations in the Hudson–Parthasarathy sense (i.e. (35)): the fact that
only the special combination of coefficients of equation (35) can give a uni-
tary solution is the result of a calculation based on the quantum Ito table,
but the meaning of these conditions is quite obscure. On the contrary, looking
at (40) we see that the unitarity condition is equivalent to the formal symme-
try of the WH Hamiltonian. The analogue equivalence between white noise
Heisenberg and stochastic Heisenberg equation has been recently established
in [AcAyOu05] and, in its Hilbert module formulation [AcAyOu05], it leads
to a purely algebraic stochastic generalization of the derivation condition (24)
(an analytical generalization of this condition, based on operator valued mea-
sures and mutual quadratic variations was discussed in [AcHud89]).

14 The Renormalized Square of classical WN

We have seen that the quantum decomposition of the 1–st order classical WN
is:



24 Luigi Accardi and Andreas Boukas

wt = b+t + bt

If one tries to do the square of wt naively, one obtains:

w2
t = (b+t + bt)2 = b+2

t + b2t + b+t bt + btb
+
t = b+2

t + b2t + 2b+t bt + δ(0) (44)

where in the last identity we have applied the commutation relations (7)
to the case t = s. This application is purely formal because δ(t − s) is a
distribution and expressions like δ(0) are meaningless. The standard procedure
to overcome this problem is to subtract the diverging quantity δ(0) (additive
renormalization) and to conjecture that the result i.e.:

: w2
t : = b+2

t + b2t + 2b+t bt (45)

is, up to a constant, the quantum decomposition of the square of the classical
white noise.

However, even after this renormalization the right hand side of (45) is ill
defined. The problem is that, as will be shown in the following session, expres-
sions like b+2

t , b2t are not well defined even as operator valued distributions!

15 Basic new idea: renormalize the commutation
relations

The problem of giving a meaning to expressions like b2t , b
+2
t has its origins in

the fact that the commutation relations

[bs, b+t ] = δ(t− s)

imply that
[b2s, b

+2
t ] = 4δ(t− s)b+s bt + 2δ(t− s)2 (46)

But what does it mean δ(t−s)2 ? We found in the literature [Ivanov79] (see also
[BogLogTod69] and [Vlad66]) the following prescription: On an appropriate
test function space the following identity holds

δ(t)2 = cδ(t)

where the constant c ∈ C is arbitrary. (A poof of this statement and the
description of the test function space can be found in [AcLuVo99].)

Using this prescription in (46) we obtain the renormalized commutation
relations:

[b2s, b
+2
t ] = 4δ(t− s)b+s bt + 2cδ(t− s) (47)

Moreover (without any renormalization!)

[b2s, b
+
t bt] = 2δ(t− s)b2t (48)
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From (47) and (48) it follows that, after renormalization, the self–adjoint set
of operators

b2s , b
+2
s , b+t bt , c = (central element)

is closed under commutators, i.e. the linear span of these operators is a ∗–Lie
algebra.

In test function language the renormalized square of white noise ∗–Lie
algebra can be defined as follows

b+ϕ =
∫
dtϕ(t)b+2

t ; bϕ = (b+ϕ )+

nϕ =
∫
dtϕ(t)b+t bt

where ϕ ∈ S and S is a space of test functions (for example one can choose the
finitely valued step functions on R). This leads to the commutation relations:

[bϕ, b+ψ ] = γ〈ϕ,ψ〉+ nϕψ (49)

[nϕ, bψ] = −2bϕψ (50)

[nϕ, b+ψ ] = 2b+ϕψ (51)

(b+ϕ )+ = bϕ ; n+
ϕ = nϕ (52)

Definition A Fock representation of the ∗–Lie algebra of the RSWN is a
representation of this ∗–Lie algebra as operators on a Hilbert space H with a
unit vector Φ satisfying the following conditions (for notational simplicity we
will use the same symbol for an element of the ∗–Lie algebra of the RSWN
and for its image acting on H).

(i) The set of vectors (called the quadratic number vectors)

{(b+ϕ )nΦ : n ∈ N , ϕ ∈ S}

is well defined and total in H.
(ii) The algebraic linear span of the quadratic number vectors is invariant

under the action of the operators {b+ϕ , bϕ, nϕ : ϕ ∈ S}.
(iii) The commutation relations (49), (50), (51), (52) take place on the

quadratic number vectors
(iv) The Fock property holds:

bϕΦ = nϕΦ = 0 (53)
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16 Existence of Fock representations

Having defined the Fock representation the first problem is its existence. In
case of the first order white noise this is a well known result since the early
days of quantum theory.

Theorem (Fock 1930) The Fock representation of the first order white noise
(i.e. the current algebra over R of the CCR Lie algebra [a, a+] = 1, for the
notion of current algebra see section (18)) exists and is unique up to unitary
isomorphism.

The analogue for the RSWN Lie algebra was established more recently.
Theorem (Accardi , Lu, Volovich 1999) The Fock representation of the second
order white noise (current algebra over R of the Lie algebra sl(2,R)) exists
and is unique up to unitary isomorphism.

A direct proof of this result is a nontrivial application of the principle
that algebra implies statistics, described in its simplest form in Section (3):
one proves that, if the required Fock representation exists, then the scalar
product of two number vectors is uniquely determined by the commutation
relations (49), (50), (51), (52) and the Fock property (53). Then, and this is
the difficult part, one has to prove that this is indeed a scalar product, i.e.
that it is positive definite (cf. [AcLuVo99]).

In section (21) we will come back to this point. Before that let us ana-
lyze some consequences of the above theorem. More precisely let us apply to
this case the basic general principle of QP discussed in section (3): algebra
implies statistics. In section (3) we have seen that the application of this
principle to the first order white noise shows that the corresponding alge-
bra implies Gaussian and Poisson statistics. It is therefore natural to rise the
following question:

Which statistics is implied by the algebra of the renormalized Square of
WN?

The answer to this question was given by Accardi, Franz and Skeide in the
paper [AcFrSk00].

17 Classical subprocesses associated to the second order
white noise

To understand this answer it is convenient to take as starting point the analogy
with the q-decomposition of the compensated classical Poisson process with
intensity β−1

ṗt = b+t + bt + βb+t bt

At the end of section (5) we have seen that β = 0 is the only critical case and
corresponds to the transition from classical scalar valued standard compen-
sated Poisson process with intensity β−1.



Itô calculus and quantum white noise calculus 27

This analysis is extended in the paper [AcFrSk00] to the renormalized
square of white noise by considering the classical subprocesses

Xβ(t) := b+2
t + b2t + βb+t bt (54)

where β is a real number. It is then proved that now there are 2 critical values
of β, namely:

β = ±2

The value +2 corresponding to the renormalized square of the position (clas-
sical) white noise, i.e.

w2
t =| b+t + bt |2= b+2

t + b2t + b+t bt + btb
+
t =

= b+2
t + b2t + 2b+t bt + δ(0) ≡ b+2

t + b2t + 2b+t bt

and the value −2 to the renormalized square of the momentum white noise,
i.e.

(b+t − bt)/i

The vacuum distribution of both processes is the Gamma–process

µ(dx) =
|x|m0−1

Γ (m0)
e−βxχβR+

whose parameter m0 > 0 is uniquely determined by the choice of the unitary
representation of SL(2,R) corresponding to the representation of the SWN
algebra (cf. [ACFRSK00]).

In this functional realization the number vectors become the Laguerre
polynomials which are orthogonal for the Gamma distribution.

Since the Gamma–distributions are precisely the distributions of the χ2–
random variables, this result confirms the naive intuition that the distribution
of the [renormalized] square of white noise should be a Gamma–distributions.

For |β| < 2 the intensity of the jumps is not strong enough and each of
the classical random variables

Xβ(t) := b+2
t + b2t + βb+t bt

still has a density whose explicit form, in terms of the Γ–function is:

µ(dx) = C exp

(
− (2 arccosβ + π)x

2
√

1− β2

)∣∣∣∣∣Γ
(
m0

2
+

ix

2
√

1− β2

)∣∣∣∣∣
2

(C is a normalization constant). The corresponding orthogonal polynomials
are the Meixner-Pollaczek polynomials. For m0 integer more explicit formulae
for these densities were found by Grigelionis [Grig01],[Grig99], [Grig00c]:

|Γ (n+ ix)|2 =
πx(1 + x2) . . . ((n− 1)2 + x2)

sinh(πx)
; n = 1, 2, . . . , , x ∈ R
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2

+ ix

)∣∣∣∣2 =
π

cosh(πx)
, x ∈ R

∣∣∣∣Γ (n+
1
2

+ ix

)∣∣∣∣2
=
π( 1

4 + x2) . . . ((n− 1)n+ 1
4 + x2)

cosh(πx)
, n = 1, 2, . . . ; x ∈ R

Finally, for |β| > 2 the jumps dominate and the classical random variable

Xβ(t) := b+2
t + b2t + βb+t bt

has a discrete vacuum distribution i.e. the negative binomial (Pascal) distri-
bution which plays, for the square of white noise the a role analogue to the
one played by the geometric (or Gibbs) distribution for the first order white
noise:

µ = C

∞∑
n=0

c2n(m0)n
n!

δsgn(β((c−1/c)(n+m0/2))

where (m0)n denotes the Pochammer symbol,

(m0)n = m0(m0 + 1) · · · (m0 + n− 1)

and

C−1 =
∞∑
n=0

c2n(m0)n
n!

= (1− c2)−m0

More precisely, if β > 0

Pn(x) = (−1)n
n∏
k=1

n+m0 − 1
n

Mn

(
x

c− 1/c
− m0

2
;m0; c2

)
n∏
k=1

n+m0 − 1
n

Mn

(
− x

c− 1/c
+
m0

2
;m0; c2

)
where the Mn are the Meixner polynomials and

c = β −
√
β2 − 4

if β > +2, while if β < −2 then:

c = −β −
√
β2 − 4

In conclusion: the 1–parameter family (54) of vacuum operator processes
gives rise, according to the values of the parameter, to three classes of pro-
cesses:
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|λ| = 2 classical Gamma processes (Laguerre polynomials)
|λ| < 2 Meixner processes (Meixner–Pollaczek polynomials)
|λ| > 2 negative binomial (Pascal) processes (Meixner polynomials)
These three classes of stochastic processes exactly coincide with the re-

maining three Meixner classes! Comparing this result with the remark at the
end of section (5) we see that the first and second powers of white noise
account exactly for the five Meixner classes.

These 5 classes were known since 1934 (date of publication of Meixner’s
paper), but only through their quantum decomposition was their common
structure made clear. Moreover the infinite divisibility of these distributions,
which is not easy to prove analytically, now became an easy corollary of the
general phenomenon described in section (19) below.

Since the 1–st and second powers of white noise gave rise, in the sense
just explained, tot he five Meixner classes, it is quite natural to ask oneself
what happens with the higher powers of WN. In order to answer this ques-
tion we have to recall the connection between additive independent increment
processes and current algebras over Lie algebras.

18 Current representations of Lie algebras

Intuitively, if {L, [ · , · ], ∗} is a ∗–Lie algebra, a current algebra of L over Rd
is a vector space T of L–valued functions defined on Rd and closed under the
pointwise operations:

[ϕ,ψ](t) := [ϕ(t), ψ(t)] ; ϕ∗(t) := ϕ(t)∗ ; t ∈ R, ϕ ∈ T

For example, if X1, . . . , Xk are generators of L one can fix a space S, of
complex valued test functions on R and to each ϕ ∈ S and j ∈ {1, . . . , k} one
can associate the L–valued function on RXj(ϕ) defined by:

Xj(ϕ)(t) := ϕ(t)Xj ; t ∈ R

Definition 6. Let G be a complex ∗–Lie algebra. A (canonical) set of gener-
ators of G is a linear basis of G

l+α , l
−
α , l

0
β , α ∈ I , β ∈ I0

where I0, I are sets, satisfying the following conditions:

(l0β)
∗ = l0β ; ∀β ∈ I0

(l+α )∗ = l−α ; ∀α ∈ I

and all the central elements among the generators are of l0–type (i.e. self–
adjoint).
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We will denote cγαβ(ε, ε
′, δ) the structure constants of G with respect to

the generators (lεα), i.e., with α, β ∈ I ∪ I0, ε, ε′, δ ∈ {+,−, 0}, and, assuming
summation over repeated indices:

[lεα, l
ε′

β ] = cγαβ(ε, ε
′, δ)lδγ =

:=
∑
γ∈I0

cγαβ(ε, ε
′, 0)l0γ +

∑
γ∈I

cγαβ(ε, ε
′,+)l+γ +

∑
γ∈I

cγαβ(ε, ε
′,−)l−γ

In the following we will consider only locally finite Lie algebras, i.e. those such
that, for any pair α, β ∈ I ∪ I0 only a finite number of the structure constants
cγαβ(ε, ε

′, δ) is different from zero.

Definition 7. Let be given:
– a ∗–Lie algebra G
– a measurable space (S,B)
– a ∗–sub–algebra C ⊆ L∞C (S,B) for the pointwise operations.
The current algebra of G over C is the ∗–Lie algebra

G(C) := {C ⊗ G, [ · , · ]}

where C ⊗G is the algebraic tensor product, the Lie brackets [ · , · ] are given
by

[f ⊗ l, g ⊗ l′] := fg ⊗ [l, l′] ; f, g ∈ C , l, l′ ∈ G (55)

and the involution ∗ is given by

(f ⊗ l)∗ := f ⊗ l∗ ; f ∈ C , l ∈ G

where f denotes complex conjugate. In the following we shall use the notation:

l(f) := f ⊗ l ; f, g ∈ C , l,∈ G , f ∈ C (56)

Remark. If (lεγ) is a (canonical) set of generators of G then the set

{f ⊗ l+α , f∗ ⊗ l−α , Re(f)⊗ l0γ : α ∈ I , γ ∈ I0 , f ∈ C}

(Re(f) := (f + f)/2) is a (canonical) set of generators of G(C).
In the following we will use the notations:

l+α (f) := f ⊗ l+α , l−α (f) := f∗ ⊗ l−α , l0α(f) := f ⊗ l0γ

and, when no confusion can arise, we will often speak of the current algebra
(lεα(f)).

Definition 8. A representation of a ∗–Lie algebra G is a triple:

{H,D, π}
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where
– H is an Hilbert space
– D is a total subset of H
– π : D → H is a map such that:
(i) for any l ∈ G, π(l) is a pre–closed operator on D with adjoint π(l∗)
(ii) for any l, l′ ∈ G,

π([l, l′]) = [π(l), π(l′)]

where the commutator on the right hand side is meant weakly on D.

Remark. At the algebraic level the existence of representations of current
algebras of an arbitrary pair {G, (lεα)} over an arbitrary measure space (S,B, µ)
and sub–∗–algebra

C ⊆ L∞(S,B, µ)

is easily established. In fact, if {π,K} is any representation of G one can define
a structure of ∗–Lie algebra on

C ⊗ π(G) ∈ L(L2(S,B, µ)⊗K)

in terms of the brackets

[f ⊗ π(e), g ⊗ π(l′)] := fg ⊗ π([l, l′])

Therefore, defining:
l+α (f) := f ⊗ π(l+α )

l◦α(f) := f ⊗ π(l◦α)

one has
l+α (f)∗ = f ⊗ π(l+α )∗ = f ⊗ π((l+α )∗) = f ⊗ π(l−α )

(l0β(f))∗ = f ⊗ π(l0β)
∗ = f ⊗ π(l0β) = l0β(f)

[lεα(f), lε
′

β (g)] = [fε ⊗ π(lεα), gε
′
⊗ π(lε

′

β )] = fεgε
′
⊗ [π(lεα), π(lε

′

β )]

= fεgε
′
⊗ π[lεα, l

ε′

β ] = cγαβ(ε, ε
′, δ)fεgε

′
⊗ lδγ = cγαβ(ε, ε

′, δ)lδγ(f
εgε

′
)

Thus the current algebra relations are verified. This proves that any represen-
tation of G can be lifted to a representation of the current algebra G ⊗ G.

Definition 9. Let G be a ∗–Lie algebra with a (canonical) set of generators
(lεα). A representation {K,D, π} of G is called weakly irreducible if the images
of the central elements are multiples of the identity.

A representation {K,D, π} of G on a Hilbert space K is called a Fock
representation if it is weakly irreducible and:
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(i) there exists a unit vector Φ ∈ K such that ∀α ∈ I and ∀β ∈ I0, with
the exception of those β ∈ I0 which correspond to central elements, one has

π(l−α )Φ = π(l0β)Φ = 0

(ii) the set
{π(l+α )nΦ : α ∈ I , n ∈ N}

is total in K.

All the difficulties found in the construction of a coherent theory of higher
powers of white noise can be summarized in the following problem.
Problem. Let {G, (lεα)} be a ∗–Lie algebra with a set of generators. Suppose
that {G, (lεα)} admits a Fock representation. Under which conditions on the
measure space (S,B, µ) and on the ∗–sub–algebra

C ⊆ L∞(S,B, µ)

does the current algebra

{lεα(f) : ε ∈ {+,−, 0} , α ∈ I or α ∈ I0 , f ∈ C}

admit a Fock representation?
Example (1) The Heisenberg algebra is the ∗–Lie algebra with set of

generators {a+, a , 1} (1 here and in the following denotes the central element)
and relations

[a, a+] = 1 (57)

The associated current algebra over Rd with Lebesgue measure admits a Fock
representation which is the standard d–dimensional white noise or the free
boson Fock field over Rd.

Example (2) The oscillator algebra is the ∗–Lie algebra with set of
generators {a+, a, a+a, 1} and relations deduced from (57). The associated
current algebra over Rd with Lebesgue measure admits a Fock representation
which can be called the Hudson–Parthasarathy algebra over Rd.

Example (3) The square–oscillator algebra is the ∗–Lie algebra with set
of generators {a+2, a2, a+a, 1} and relations deduced from (57). The associated
current algebra over Rd with Lebesgue measure admits a Fock representation
which is the renormalized square of white noise algebra over Rd.

The square oscillator algebra is canonically isomorphic to (a central ex-
tension of) the ∗–Lie algebra sl(2,R). This is easily seen because sl(2,R) is
the ∗–Lie algebra with 3 generators B− , B+ , M and relations

(B−)∗ = B+ ; N∗ = N (58)

[B−, B+] = M (59)

[M,B±] = ±2B± (60)
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From this it follows that the algebra of the RSWN is isomorphic to The
Fock representation of a current algebra over a central extension of sl(2,R).

Example (4) The Schrödinger algebra is the ∗–Lie algebra with gener-
ators {a+, a a+2, a2, a+a, 1} and relations deduced from (57).

Example (5) The full oscillator algebra is the ∗–Lie algebra with set of
generators {a+hak : ∀h, k ∈ N} and relations deduced from (57).

Notice that all the ∗–Lie algebras listed in the above examples admit a
Fock representation. In section (21) we will see that this is not true for the
associated current algebra over Rd with Lebesgue measure (for any d > 0).

19 Connections with classical independent increment
processes

In this section we look for some necessary conditions for the solution of the
problem stated in the previous section. This will naturally lead to an interest-
ing connection with the theory of classical independent increment processes
which was first noticed in Araki’s thesis [Arak60]. We refer to the monographs
of K.R. Parthasarathy and K. Schmidt [PaSch72] and of Guichardet [Gui72]
for a systematic exposition. In the notations of section (18) we consider:

– a pair {G, (lεα)} of a ∗–Lie algebra and a set of generators which admits
a Fock representation.

– a measure space (S, µ)
– a ∗–sub–algebra C ⊆ L∞C (S,B, µ)
such that the current algebra

{lεα(f) : ε ∈ {+,−, 0} , α ∈ I or α ∈ I0 , f ∈ C}

admits a Fock representation on some Hilbert space H with cyclic vector Φ.
We identify the elements of this current algebra with their images in this rep-
resentation and we omit from the notation the symbol π of the representation.
Moreover we add the following assumptions:

(i) among the generators (lεα) there is exactly one (self–adjoint) central
element, denoted l00.

(ii) for any f ∈ C one has:

l00(f) =
∫
S

fdµ (61)

where the scalar on the right hand side is identified to the corresponding
multiple of the identity operator on H. In particular the representation is
weakly irreducible.

Under these conditions it is not difficult to see that the general principle
that algebra implies statistics can be applied and that the vacuum mixed
moments of the operators lεα(f) are uniquely determined by the structure
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constants of the Lie algebra. Another important property is that, by fixing a
measurable subset I ⊆ S such that

µ(I) = 1 (62)

and denoting χI the corresponding characteristic function, the ∗–Lie algebra
generated by the operators lεα(χI) is isomorphic to G and therefore it has the
same vacuum statistics.

Finally the commutation relations (55) imply that the maps f 7→ lεα(f)
define an independent increment process of boson type, i.e. the restriction
of the vacuum state on the polynomial algebra generated by two families
(lεα(f))ε,α and (lεα(g))ε,α with f and g having disjoint supports, coincides
with the tensor product of the restrictions on the single algebras.

In particular, if X(I) is any self–adjoint linear combination of operators of
the form lεα(χI), then the map I ⊆ S 7→ X(I) defines an additive independent
increment process on (S,B, µ). Thus the law of every random variable of the
form X(I) will be an infinitely divisible law on R whenever the set I can be
written as a countable union of subsets of nonzero µ–measure.

If S = Rd and µ is the Lebesgue measure, then any such process X(I)
(I ⊆ Rd) will also be translation invariant.

Combining together all the above remarks one obtains a necessary condi-
tion for the existence of the Fock representation of the current algebra of a
∗–Lie algebra G and a set of generators namely: the pair {G, (lεα)} must admit
a Fock representation and the vacuum distribution of any self–adjoint linear
combination X of generators must be infinitely divisible.

Since there is no reason to expect that any pair {G, (lεα)} will have this
property, this gives a probabilistic intuition of the reason why it might happen
that a ∗–Lie algebra and a set of generators {G, (lεα)} might admit a Fock
representation without this being true for the associated current algebra.

In the following section we review some progresses made in the past few
years in one important special case: the full oscillator algebra.

20 Current algebras over the full oscillator algebra

We have seen how the developments reviewed in the previous sections natu-
rally lead to the following problem: can we extend to the renormalized higher
powers of quantum white noise what has been achieved for the second powers?
To answer this question we start with the Heisenberg algebra

[a, a+] = 1 (63)

Its universally enveloping algebra is generated by the products of monomials
of the form

an , a+m
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and their commutation relations are deduced from (63) and the derivation
property of the commutator. The problem we want to study is the following:
does there exist a current representation of this algebra over Rd for
some d > 0?

In order to define the current algebra of the full oscillator algebra, we have
first to overcome the renormalization problem, illustrated in section (14)
in the case of the second powers of white noise. In fact, dealing with higher
powers of white noise we meet higher powers of the δ–function. A natural way
out is to write

δn = δ2(δn−2) ; n ≥ 2 ; δ0 := 1

and to apply iteratively the renormalization prescription used in section (14).
This leads to the following:
Definition The boson Fock white noise , renormalized with the prescription:

δ(t)l = c l−1 δ(t) , c > 0 , l = 2, 3, .... (64)

simply called RBFWN in the following, over a Hilbert space H with vacuum
(unit) vector Φ is the locally finite ∗–Lie algebra canonically associated to
the associative unital ∗–algebra of operator–valued distributions on H with
generators

b+nt bkt , k, n ∈ N , t ∈ Rd

and relations deduced from:

[bt, b+s ] = δ(t− s)

[b+t , b
+
s ] = [bt, bs] = 0

(bs)∗ = b+s

bt Φ = 0

Here locally finite means that the commutator of any pair of generators is a
finite linear combination of generators.
Lemma The ∗–Lie algebra, associated to the RBFWN (renormalized boson
Fock white noise), is the Lie algebra with generators

b+kt bnt =: bkn(t)

central element b0t b
+0
t =: 1 and relations

(b+ks bnt )
+ = (b+nt )bks

[bnt , b
+
s
k] = εn,0εk,0

∑
l≥1

(
n
l

)
k(l) c l−1 b+s

k−l
bn−lt δ(t− s)

where:
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k = 0, 1, 2, ...

εn,k := 1− δn,k

k(l) = k(k − 1)(k − 2) · · · (k − l + 1)

and, if l > k, by definition
k(l) = 0(
n
l

)
= 0

In our case we fix the test function space to be the algebra of finite step
functions. In terms of test functions we have the identifications:

Bnk (f) =
∫

Rd

f(t) b+t
n
bkt dt

(Bnk (f))∗ = Bkn(f̄)

21 No–go theorems

The first no–go theorem, showing that it is not true that, if a Lie algebra
admits a Fock representation, then any associated current algebra also admits
one was proved by Sniady [Śnia99]. In the terminology introduced in the
present paper Sniady’s result can be rephrased as follows:

Theorem 10. The Schrödinger algebra admits a Fock representation but its
associated current algebra over R with Lebesgue measure doesn’t.

Since the Schrödinger algebra is contained in the full oscillator algebra,
which clearly admits a Fock representation, Sniady’s theorem also rules out
the possibility of a Fock representation for the current algebra of the full
oscillator algebra over R with Lebesgue measure.

Recalling, from the examples at the end of section (18), that the Schrö-
dinger algebra is the smallest ∗–Lie algebra containing the oscillator algebra
(with generators {a+, a, a+a, 1}) and the square–oscillator algebra, i.e. sl(2,R)
(with generators {a+2, a2, a+a, 1}), we see that the difficulty comes from the
combination of two closed Lie algebras. More precisely: consider the two sets
of generators

{a+, a, a+a, 1}

{a+2, a2, a+a, 1}

We know that the current algebra over Rd associated to each of them has a
Fock representation. However the union of the two sets, i.e.

{a+, a, a+2, a2, a+a, 1}
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is also a set of generators of a ∗–Lie algebra whose associated current algebra
over Rd does not admit a Fock representation.

Notice that the first of the two algebras is generated by the first powers
of the white noise and the number operator while the second one is gener-
ated by the second powers of the white noise and the number operator. An
extrapolation of this argument suggested the hope that a similar thing could
happen also for the higher powers, i.e. that, denoting G3 the ∗–Lie algebra
generated by the cube of the white noise b3t and the number operator; and,
for n ≥ 4, Gn the ∗–Lie algebra generated by the number operator and the
smallest power of the white noise not included in

⋃
1≤k≤n−1 Gk, the current

algebra of Gn over Rd admits a Fock representation.
This hope was ruled out by the following generalization of Sniady’s the-

orem, due to Accardi, Boukas and Franz [AcBouFr05] and by its corollary
reported below.

Theorem 11. Let L be a Lie ∗–algebra with the following properties:

(i) L contains Bn0 , and B2n
0 where by definition:

Bnk :=
∫
I

b+t
n
bkt dt ; I ⊆ Rd (65)

(ii) the BNK satisfy the commutation relations of the higher powers of white
noise.

Then, in the notation (65), L has not a Fock representation if the interval I
is such that

µ(I) ≤ 1
c

(66)

where c is the renormalization constant.

Corollary 12. The current algebra over Rd of the ∗–Lie algebra G3, generated
by the cube of the quantum white noise b3t and the number operator, does not
admit a Fock representation if, in the notation (65), the interval I is such that

µ(I) ≤ 1
c

(67)

where c is the renormalization constant.

Idea of the proof. One proves that, if a Lie algebra contains b3t and b+3
t ,

then it contains b6t hence b+6
t . The thesis then follows from Theorem (11).

Theorem 13. Let L be a Lie ∗–subalgebra of the RPWN Lie algebra which
contains Bn0 for some n ≥ 3. Then L does not admit a Fock space represen-
tation if, in the notation (65), the interval I is such that

µ(I) ≤ 1
c

(68)

where c is the renormalization constant.
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Another hope was that maybe the root of the difficulty is in the insis-
tence on the Fock representation and that maybe the analogue of the finite
temperature (equilibrium) representations might exist.

The problem here is that, at the moment there is no general structure
theory of free dynamics and of the associated KMS (Kubo–Martin–Schwinger)
states on current subalgebras of the full oscillator algebra.

In the case of the square of white noise a classification of free dynamics
was obtained and a first class of examples of KMS states was built in the
paper [AcAmFr02] and A more general class of KMS functionals was built
in the paper [AcPeRo05] but a proof of the positivity of these functionals
was missing. The proof of the positivity of these functionals was obtained for
an interesting and physically meaningful class of functionals by Prohorenko
[Prohor05]

The following theorem, also proved in [AcBouFr05], concerns the non com-
patibility between first and second order white noise dropping the Fock as-
sumption and replacing it by the use of the natural commutation relations
between first and second order noise.

Theorem 14. Let A be a ∗–algebra of operator valued distributions on Rd
whose test function space includes the characteristic functions of intervals in
Rd defined as follows:

(a, b) =

{
{x = (xj) : aj < xj < bj ; j = 1, . . . , d} , if aj < bj , ∀ j
φ, if aj > bj for some j

(69)

and let

b2k, b
+2
k , bh, b

+
h (70)

be elements of A. There exists no state 〈·〉 on A with the following properties:

〈bkb+h 〉 = µ(k) δ(k − h) (71)

〈bk′bkb+h′b
+
h 〉 = 2µ(k)µ(k′) δ(k′ − h′) δ(k − h) (72)

〈b2kb+h′b
+
h 〉 = 2µ(k)2 δ(k − h′) δ(k − h) (73)

〈b2kb+2
h 〉 = σ(k) δ(k − h) (74)

where σ ∈ L1
loc(Rd) and µ ∈ L1

loc∩L
2
loc(R)are such that there exist an interval

I ⊆ Rd and constants MI , εI > 0 such that

+∞ > MI > σ(k) , µ(k) ; µ(k) ≥ εI > 0 ; ∀ k ∈ I (75)

A third possible loophole is to consider commutation relations not of Bo-
son type. The simplest choice is provided by the q–deformed commutation
relations:
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a a+ − q a+ a = 1 (76)

Bozeiko, Kümmerer and Speicher [BoKüSp96b] proved that this algebra and
the associated current algebra over Rd, admits a Fock representation if q ∈
(−1, 1) and Bozeiko, and Speicher [BozSpe96a] proved that this algebra and
the associated current algebra over Rd, does not admits a Fock representation
if |q| > 1.

Theorem 15. ([AcBou05a]) Let q ∈ (−1, 1), q 6= 0 and for a fixed interval
I ⊂ R and n, k ≥ 0 let Lq denote the ∗–Lie algebra generated by the operators

Bnk := Bnk (χI)

defined as in (65) but for the q–deformed white noise. Then Lq does not admit
a Fock representation if, the interval I is such that

µ(I) ≤ 1
c

(77)

where c is the renormalization constant.

Remark. It is interesting to notice that the lower bound 1/c seems to be
universal, i.e. independent of the type of noise considered.

22 Connection with an old open problem in classical
probability

Since the vacuum distribution of the first order classical white noise is a
Gaussian, any reasonable renormalization should lead to the conclusion that
the n–th power of the first order classical white noise is still the n–th power of
a Gaussian. But the δ–correlation implies that the corresponding integrated
process will be a stationary additive independent increment process on R.

These heuristic ideas, which can be put in a satisfactory mathematical
form with some additional work, lead to the conjecture that a necessary con-
dition for the existence of the n–th power of white noise, renormalized as in
[AcBouFr05], is that the n–th power of a classical Gaussian random variable
is infinitely divisible.

The n–th powers of the standard Gaussian random variable γ and their
distributions have been widely studied. It is known that, ∀k ≥ 1 γ2k is in-
finitely divisible, but it is not known if, ∀k ≥ 1 γ2k+1 is infinitely divisible
(and the experts conjecture that, at least for γ3, the answer is negative).

23 Renormalized powers of white noise and the
Virasoro–Zamolodchikov algebra

In the present section we will use the notations of section (20) and the results
of the papers [AcBou06a], [AcBou06b], [AcBou06c] which contain the proofs
of all the results discussed here.
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The formal extension of the white noise commutation relations to the as-
sociative ∗–algebra generated by bt, b†s, 1, called from now on the renormalized
higher powers of (Boson) white noise (RHPWN) algebra, leads to the identi-
ties:

[b†t
n
bkt , b

†
s

N
bKs ] = εk,0εN,0

∑
L≥1

(
k

L

)
N (L) b†t

n
b†s
N−L

bk−Lt bKs δ
L(t− s) (78)

− εK,0εn,0
∑
L≥1

(
K

L

)
n(L) b†s

N
b†t
n−L

bK−Ls bkt δ
L(t− s)

In section (20) we have given a meaning to these formal commutation
relations, i.e. to the ill defined powers of the δ–function, through the renor-
malization prescription (64).

In the present note we will use a different renormalization rule, intro-
duced in [AcBou06a] and whose motivations are discussed in [AcBou06b],
[AcBou06c], namely:

δl(t− s) = δ(s) δ(t− s), l = 2, 3, 4, . . . (79)

where the right hand side is defined as a convolution of distributions. Using
this (78) can be rewritten in the form:

[b†t
n
bkt , b

†
s

N
bKs ] =

εk,0εN,0

(
kN b†t

n
b†s
N−1

bk−1
t bKs δ(t− s)

+
∑
L≥2

(
k

L

)
N (L) b†t

n
b†s
N−L

bk−Lt bKs δ(s) δ(t− s)

)

− εK,0εn,0

(
K nb†s

N
b†t
n−1

bK−1
s bkt δ(t− s)

+
∑
L≥2

(
K

L

)
n(L) b†s

N
b†t
n−L

bK−Ls bkt δ(s) δ(t− s)

)
(80)

Introducing test functions and the associated smeared fields

Bnk (f) :=
∫

R
f(t) b†t

n
bkt dt

the commutation relations (79) become:

[Bnk (ḡ), BNK (f)] = (εk,0εN,0 kN − εK,0εn,0K n) BN+n−1
K+k−1 (ḡf) (81)

+
∑(K∧n)∨(k∧N)
L=2 θL(n, k;N,K) ḡ(0) f(0) b†0

N+n−l
bK+k−l
0
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θL(N,K;n, k) := εK,0 εn,0

(
K

L

)
n(L) − εk,0 εN,0

(
k

L

)
N (L) (82)

The commutation relations (81) still contain the ill defined symbols
b±0

N+n−l
. However, if the test function space is chosen so that

f(0) = g(0) = 0 (83)

then the singular term in (81) vanishes and the commutation relations (81)
become:

[Bnk (ḡ), BNK (f)]R := (kN −K n) Bn+N−1
k+K−1 (ḡf) (84)

which no longer include ill defined objects. In the following, the symbol [ · , · ]R
denotes these renormalized commutation relations.

A direct calculation shows that the commutation relations (84) define, on
the family of symbols Bnk (f), a structure of ∗–Lie algebra with involution

Bnk (f)∗ := Bkn(f)

The commutation relations (84) imply that, fixing a sub–set I ⊆ Rd, not
containing 0, and the test function

χI(s) =

{
1 , s ∈ I
0 , s /∈ I

(85)

the (self–adjoint) family

{Bnk := Bnk (χI) : n, k ∈ N , n, k ≥ 1 , n+ k ≥ 3} (86)

satisfies the commutation relations

[Bnk , B
N
K ]R := (kN −K n) Bn+N−1

k+K−1 (87)

The comments to condition (62) then suggest the natural interpretation of the
∗–Lie–algebra, defined by the relations (86), (87), as the 1–mode algebra of the
RHPWN and, conversely, the interpretation of the RHPWN ∗–Lie–algebra as
a current algebra of its 1–mode version.

Now recall the following definition (see, for example, [Ketov95], [Pope91]):

Definition 16. The w∞−∗–Lie–algebra is the infinite dimensional Lie alge-
bra spanned by the generators B̂nk , where n,N ∈ N, n,N ≥ 2 and k,K ∈ Z,
with commutation relations:

[B̂nk , B̂
N
K ]w∞ = (k (N − 1) − K (n− 1)) B̂n+N−2

k+K (88)

and involution (
B̂nk

)∗
= B̂n−k (89)
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Remark 17. The w∞ − ∗–Lie–algebra, whose elements are interpreted as area
preserving diffeomorphisms of 2–manifolds, contains as a sub–Lie–algebra (not
as ∗–sub–Lie–algebra) the (centerless) Virasoro (or Witt) algebra with com-
mutations relations

[B̂2
k(ḡ), B̂

2
K(f)]V := (k −K) B̂2

k+k(ḡf)

Both w∞ and a quantum deformation of it, denoted W∞, have been studied
extensively in connection to two-dimensional Conformal Field Theory and
Quantum Gravity.

The striking similarity between the commutation relations (88) and (87)
suggests that the two algebras are deeply related. The following theorem shows
that the current algebra, over R, of the w∞ − ∗–Lie–algebra can be realized
in terms of the renormalized powers of white noise.

Theorem 18. Let S0 be the test function space of complex valued (right-
continuous) step functions on R assuming a finite number of values and van-
ishing at zero, and let the powers of the δ–function be renormalized by the
prescription

δl(t− s) = δ(s) δ(t− s), l = 2, 3, ... (90)

Then the white noise operators

B̂nk (f) :=
∫

R
f(t) e

k
2 (bt−b†t )

(
bt + b†t

2

)n−1

e
k
2 (bt−b†t ) dt ; n ∈ N , n ≥ 2 , k ∈ Z

(91)
satisfy the relations (88) and (89) of the w∞–Lie algebra.

Remark 19. The integral on the right hand side of (91) is meant in the sense
that one expands the exponential series, applies the commutation relations
(78) to bring the resulting expression to normal order, introduces the renor-
malization prescription (90) and integrates the resulting expressions after mul-
tiplication by a test function. The proof shows in particular that the result is
an element of the RHPWN ∗–Lie–algebra.
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