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Summary. We investigate the class of unital C∗-algebras that admit a unital em-
bedding into every unital C∗-algebra of real rank zero, that has no finite-dimensional
quotients. We refer to a C∗-algebra in this class as an initial object. We show that
there are many initial objects, including for example some unital, simple, infinite-
dimensional AF-algebras, the Jiang-Su algebra, and the GICAR-algebra.

That the GICAR-algebra is an initial object follows from an analysis of Hausdorff
moment sequences. It is shown that a dense set of Hausdorff moment sequences
belong to a given dense subgroup of the real numbers, and hence that the Hausdorff
moment problem can be solved (in a non-trivial way) when the moments are required
to belong to an arbitrary simple dimension group (i.e., unperforated simple ordered
group with the Riesz decomposition property).

1 Introduction

The following three questions concerning an arbitrary unital C∗-algebra A,
that is “large” in the sense that it has no finite-dimensional representation,
are open.

Question 1. Does A contain a simple, unital, infinite-dimensional sub-C∗-al-
gebra?

Question 2 (The Global Glimm Halving Problem). Does A contain a full3 sub-
C∗-algebra isomorphic to C0((0, 1],M2)?

Question 3. Is there a unital embedding of the Jiang-Su algebra Z into A?

3 A subset of a C∗-algebra is called full if it is not contained in any proper closed
two-sided ideal of the C∗-algebra.
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The Jiang-Su algebra (see [7]) is a simple, unital, infinite-dimensional C∗-al-
gebra, which is KK-equivalent to the complex numbers (and hence at least
from a K-theoretical point of view could be an initial object as suggested
in Question 3). An affirmative answer to Question 3 clearly would yield an
affirmative answer to Question 1. A version of a lemma of Glimm (see [9,
Proposition 4.10]) confirms Question 2 in the special case that A is simple
(and not isomorphic to C); so Question 2 is weaker than Question 1.

Question 2 was raised in [10, Section 4] because a positive answer will
imply that every weakly purely infinite C∗-algebra is automatically purely
infinite.

The Jiang-Su algebra plays a role in the classification program for amen-
able C∗-algebras (a role that may well become more important in the future).
An affirmative answer to Question 3 will, besides also answering the two other
questions, shed more light on the Jiang-Su algebra. It would for example follow
that the Jiang-Su algebra is the (necessarily unique) unital, simple, separable
infinite-dimensional C∗-algebra with the property stipulated in Question 3 and
with the property (established in [7]) that every unital endomorphism can be
approximated in the pointwise-norm topology by inner automorphisms.

We provide in this paper an affirmative answer to the three questions
above in the special case in which the target C∗-algebra A is required to be
of real rank zero (in addition to being unital and with no finite-dimensional
representations).

Zhang proved in [14] that in any unital simple non-elementary C∗-alge-
bra of real rank zero and for any natural number n one can find pairwise
orthogonal projections p0, p1, . . . , pn that sum up to 1 and satisfy p0 - p1 ∼
p2 ∼ · · · ∼ pn. In other words, one can divide the unit into n+1 pieces where n
of the pieces are of the same size, and the last piece is smaller. This result was
improved in [11] where it was shown that for every natural number n one can
unitally embed Mn⊕Mn+1 into any unital C∗-algebra of real rank zero, that
has no non-zero representation of dimension < n. Thus, in the terminology of
the abstract, Mn⊕Mn+1 is an initial object for every n. We shall here extend
this result and show that also the infinite tensor product P =

⊗∞
n=1M2⊕M3

is an initial object.
We shall give an algorithm which to an arbitrary unital AF-algebra, that

has no finite-dimensional representations, assigns a unital simple infinite-
dimensional AF-algebra that embeds unitally into A. This leads to the ex-
istence of a unital infinite-dimensional simple AF-algebra that unitally em-
beds into P , and hence is an initial object. The Jiang-Su algebra was known
by Jiang and Su to embed unitally into any unital simple non-elementary
AF-algebra, and so is also an initial object.

In Section 4 we shall show that the Gauge Invariant CAR-algebra is an
initial object. Along the way to this result we shall prove a perturbation result
that may be of independent interest: the set of Hausdorff moment sequences,
with the property that all terms belong to an arbitrary fixed dense subset of
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the real numbers, is a dense subset of the Choquet simplex of all Hausdorff
moment sequences.

We shall show in Section 5 that a simple, unital, infinite-dimensional C∗-
algebra of real rank zero must have infinite-dimensional trace simplex if it
is an initial object. This leads to the open question if one can characterise
initial objects among (simple) unital infinite-dimensional C∗-algebras of real
rank zero (or among simple AF-algebras).

We hope that our results will find applications in the future study of real
rank zero C∗-algebras; and we hope to have cast some light on the three
fundamental questions raised above.

2 Initial objects in unital real rank zero C∗-algebras

Definition 4. A unital C∗-algebra A will be said in this paper to be an initial
object if it embeds unitally into any unital C∗-algebra of real rank zero which
has no non-zero finite-dimensional representations. (Note that we do not re-
quire A to belong to the class of algebras with these properties.) (Also we do
not require the embedding to be unique in any way.)

It is clear that the algebra of complex numbers C is an initial object, even in
the category of all unital C∗-algebras—and that it is the unique initial object
in this larger category. It will be shown in Proposition 6 below that the infinite
C∗-algebra tensor product P =

⊗∞
n=1M2⊕M3 is also an initial object in the

sense of the present paper. Note that this C∗-algebra in fact belongs to the
category we are considering, i.e., unital C∗-algebras of real rank zero with no
non-zero finite-dimensional quotients. It follows that a C∗-algebra is an initial
object in our sense if and only if it is (isomorphic to) a unital sub-C∗-algebra
of P . We shall use this fact to exhibit a perhaps surprisingly large number of
initial objects, including many simple AF-algebras, the Jiang-Su algebra, and
the GICAR-algebra (the gauge invariant subalgebra of the CAR-algebra).

Let us begin by recalling the following standard fact.

Lemma 5. Let A be a unital C∗-algebra and let F be a unital finite-dim-
ensional sub-C∗-algebra of A. Let g1, . . . , gn denote the minimal (non-zero)
central projections in F and let e1, . . . , en be minimal (non-zero) projections
in Fg1, . . . , Fgn, respectively.

The map consisting of multiplying by the sum e1 + · · ·+ en is an isomor-
phism from the relative commutant A∩F ′ of F in A onto the sub-C∗-algebra
e1Ae1 ⊕ e2Ae2 ⊕ · · · ⊕ enAen of A. Moreover, if B is another unital C∗-alge-
bra and ρj : B → ejAej are unital ∗-homomorphisms, then there is a unique
unital ∗-homomorphism ρ : B → A ∩ F ′ such that ρ(b)ej = ejρ(b) = ρj(b) for
all b ∈ B and all j = 1, . . . , n.

Proposition 6. The C∗-algebra P =
⊗∞

n=1M2 ⊕M3 is an initial object (in
the sense of Definition 4).
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Proof. Let A be a unital C∗-algebra of real rank zero with no non-zero finite-
dimensional representations. We must find a unital embedding of P into A.

Set
⊗n

j=1M2⊕M3 = Pn, so that Pn+1 = Pn⊗(M2⊕M3). Let us construct
for each n a unital embedding ϕn : Pn → A in such a way that ϕn+1(x⊗ 1) =
ϕn(x) for each x ∈ Pn. This will yield a unital embedding of P into A as
desired. In order to be able construct these maps inductively we must require
in addition that they be full.4

For each full projection e in A there is a full unital embedding
ψ : M2⊕M3 → eAe. Indeed, eAe cannot have any non-zero finite-dimensional
representation since any such representation would extend to a finite-dimen-
sional representation of A (on a larger Hilbert space). Hence by [11, Proposi-
tion 5.3], there is a unital ∗-homomorphism from M5⊕M7 into eAe. Compos-
ing this with a full unital embedding M2⊕M3 →M5⊕M7 yields the desired
full embedding ψ.

The preceding argument shows that there is a full unital embedding
ϕ1 : P1 = M2 ⊕M3 → A. Suppose that n ≥ 1 and that maps ϕ1, ϕ2, . . . , ϕn

have been found with the desired properties.
Choose minimal projections f1, f2, . . . , f2n in Pn, one in each minimal non-

zero direct summand, and set ϕn(fj) = ej . Each ej is then a full projection
in A. Choose a full unital embedding ρj : M2 ⊕M3 → ejAej for each j, and
note that by Lemma 5 there exists a a unital ∗-homomorphism ρ : M2⊕M3 →
A ∩ ϕn(Pn)′ such that ρ(b)ej = ejρ(b) = ρj(b) for all b ∈M2 ⊕M3 and all j.
There is now a unique ∗-homomorphism ϕn+1 : Pn+1 = Pn⊗ (M2⊕M3) → A
with the property that ϕn+1(a⊗ b) = ϕn(a)ρ(b) for a ∈ Pn and b ∈M2⊕M3.
To show that ϕn+1 is full it suffices to check that ϕn+1(fj ⊗ b) is full in A
for all j and for all non-zero b in M2 ⊕ M3; this follows from the identity
ϕn+1(fn ⊗ b) = ϕn(fj)ρ(b) = ejρ(b) = ρj(b) and the fact that ρj is full. ut

Corollary 7. Let A be a unital C∗-algebra of real rank zero. The following
three conditions are equivalent.

1. A has no non-zero finite-dimensional representations.
2. There is a unital embedding of

⊗∞
n=1M2 ⊕M3 into A.

3. There is a unital embedding of each initial object5 into A.

Proof. (i)⇒ (iii) is true by Definition 4. (iii)⇒ (ii) follows from Proposition 6.
(ii) ⇒ (i) holds because any finite-dimensional representation of A would
restrict to a finite-dimensional representation of

⊗∞
n=1M2⊕M3, and no such

exists. ut

As remarked above, a C∗-algebra is an initial object if and only if it embeds
unitally into the C∗-algebra P =

⊗∞
n=1M2 ⊕M3. The ordered K0-group of

4 By a full ∗-homomorphism we mean a ∗-homomorphism that maps each non-zero
element to a full element in the codomain algebra. (A full element is one not
belonging to any proper closed two-sided ideal.)

5 The list of initial objects includes some simple unital infinite-dimensional AF-
algebras and the Jiang-Su algebra Z as shown in Section 2.
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P can be described as follows. Consider the Cantor set X =
∏∞

n=1{0, 1}.
Consider the maps ν0, ν1 : X → N0 ∪ {∞} that for each x ∈ X count the
number of 0s and 1s, respectively, among the coordinates of x, and note that
ν0(x)+ν1(x) = ∞ for every x ∈ X. For each supernatural number n denote by
Q(n) denote the set of rational numbers p/q with q dividing n, and consider
the subgroup G ⊆ C(X,R) consisting of those functions g for which g(x) ∈
Q(2ν0(x)3ν1(x)) for every x ∈ X. EquipG with the pointwise order, i.e., g ≥ 0 if
g(x) ≥ 0 for all x ∈ X. Then (K0(P ),K0(P )+, [1]) is isomorphic to (G,G+, 1).
Note in particular that G is a dense subgroup of C(X,R).

3 Simple initial objects

We shall show in this section that the class of initial objects, in the sense
of the previous section, includes several simple unital (infinite-dimensional)
AF-algebras.

Lemma 8. The following two conditions are equivalent for any dimension
group G.

1. For each order unit x in G there exists an order unit y in G such that
2y ≤ x.

2. For each finite set of order units x1, . . . , xk in G and for each set of natural
numbers n1, . . . , nk there is an order unit y in G such that njy ≤ xj for
j = 1, 2, . . . , k.

Proof. The implication (i) ⇒ (ii) follows from the well-known fact (which
is also easy to prove—using the Effros-Handelman-Shen theorem) that if
x1, x2, . . . , xk are order units in a dimension group G, then there is an or-
der unit y0 in G such that y0 ≤ xj for all j. The implication (ii) ⇒ (i) is
immediate. ut

A dimension group will be said to have the property (D) if it satisfies the two
equivalent conditions of Lemma 8.

Lemma 9. Let A be a unital AF-algebra. The ordered group K0(A) has the
property (D) if and only if A has no non-zero finite-dimensional representa-
tions.

Proof. Suppose that A has no non-zero finite-dimensional representation,
and let x be an order unit in K0(A). Then x = [e] for some full projec-
tion e in Mn(A) for some n. Since any finite-dimensional representation of
eMn(A)e would induce a finite-dimensional representation of A (on a different
Hilbert space), eMn(A)e has no non-zero finite-dimensional representation. By
[11, Proposition 5.3] there is a unital ∗-homomorphism from M2 ⊕M3 into
eMn(A)e. (Cf. proof of Proposition 6 above.) Let f = (f1, f2) be a projection
in M2⊕M3, with f1 and f2 one-dimensional, and denote by f̃ ∈ eMn(A)e the
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image of f under the unital ∗-homomorphism M2 ⊕M3 → eMn(A)e. Then f̃
is full in eMn(A)e (because f is full in M2 ⊕M3), and 2[f̃ ] ≤ [e], as desired.

Suppose conversely that K0(A) has the property (D). Condition 2.1 (ii)
with k = 1 implies immediately that every non-zero representation of A is
infinite-dimensional. ut

We present below a more direct alternative proof (purely in terms of ordered
group theory) of the first implication of the lemma above. Consider a decom-
position ofK0(A) as the ordered group inductive limit of a sequence of ordered
groups G1 → G2 → · · · with each Gi isomorphic to a finite ordered group
direct sum of copies of Z, and let x be an order unit in K0(A). Modifying the
inductive limit decomposition of K0(A), we may suppose that x is the image
of an order unit x1 in G1, and that the image xn of x1 in Gn is an order unit
for Gn for each n ≥ 2. Let us show that for some n the condition 2.1 (i) holds
for xn in Gn—or else, if not, then G has a non-zero quotient ordered group
isomorphic to Z. If not, then for every n there exists at least one coordinate
of xn in Gn equal to one, and the inductive limit of the sequence consisting,
at the nth stage, of the largest quotient of the ordered group Gn in which
every coordinate of xn is equal to one is a non-zero quotient of G every prime
quotient of which is Z. As soon as Condition 2.1 (i) holds for xn in Gn, then
it holds for x in G. In other words, if G has no non-zero quotient isomorphic
to Z, then it has the property (D).

Proposition 10. Let (G,G+) be a dimension group with the property (D).
Denote by G++ the set of all order units in G, and suppose that G++ 6= Ø.
Then (G,G++ ∪ {0}) is a simple dimension group.

Proof. Observe first that G++ + G+ = G++. With this fact (and with
the assumption that G++ is non-empty) it is straightforward to check that
(G,G++ ∪ {0}) is an ordered abelian group. We proceed to show that it is
a dimension group. This ordered group is unperforated as (G,G+) is, and so
we need only show that it has the Riesz decomposition property. Equip G
with the two orderings ≤ and - given by x ≤ y if y − x ∈ G+ and x - y if
y−x ∈ G++ ∪{0}. Suppose that x - y1 + y2 where x, y1, y2 ∈ G++ ∪{0}. We
must find x1, x2 ∈ G++ ∪ {0} such that x = x1 + x2 and xj - yj , j = 1, 2. It
is trivial to find x1 and x2 in the cases that one of x, y1, y2, and y1 + y2 − x
is zero. Suppose that the four elements above are non-zero, in which case by
hypothesis they all are order units. By hypothesis (and by Lemma 8) there is
z ∈ G++ such that

2z ≤ x, z ≤ y1, z ≤ y2, 2z ≤ y1 + y2 − x.

Then x−2z ≤ (y1−2z)+(y2−2z). Since (G,G+) has the Riesz decomposition
property there are v1, v2 ∈ G+ such that

x− 2z = v1 + v2, v1 ≤ y1 − 2z, v2 ≤ y2 − 2z.
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Set v1 + z = x1 and v2 + z = x2. Then x1, x2 belong to G++, x = x1 + x2,
x1 - y1, and x2 - y2; the latter two inequalities hold because

yj − xj = yj − vj − z = (yj − vj − 2z) + z ∈ G+ +G++ = G++.

ut

Proposition 11. Let A be a unital AF-algebra A with no non-zero finite-
dimensional representation. There exists a unital sub-C∗-algebra B of A which
is a simple, infinite-dimensional AF-algebra, and for which the inclusion map-
ping B → A gives rise to

1. an isomorphism of simplices T (A) → T (B), and
2. an isomorphism of groups K0(B) → K0(A) which maps K0(B)+ onto
K0(A)++ ∪ {0}, and so in particular,

(K0(B),K0(B)+, [1]) ∼= (K0(A),K0(A)++ ∪ {0}, [1]).

If A is an initial object, then so also is B.

Proof. We derive from Lemma 9 that K0(A) has property (D), and we
then conclude from Proposition 10 that K0(A) equipped with the posi-
tive cone G+ := K0(A)++ ∪ {0} is a simple dimension group. Let B1 be
the simple, unital, infinite-dimensional AF-algebra with dimension group
(K0(A), G+, [1A]), and use the homomorphism theorem for AF-algebras ([12,
Proposition 1.3.4 (iii)]), to find a unital (necessarily injective) ∗-homomor-
phism ϕ : B1 → A which induces the (canonical) homomorphism K0(B1) →
K0(A) that maps K0(B1)+ onto G+ and [1B1 ] onto [1A]. Set ϕ(B1) = B.
Then B is a unital sub-C∗-algebra of A, B is isomorphic to B1, and (ii) holds.

The property (i) follows from (ii) and the fact, that we shall prove, that
the state spaces of (K0(A),K0(A)+, [1A]) and (K0(A), G+, [1A]) coincide. The
former space is contained in the latter because G+ is contained in K0(A)+.
To show the reverse inclusion take a state f on (K0(A), G+, [1A]) and take
g ∈ K0(A)+. We must show that f(g) ≥ 0. Use Lemmas 8 and 9 to find for
each natural number n an element vn in K0(A)++ such that nvn ≤ [1A]. Then
nf(vn) ≤ 1, so f(vn) ≤ 1/n; and g+vn belongs to K0(A)++, so f(g+vn) ≥ 0.
These two inequalities, that hold for all n, imply that f(g) ≥ 0. ut

Corollary 12.

1. There is a simple unital infinite-dimensional AF-algebra which is an initial
object.

2. The Jiang-Su algebra Z is an initial object.

Proof. The assertion (i) follows immediately from Propositions 6 and 11.
The assertion (ii) follows from (i) and the fact, proved in [7], that the

Jiang-Su algebra Z embeds in (actually is tensorially absorbed by) any unital
simple infinite-dimensional AF-algebra. ut



8 George A. Elliott and Mikael Rørdam

The corollary above provides an affirmative answer to Question 3 (and hence
also to Questions 1 and 2) of the introduction in the case that the target
C∗-algebra A is assumed to be of real rank zero.

The question of initial objects may perhaps be pertinent in the classifi-
cation program, where properties such as approximate divisibility and being
able to absorb the Jiang-Su algebra Z are of interest. We remind the reader
that a C∗-algebra A is approximately divisible if for each natural number n
there is a sequence ϕk : Mn ⊕ Mn+1 → M(A) of unital ∗-homomorphisms
(where M(A) denotes the multiplier algebra of A) such that [ϕk(x), a] → 0
for all a ∈ A and all x ∈ Mn ⊕Mn+1. (It turns out that if A is unital, then
we need only find such a sequence of ∗-homomorphisms for n = 2.) It is easily
seen that a separable C∗-algebra A is approximately divisible if, and only if,
there is a unital ∗-homomorphism∏

n∈N
(Mn ⊕Mn+1)/

∑
n∈N

(Mn ⊕Mn+1) →M(A)ω ∩A′, (1)

and it follows from [12, Theorem 7.2.2] and [7] that A is Z-absorbing if and
only if there is a unital embedding of Z into M(A)ω ∩ A′; here, ω is any
free ultrafilter on N, and M(A) is identified with a sub-C∗-algebra of the
ultrapower M(A)ω (the C∗-algebra of bounded sequences in M(A), modulo
the ideal of bounded sequences convergent to 0 along ω).

Toms and Winter recently observed ([13]) that any separable approxi-
mately divisible C∗-algebra is Z-absorbing, because one can embed Z unitally
into the C∗-algebra on the left-hand side of (1). (The latter fact follows from
our Corollary 12, but it can also be proved directly, as was done in [13].) In
the general case, when A need not be approximately divisible, it is of interest
to decide when A is Z-absorbing, or, equivalently, when one can find a unital
embedding of Z into M(A)ω ∩ A′. Here it would be extremely useful if one
knew that Z was an initial object in the category of all unital C∗-algebras
with no non-zero finite-dimensional representations.

The proof of Corollary 12 yields an explicit—at the level of the invariant—
simple unital AF-algebra which is an initial object. Indeed, consider the initial
object P =

⊗∞
n=1M2 ⊕M3, the K0-group of which is the dense subset G of

C(X,R) described above (after Corollary 7), with the relative order, where
C(X,R) is equipped with the standard pointwise ordering. The simple di-
mension group (G,G++ ∪{0}) of Proposition 10 is obtained by again viewing
G as a subgroup of C(X,R) but this time endowing C(X,R) with the strict
pointwise ordering (in which an element f ∈ C(X,R) is positive if f = 0 or if
f(x) > 0 for all x ∈ X). Any other simple dimension group which maps onto
this may also be used.

It would of course be nice to have an even more explicit (or natural)
example of a simple unital infinite-dimensional AF-algebra which is an initial
object in the sense of this paper.

The trace simplex of the simple unital AF-algebra referred to above is
the simplex of probability measures on the Cantor set. We shall show in
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Section 5 that the trace simplex of an initial object, that has sufficiently
many projections, must be infinite-dimensional. Let us now note that a large
class of infinite-dimensional Choquet simplices arise as the trace simplex of
an initial object.

Proposition 13. Let X be a metrizable compact Hausdorff space which ad-
mits an embedding of the Cantor set.6 There exists a simple unital AF-algebra
A which is an initial object, such that T (A) is affinely homeomorphic to the
simplex M1(X) of (Borel) probability measures on X.

Proof. By hypothesis X has a closed subset X0 which is (homeomorphic to)
the Cantor set. The dimension group of the known initial object

⊗∞
n=1M2 ⊕

M3 is isomorphic in a natural way to a dense subgroup G of C(X0,R)
(equipped with the standard pointwise ordering), with canonical order unit
corresponding to the constant function 1X0 , cf. the remark after Corollary 7.
We shall construct below a countable dense subgroup H of C(X,R) such that
the constant function 1X belongs to H, and such that the restriction f |X0

belongs to G for every f ∈ H. Equip H with the strict pointwise ordering
on C(X,R) and with the order unit 1X . Then we have an ordered group ho-
momorphism ϕ : H → G given by ϕ(f) = f |X0 , which maps 1X into 1X0 . It
follows that we may take A to be the unital, simple AF-algebra with invariant
(H,H+, 1X), as by the homomorphism theorem for AF-algebras (cf. above)
ϕ induces a unital embedding of A into

⊗∞
n=1M2 ⊕M3, whence A is an ini-

tial object, and the trace simplex of A is homeomorphic to the state space of
(H,H+, 1X), which is M1(X).

Let us now pass to the construction of H. Each g ∈ G extends to
g̃ ∈ C(X,R) (we do not make any assumption concerning the mapping g 7→ g̃).
Choose a countable dense subgroup H0 of C0(X \X0,R) ⊆ C(X,R), and con-
sider the countable subgroup of C(X,R) generated by H0 and the countable
set {g̃ : g ∈ G}. Denote this group, with the relative (strict pointwise) or-
der, by H; let us check that this choice of H fulfils the requirements. First,
f |X0 ∈ G for every f ∈ H. To see that H is dense in C(X,R), let there be
given f ∈ C(X,R) and ε > 0. Choose g ∈ G such that ‖f |X0−g‖∞ < ε/2. Ex-
tend f |X0 − g to a function f0 ∈ C(X,R) with ‖f0‖∞ = ‖f |X0 − g‖∞ < ε/2.
Note that f − g̃ − f0 belongs to C0(X \X0,R). Choose h0 ∈ H0 such that
‖f − g̃ − f0 − h0‖∞ < ε/2, and consider the function h = g̃ + h0 ∈ H. We
have ‖f − h‖∞ ≤ ‖f − g̃ − f0 − h0‖∞ + ‖f0‖∞ < ε, as desired. ut

4 Hausdorff moments, the GICAR-algebra, and Pascal’s
triangle

In this section we shall establish the following result.
6 An equivalent formulation of this (rather weak) property is that X has a non-

empty closed subset with no isolated points.
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Theorem 14. The GICAR-algebra is an initial object (in the sense of Defi-
nition 4).

We review some of the background material. Consider the Bratteli diagram
given by Pascal’s triangle,

r1
��

� 66
6

r1
��

� 66
6 r1

��
� 66

6

r1
��

� 66
6 r2

��
� 66

6 r1
��

� 66
6

r1 r3
...

r3
...

r1
...

and denote by

C = B0 → B1 → B2 → · · · → lim−→Bn ( = B)

the inductive system of finite-dimensional C∗-algebras associated with that
Bratteli diagram. The C∗-algebra B is the GICAR-algebra. (It can also, more
naturally, be realized as the fixed point algebra of the CAR-algebra under a
certain action of the circle referred to as the gauge invariant action, cf. [3].)

For each n ≥ 0 and 0 ≤ k ≤ n, choose a minimal projection e(n, k) in the
kth minimal direct summand of Bn. Note that e(0, 0) = 1B and that e(n, k)
is Murray-von Neumann equivalent to e(n+ 1, k) + e(n+ 1, k+ 1) in Bn+1. A
trace τ on Bn is determined by its values on the projections e(n, k), 0 ≤ k ≤ n.

The group K0(B) is generated, as an ordered abelian group, by the ele-
ments [e(n, k)], with n ≥ 0 and 0 ≤ k ≤ n; that is, these elements span K0(B)
as an abelian group, and the semigroup spanned by the elements [e(n, k)] is
equal to K0(B)+. Our generators satisfy the relations

[e(n, k)] = [e(n+ 1, k)] + [e(n+ 1, k + 1)], n ≥ 0, 0 ≤ k ≤ n. (2)

Moreover, (K0(B),K0(B)+) is the universal ordered abelian group generated,
as an ordered abelian group, by elements g(n, k), n ≥ 0 and 0 ≤ k ≤ n, with
the relations g(n, k) = g(n+ 1, k) + g(n+ 1, k + 1).

For brevity we shall set (K0(B),K0(B)+, [1B ]0) = (H,H+, v).
For each abelian (additively written) group G and for each sequence

t : N0 → G associate the discrete derivative t′ : N0 → G given by t′(k) =
t(k)− t(k + 1). Denote the nth derivative of t by t(n), and apply the conven-
tion t(0) = t.

We remind the reader of the following classical result. The equivalence
of (i) and (iv) is the solution to the Hausdorff Moment problem (see e.g. [1,
Proposition 6.11]). The equivalence of (i), (ii), and (iii) follows from Proposi-
tion 16 below (with (G,G+, u) = (R,R+, 1)).
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Proposition 15 (Hausdorff Moments). The following four conditions are
equivalent for any sequence t : N0 → R.

(i) t(k)(n) ≥ 0 for all n, k ≥ 0.
(ii)There is a system, {t(n, k)}0≤k≤n, of positive real numbers (necessarily

unique) such that

t(n+ 1, k) + t(n+ 1, k + 1) = t(n, k), t(n, n) = t(n),

for n ≥ 0 and 0 ≤ k ≤ n.
(iii)There is a (unique) tracial state τ on the GICAR-algebra such that t(n) =

τ(e(n, n)) for all n ≥ 0.
(iv)There is a Borel probability measure µ on the interval [0, 1] such that

t(n) =
∫ 1

0

λn dµ(λ),

for all n ≥ 0.

It follows from Proposition 16 below and from (iv) that the coefficients t(n, k)
from (ii) are given by

t(n, k) = t(n−k)(k) =
∫ 1

0

λk(1− λ)n−k dµ(λ). (3)

A sequence t = (t(0), t(1), . . . ) satisfying the condition in Proposition 15 (iv)
(or, equivalently, the three other conditions of Proposition 15) is called a
Hausdorff moment sequence. Note that t(0) = 1 in every Hausdorff moment
sequence. Let us denote the set of all moment sequences by M. Note that M
is a compact convex set and in fact a Choquet simplex. For each n ∈ N0 let
us set

Mn =
{(
t(0), t(1), t(2), . . . , t(n)

)
:
(
t(0), t(1), t(2), . . .

)
∈M

}
⊆ Rn+1,

and denote by πn the canonical surjective affine mapping Mn+1 →Mn.
Let us say that a moment sequence t = (t(0), t(1), t(2), . . . ) is trivial if

the corresponding measure in Proposition 15 (iv) is supported in {0, 1}, and
say that t is non-trivial otherwise. A sequence t is trivial if and only if it is a
convex combination of the two trivial sequences (1, 1, 1, . . . ) and (1, 0, 0, . . . ).
It follows from this and (iv) above that t is non-trivial if and only if t(2) < t(1).
One can use Equation (3) to see that t is non-trivial if and only if t(n, k) 6= 0
for all n and k.

We seek unital embeddings from the GICAR algebra B into unital AF-
algebras (and into unital C∗-algebras of real rank zero). At the level of the
invariant we are thus seeking positive unit preserving group homomorphisms
from the dimension group with distinguished unit (H,H+, v) associated to
the GICAR algebra into the ordered K0-group with distinguished unit of the
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target algebra; call this invariant (G,G+, u). The proposition below rephrases
this problem as that of the existence of a function g : N0 → G with certain
properties.

Proposition 16. Let (H,H+, v) be as above, and let (G,G+, u) be an ordered
abelian group with a distinguished order unit u. Let g : N0 → G be given, and
assume that g(0) = v. The following conditions are equivalent.

1. g(k)(n) ∈ G+ for all n, k ≥ 0.
2. There is a system, {g(n, k)}0≤k≤n, of elements in G+ (necessarily unique)

such that

g(n+ 1, k) + g(n+ 1, k + 1) = g(n, k), g(n, n) = g(n),

for all n ≥ 0 and 0 ≤ k ≤ n.
3. There is a (unique) homomorphism of ordered groups ϕ : H → G with
ϕ(v) = u such that ϕ([e(n, n)]) = g(n) for all n ≥ 0.

If the three conditions above are satisfied, then

ϕ([e(n, k)]) = g(n, k) = g(n−k)(k)

for all n ≥ 0 and 0 ≤ k ≤ n; and the homomorphism ϕ is faithful if and only
if g(n, k) is non-zero for all n ≥ 0 and 0 ≤ k ≤ n.

Proof. (i) ⇒ (ii). Set g(n, k) = g(n−k)(k) ∈ G+. Then g(n, n) = g(0)(n) =
g(n), and

g(n, k)− g(n+ 1, k + 1) = g(n−k)(k)− g(n−k)(k + 1) = g(n−k+1)(k)
= g(n+ 1, k).

(ii) ⇒ (iii). We noted after Theorem 14 that H = K0(B) is generated, as
an ordered abelian group, by the elements [e(n, k)], n ≥ 0 and 0 ≤ k ≤ n,
and that H is the universal ordered abelian group generated by these ele-
ments subject to the relations (2). Accordingly, by (ii), there exists a (unique)
positive group homomorphism ϕ : H → G with ϕ([e(n, k)]) = g(n, k). Also,
ϕ(v) = ϕ([e(0, 0)]) = g(0, 0) = g(0) = u.

To complete the proof we must show that ϕ is uniquely determined by
its value on the elements [e(n, n)], n ≥ 0. But this follows from the fact that
the elements [e(n, k)], with n ≥ 0 and 0 ≤ k ≤ n, belong to the subgroup
generated by the elements [e(n, n)], for n ≥ 0, by the relations (2).

(iii) ⇒ (i). This implication follows from the identity ϕ([e(n + k, n)]) =
g(k)(n), that we shall proceed to prove by induction on k. The case k = 0 is
explicitly contained in (iii). Assume that the identity has been shown to hold
for some k ≥ 0. Then, by (2),

g(k+1)(n) = g(k)(n)− g(k)(n+ 1) = ϕ
(
[e(n+ k, n)]− [e(n+ k + 1, n+ 1)]

)
= ϕ([e(n+ k + 1, n)]).
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To prove the two last claims of the proposition, assume that g satisfies
the three equivalent conditions, and consider the homomorphism of ordered
groups ϕ : H → G asserted to exist in (iii). It follows from the proofs of (i)
⇒ (ii) and (ii) ⇒ (iii) that ϕ([e(n, k)]) = g(n, k) = g(n−k)(k). Any non-zero
positive element h of H is a finite (non-empty) sum of elements of the form
[e(n, k)]. Thus ϕ(h) is a finite (non-empty) sum of elements of the form g(n, k).
This shows that ϕ(h) is non-zero for all non-zero positive elements h in H if
and only if g(n, k) is non-zero for all n and k. ut

Let us now return to the convex set M of Hausdorff moment sequences in R+

and to the truncated finite-dimensional convex sets Mn.

Lemma 17. dim(Mn) = n.

Proof. The convex setMn is a subset of {1}×Rn, and has therefore dimension
at most n. On the other hand, the points (1, λ, λ2, . . . , λn) belong to Mn for
each λ ∈ (0, 1), and these points span an n-dimensional convex set. ut

Let M◦
n denote the relative interior7 of Mn. By standard theory for finite-

dimensional convex sets, see e.g. [4, Theorem 3.4], dim(M◦
n) = dim(Mn) = n.

Note that

M1 = {(1, λ) : λ ∈ [0, 1]}, M◦
1 = {(1, λ) : λ ∈ (0, 1)}.

For n ≥ 2 we can use Lemma 17 to conclude that M◦
n = {1} × Un for some

open convex subset Un of Rn.

Lemma 18. πn(M◦
n+1) = M◦

n.

Proof. This follows from the standard fact from the theory for finite-dimensional
convex sets (see e.g. [4, §3 and Exercise 3.3]) that the relative interior of the
image of πn is the image under πn of the relative interior of Mn+1 (combined
with the fact that πn is surjective). ut

Theorem 19. Let G be a dense subset of the reals that contains 1. Then there
is a non-trivial moment sequence (t0, t1, t2, . . . ) such that tn belongs to G for
every n ∈ N0. Furthermore, the moment sequences with all terms belonging
to G constitute a dense8 subset of M. If G also is a group, and has infinite
rank over Q, then there exists a moment sequence in G the terms of which
are independent over Q.

Proof. Let (s0, s1, s2, . . . ) be a moment sequence, let m be a natural number,
and let ε1, ε2, . . . , εm be strictly positive real numbers. Since (s0, s1, . . . , sm)
belongs to Mm, since M◦

m is dense in Mm (cf. [4, Theorem 3.4]) and is equal

7 The relative interior of a finite-dimensional convex set is its interior relatively to
the affine set it generates.

8 In the standard pointwise (or product) topology.
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to {1} × Um for some open subset Um of Rm, since 1 ∈ G, and since G is
dense in R, we can find (t0, t1, . . . , tm) in M◦

m such that tj belongs to G for
j = 0, 1, . . . ,m and |tj − sj | < εj for j = 1, . . . ,m.

Let us choose inductively tn, n > m, such that tn ∈ G and (t0, t1, . . . , tn) ∈
M◦

n. Supppose that n ≥ m and that t0, t1, . . . , tn have been found. The set

{s ∈ R : (t0, t1, . . . , tn, s) ∈M◦
n+1}

is non-empty (by Lemma 18) and open (because M◦
n+1 = {1} × Un+1 for

some open subset Un+1 of Rn+1). Hence there exists tn+1 ∈ G such that
(t0, t1, . . . , tn+1) ∈M◦

n+1.
The resulting sequence (t0, t1, t2, . . . ) in G is a moment sequence by con-

struction and is close to the given moment sequence (s0, s1, s2, . . . ).
The inequality t2 < t1 holds because (t0, t1, t2) belongs to the open set

M◦
2 = {1} × U2. (Indeed, note that t1 ≤ t2 whenever (t0, t1, t2) belongs to

M2 and, hence, that the element (1, t1, t1) of M2 belongs to the boundary.)
Concerning the desired independence of the terms of the moment sequence

when G is a group, of infinite rank, it will suffice to choose each tn in the set

G \ spanQ{t0, t1, . . . , tn−1}.

This is possible because this set is dense in R by the assumption on G. ut

Corollary 20. Let G be a dense subgroup of R with 1 ∈ G. There is a faithful
homomorphism of ordered groups from the dimension group H associated with
the Pascal triangle to G (with the order inherited from R) that maps the
canonical order unit of H to 1. Furthermore, the set of such maps into G
is dense in the set of such maps just into R, in the topology of pointwise
convergence on H. If G is of infinite rank there exists such a map which is
injective.

Proof. Propositions 15 and 16 give a one-to-one correspondence between mo-
ment sequences t : N0 → G and homomorphisms ϕ : H → G of ordered abelian
groups that map the canonical order unit v ∈ H into 1 ∈ G, such that
ϕ([e(n, k)]) = t(n, k) for all n ≥ 0 and 0 ≤ k ≤ n. If t is non-trivial, then
t(n, k) is non-zero for all n, k, whence ϕ(g) > 0 for every non-zero positive
element g in H (because each such element g is a sum of elements of the form
[e(n, k)]).

A pointwise converging net of moment sequences corresponds to a point-
wise converging net of homomorphisms H → G.

The first two claims now follow from Theorem 19.
A homomorphism ϕ : H → G is injective if the restriction of ϕ to the sub-

group spanned by {[e(n, k)] : k = 0, 1, . . . , n} is injective for every n. The latter
holds, for a specific n, if and only if t(n, 0), t(n, 1), . . . , t(n, n) are independent
over Q, or, equivalently, if and only if t(0), t(1), . . . , t(n) are independent over
Q. (Use the relation in Proposition 15 (ii) to see the second equivalence.)



Perturbation of Hausdorff moment sequences 15

This shows that a moment sequence t : N0 → G, where t(0), t(1), . . . are in-
dependent over Q, gives rise to an injective homomorphism ϕ : H → G. The
existence of such a moment sequence t, under the assumption that G has in-
finite rank, follows from Theorem 19. ut

Lemma 21. With X the Cantor set, let f1, . . . , fn : X → R be continuous
functions, and let U ⊆ Rn+1 be an open subset such that

{s ∈ R : (f1(x), f2(x), . . . , fn(x), s) ∈ U}

is non-empty for every x ∈ X. It follows that there exists a continuous function
fn+1 : X → R such that

(f1(x), f2(x), . . . , fn(x), fn+1(x)) ∈ U

for all x ∈ X.

Proof. For each s ∈ R consider the set Vs of those x ∈ X for which
(f1(x), f2(x), . . . , fn(x), s) belongs to U . Then (Vs)s∈R is an open cover of
X, and so by compactness, X has a finite subcover Vs1 , Vs2 , . . . , Vsk

. Be-
cause X is totally disconnected there are clopen subsets Wj ⊆ Vsj such that
W1,W2, . . . ,Wk partition X. The function fn+1 =

∑k
j=1 sj1Wj is as desired.

ut

Proposition 22. With X the Cantor set, let G be a norm-dense subset of
C(X, [0, 1]) that contains the constant function 1. There exists a sequence
(g0, g1, g2, . . . ) in G such that (g0(x), g1(x), g2(x), . . . ) is a non-trivial moment
sequence for every x ∈ X.

Proof. Choose g0, g1, . . . in G inductively such that (g0(x), g1(x), . . . , gn(x))
belongs to M◦

n for every x ∈ X. Begin by choosing g0 to be the constant
function 1 (as it must be). Suppose that n ≥ 0 and that g0, g1, . . . , gn as
above have been found. As observed earlier, M◦

n+1 = {1} × Un+1 for some
open subset Un+1 of Rn+1. The set

{s ∈ R : (g1(x), . . . , gn(x), s) ∈ Un+1}
= {s ∈ R : (g0(x), g1(x), . . . , gn(x), s) ∈M◦

n+1}

is non-empty for each x ∈ X (by Lemma 18), and so we can use Lemma 21
to find a continuous function f : X → R such that (g1(x), . . . , gn(x), f(x))
belongs to Un+1 for all x ∈ X. By compactness of X, continuity of the func-
tions g1, . . . , gn, f , and because Un+1 is open, there exists δ > 0 such that
(g1(x), . . . , gn(x), h(x)) belongs to Un+1 for all x ∈ X whenever ‖f−h‖∞ < δ.
As G is dense in C(X,R) we can find gn+1 ∈ G with ‖f − gn+1‖∞ < δ, and
this function has the desired properties.

As in the proof of Proposition 15, since (g0(x), g1(x), g2(x)) belongs to
M◦

2, we get g2(x) < g1(x), which in turns implies that the moment sequence
(g0(x), g1(x), g2(x), . . . ) is non-trivial for every x ∈ X. ut
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Proposition 23. With X the Cantor set, let G be a norm-dense subgroup of
C(X,R) that contains the constant function 1. There exists a faithful homo-
morphism of ordered groups from the dimension group H associated with the
Pascal triangle to G (with the strict pointwise order) that takes the distin-
guished order unit v of H into the constant function 1.

Proof. Choose a sequence g0, g1, g2, . . . in G as specified in Proposition 22,
and consider the (unique) system {g(n, k)}0≤k≤n in G such that

g(n+ 1, k) + g(n+ 1, k + 1) = g(n, k), g(n, n) = gn

for n ≥ 0 and 0 ≤ k ≤ n. Use Proposition 15 and the non-triviality of the
moment sequence (g0(x), g1(x), g2(x), . . . ) to conclude that g(n, k)(x) > 0 for
all x ∈ X. Hence, by Proposition 16, there exists a homomorphism of ordered
groups ϕ : H → G such that ϕ([e(n, k)]) = g(n, k) for all n ≥ 0 and 0 ≤ k ≤ n.

Each function g(n, k) is strictly positive, and hence non-zero, so it follows
from Proposition 16 that ϕ is faithful. ut

Proof of Theorem 14. By Corollary 7 it suffices to find a unital embedding
of the GICAR-algebra B into the AF-algebra P =

⊗∞
n=1M2 ⊕ M3. The

orderedK0-group of P is (isomorphic to) a dense subgroupG of C(X,R) which
contains the constant function 1 (as shown immediately after Corollary 7). The
existence of a unital embedding of the GICAR-algebra into the AF-algebra P
now follows from Proposition 23. �

5 Properties of initial objects

We shall show in this last section that initial objects in the sense of this
paper, although abundant, form at the same time a rather special class of
C∗-algebras.

An element g in an abelian group G will be said to be infinitely divisible
if the set of natural numbers n for which the equation nh = g has a solution
h ∈ G is unbounded.

Proposition 24. If B is an initial object, then K0(B)+ contains no non-zero
infinitely divisible elements.

Proof. There exists a unital C∗-algebra A of real rank zero and with no
non-zero finite-dimensional representations, such that no non-zero element
in K0(A) is infinitely divisible, and such that any non-zero projection has a
non-zero class in K0(A). (For example, any irrational rotation C∗-algebra.) If
B is an initial object, then B embeds into A, and by choice of A the corre-
sponding ordered group homomorphism K0(B) → K0(A) takes any non-zero
positive element of K0(B) into a non-zero positive element of K0(A). Since
the image of an infinitely divisible element is again infinitely divisible, no non-
zero element of K0(B)+ can be infinitely divisible. ut
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Lemma 25. Let (G,G+, u) be an ordered abelian group with order unit. Let
p1, p2, . . . , pn be distinct primes and suppose that f1, . . . , fn are states on
(G,G+, u) such that fj(G) = Z[1/pj ] for j = 1, . . . , n. Then f1, . . . , fn are
affinely independent.

Proof. The assertion is proved by induction on n. It suffices to show that
for every natural number n, for every set of distinct primes p1, . . . , pn, q, and
for every set of states f1, . . . , fn, f on (G,G+, u), with fj(G) = Z[1/pj ] and
f(G) = Z[1/q] and with f1, . . . , fn affinely independent, f is not an affine
combination of f1, . . . , fn.

Suppose, to reach a contradiction, that f = α1f1 + · · · + αnfn, with
α1, . . . , αn real numbers with sum 1. If n = 1, then f = f1, which clearly
is impossible. Consider the case n ≥ 2. Since f1, . . . , fn are assumed to be
affinely independent, there are g1, . . . , gn−1 ∈ G such that the vectors

xj = (fj(g1), fj(g2), . . . , fj(gn−1)) ∈ Qn−1, j = 1, 2, . . . , n,

are affinely independent. The coefficients αj above therefore constitute the
unique solution to the equations

f1(gj)α1 + f2(gj)α2 + · · ·+ fn(gj)αn = f(gj), j = 1, 2, . . . , n− 1,
α1 + · · ·+ αn = 1.

As these n equations in the n unknowns α1, α2, . . . , αn are linearly indepen-
dent, and all the coefficients are rational, also α1, α2, . . . , αn must be rational.

Denote by Q′(q) the ring of all rational numbers with denominator (in
reduced form) not divisible by q. Observe that fj(g) ∈ Q′(q) for all j =
1, . . . , n and for all g ∈ G. There is a natural number k such that qkαj ∈ Q′(q)
for all j = 1, . . . , n. Then

qkf(g) = qkα1f1(g) + · · ·+ qkαnfn(g) ∈ Q′(q),

for all g ∈ G. But this is impossible as, by hypothesis, f(g) = 1/qk+1 for some
g ∈ G. ut

Proposition 26. Let B be an initial object (in the sense of Definition 4), and
suppose that no quotient of B has a minimal non-zero projection. Then the
trace simplex T (B) of B is necessarily infinite-dimensional.

It follows in particular that any simple unital C∗-algebra of real rank zero,
other than C, which is an initial object has infinite-dimensional trace simplex.
(Note for this that no matrix algebra Mn with n ≥ 2 is an initial object.)

Proof. Any initial object embeds by definition into a large class of C∗-alge-
bras that includes exact C∗-algebras (such as for example any UHF-algebra),
and is therefore itself exact, being a sub-C∗-algebra of an exact C∗-alge-
bra (see [8, Proposition 7.1]). It follows (from [2] and [5], or from [6]) that
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the canonical affine map from the trace simplex T (B) to the state space of
(K0(B),K0(B)+, [1]) is surjective. It is therefore sufficient to show that the
latter space is infinite-dimensional. For each prime p there is a unital embed-
ding of B into the UHF-algebra of type p∞, and hence a homomorphism of
ordered groups fp : K0(B) → Z[1/p] with fp([1]) = 1. Let us show that the ho-
momorphisms fp, when considered as states (i.e., homomorphisms of ordered
groups with order unit from (K0(A), [1]) to (R, 1)), are affinely independent.

For each prime number p, the image of fp is a subgroup of Z[1/p] which
contains 1, but the only such subgroups are Z[1/p] itself and the subgroups
p−kZ for some k ≥ 0. The latter cannot be the image of fp because the image
of B in our UHF-algebra, being isomorphic to a quotient of B, is assumed to
have no minimal non-zero projections. (Indeed, if {pn} is a strictly decreasing
sequence of projections in the sub-algebra of the UHF-algebra, and if τ is the
tracial state on the UHF-algebra, then {τ(pn−pn+1)} is a sequence of strictly
positive real numbers which converges to 0.)

Hence fp(K0(B)) = Z[1/p] for each prime p. It now follows from Lemma 25
that the states {fp : p prime} are affinely independent. This shows that the
state space of (K0(B),K0(B)+, [1]) is infinite-dimensional, as desired. ut

We end our paper by raising the following question:

Problem 27. Characterise initial objects (in the sense of Definition 4) among
(simple) unital AF-algebras.

We could of course extend the problem above to include all (simple) real rank
zero C∗-algebras, but we expect a nice(r) answer when we restrict our atten-
tion to AF-algebras. Propositions 24 and 26 give necessary, but not sufficient,
conditions for being an initial object. (A simple AF-algebra that satisfies the
conditions of Propositions 24 and 26 can contain a unital simple sub-AF-
algebra that does not satisfy the condition in Proposition 26, and hence is not
an initial object.)
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