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1 Introduction

Before this symposium I had been pondering over approximately inner flows
to see whether I could crack something with a new tool or two I might find
in my toolbox. My approach was rather classical as usual; so the problem
was to explore such flows in relation with invariant hereditary C∗-subalgebras,
extensions, tensor products, etc. To my disappointment I hardly got anything.
Assuming nobody else has tried recently, the present knowledge on these flows
does not seem to exceed much what is already presented in Bratteli-Robinson’s
book [2, 3] and Sakai’s book [15]; notable results there are concerned with
KMS states and representations in addition to a broad theory of unbounded
derivations and generators and a theory in AF algebras.

My favorite (and only pertinent) result I had at that time was an existence
result of approximately inner flows [8], which was obtained at the same time
as the existence result of single automorphisms was in [12]. After the sym-
posium I got a lifting theorem, which partly generalizes results by Pedersen,
Olesen, and Elliott for universally weakly inner flows, referred to by Olesen
at the conference (see [13, 4]). But to prove this lifting theorem, I have to
introduce a class of asymptotically inner flows in parallel with the case of
single automorphisms; the result would say such a flow can be lifted from a
quotient of a separable C∗-algebra.

Without giving the definition precisely, I would say that all the known
examples of approximately inner flows are actually asymptotically inner. In
the next section I will give a few comments on this new notion and report
on the existence result with some details. In section 3 I will then discuss the
lifting theorem for flows. I will also add a similar result for automorphisms
since I believe this has not been presented yet.

There was another type of flows I reported on in my talk, namely, the
Rohlin flows, which are far from the asymptotically inner flows but could be
more manageable by its strong property of cocycle vanishing (at least when
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the C∗-algebra is a Kirchberg algebra [5, 6]). I will not discuss it here (for
interested readers see [9, 10, 11]).

I conclude this introduction by giving some basics on flows [2, 15] and the
definition of asymptotically inner flows.

By a flow α on a C∗-algebra A we mean a homomorphism α : R→Aut(A)
such that t 7→ αt(x) is continuous for each x ∈ A, where Aut(A) is the
automorphism group of A. When α is a flow, we denote by δα the generator
of α, which is a closed derivation in A, i.e., δα is a closed linear map defined
on a dense ∗-subalgebra D(δα) of A into A such that δα(x)∗ = δα(x∗) and

δα(xy) = δα(x)y + xδα(y), x, y ∈ D(δα).

Moreover δα is well-behaved, or ±δα is dissipative. (But a well-behaved closed
derivation need not be a generator.) Note that D(δα) is a Banach ∗-algebra
with the norm defined by embedding D(δα) into M2(A) by

x 7→
(
x δα(x)
0 x

)
.

Given h ∈ Asa, δα + ad ih is again a generator, where ad ih(x) = i(hx −
xh), x ∈ A. We denote by α(h) the flow generated by δα + ad ih. We call
α(h) an inner perturbation of α. More generally, if u is an α-cocycle, i.e.,
u : R→U(A) is continuous such that usαs(ut) = us+t, s, t ∈ R, then t 7→
Adutαt is a flow, called a cocycle perturbation of α. Note that an inner
perturbation is a cocycle perturbation; α(h) is obtained as Adu(h)α, where
u = u(h) is the (differentiable) α-cocycle defined by dut/dt = utαt(ih) and
u0 = 1. In general a cocycle perturbation of α is given as t 7→ Ad vα(h)

t Ad v∗ =
Ad(vu(h)αt(v∗))αt for some v ∈ U(A) and h ∈ Asa.

We will use the following result below (see [2, 15]).

Proposition 1. Let α be a flow on a C∗-algebra A and let (hn) be a sequence
in Asa. Then the following conditions are equivalent.

1. limn→∞ max|t|≤1 ‖αt(x)−Ad eithn(x)‖ = 0, x ∈ A.
2. δα = limn→∞ ad ihn in the graph sense, i.e., for any x ∈ D(δα) there is a

sequence (xn) in A such that limn→∞ ‖x−xn‖ = 0 and limn→∞ ‖δα(x)−
ad ihn(xn)‖ = 0.

The flow α as in the above proposition is called an approximately inner
flow. Let us define asymptotically inner flows in the same way as we do asymp-
totically inner automorphisms for approximately inner automorphisms.

Definition 2. A flow α on a C∗-algebra A is said to be asymptotically inner
if there is a continuous function h of R+ into Asa such that

lim
s→∞

max
|t|≤1

‖αt(x)−Ad eith(s)(x)‖ = 0

for any x ∈ A. In this case we say that Ad eith(s) converges to αt as s→∞ or
αt is the limit of Ad eith(s) as s→∞.
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It is obvious that asymptotical innerness implies approximate innerness.
We know, for single automorphisms, that the class of asymptotically inner au-
tomorphisms is smaller than the class of approximately inner automorphisms
in general (see [5, 6]).

The following is an easy corollary of what is shown in [4, 13] and gives a
class of asymptotically inner flows.

Proposition 3. Let A be a separable C∗-algebra and let α be a flow on A. If
α is universally weakly inner (i.e., there is a weak∗-continuous unitary flow u
in A∗∗ such that αt(x) = Adut(x), x ∈ A), then it is asymptotically inner.

If A is unital and simple, then a universally weakly inner flow is just
uniformly continuous and hence is inner.

2 Asymptotically inner flows

With the two similar properties for flows at hand, I suppose we must say
something about them. What I have to confess is that I do not know whether
or not the notion of asymptotical innerness is strictly stronger than the one of
approximate innerness. But a naive expectation would fail. For example, if α is
a flow on A and (hn) is a sequence in Asa such that αt is the limit of Ad eithn ,
we may expect, defining h : R+→Asa by h(s) = (n−s)hn−1+(s−n+1)hn, s ∈
[n − 1, n], that αt is the limit of Ad eith(s) as s→∞, which is not the case in
general as shown by the following simple example.

Example 4. Let A be a unital simple AF algebra and let (An) be an increasing
sequence of finite-dimensional C∗-subalgebras of A such that

⋃
nAn is dense

in A. Let h, a ∈ (A1)sa be such that [h, a] 6= 0. Let xn, yn ∈ (A∩A′n)sa be such
that ‖yn‖ = 1 and ‖[xn, yn]‖→∞ (and so ‖xn‖→∞). Let εn = ‖[xn, yn]‖−1

and define
h2n−1 = eiεnhynxne

−iεnhyn ≈ xn + iεnh[yn, xn]

(with an error of order εn) and h2n = −xn.
Then Ad eithn converges to the trivial flow id since eiεnhyn converges to 1

and Ad eitxn converges to id. Let

kn =
1
2
(h2n−1 + h2n) ≈ 1

2
iεnh[yn, xn].

It then follows that (kn) is a bounded sequence and that (ad ikn) does not
converge since ad ikn(a) ≈ i[h, a]εn[yn, xn]. This implies that Ad eitkn does
not converge.

We often encounter the situation given in the following proposition:
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Proposition 5. Let α be a flow on a C∗-algebra A. Suppose that there is a
sequence (hn) in Asa and a ∗-subalgebra D of A such that D ⊂ D(δα), D is
a core for δα, and

δα(x) = lim
n→∞

ad ihn(x), x ∈ D.

Then α is asymptotically inner.

Proof. In this situation we define a continuous function h : R+→Asa by

h(s) = (n− s)hn−1 + (s− n+ 1)hn, s ∈ [n− 1, n]

with h0 = 0. Then it follows that δα(x) = lims→∞ ad ih(s)(x), x ∈ D and
that δα is the graph limit of ad ih(s) as s→∞. From this the conclusion follows.

The core condition for D above may not be possible to prove. Another
situation we may encounter is as follow:

Proposition 6. Let α be a flow on a C∗-algebra A. Suppose that there is a
sequence (hn) in Asa and a dense ∗-subalgebra D of A such that δα is the
graph limit of (ad ihn), hn ∈ D ⊂ D(δα),

δα(x) = lim
n→∞

ad ihn(x), x ∈ D,

and (‖δα(hn)‖) is bounded. Then α is asymptotically inner.

Proof. We define a continuous function h : R+→Asa by linearly interpolating
n 7→ hn as in the previous proof. Then it follows that for any increasing
sequence (sn) in R+ such that sn→∞, the sequence (h(sn)) satisfies the same
conditions as (hn) does, except that δα is the graph limit of (ad ih(sn)).

Suppose that (sn) includes N as a subsequence. Let δ be the graph limit
of (ad ih(sn)). Then δ is a restriction of δα such that D(δ) ⊃ D. It follows
from 3.1 of [1] that δ is a generator, i.e., δ = δα. Thus we can conclude that
α is asymptotically inner.

A flow α is an asymptotically inner perturbation of a flow β if there is a
continuous function h : R+→Asa such that Adβ(h(s))

t converges to αt, i.e.,

lim
s→∞

max
|t|≤1

‖αt(x)− β
(h(s))
t (x)‖ = 0

for any x ∈ A.
With this definition, an asymptotically inner flow is an asymptotically

inner perturbation of the trivial flow id. Then there arises a natural problem:
If α is an asymptotically inner flow, is the trivial flow id an asymptotically
inner perturbation of α? Although this looks quite plausible, I am embarrassed
to say that I do not know the answer. But again a naive expectation would
fail: If αt is the limit of Ad eith(s) as s→∞, α(−h(s)) need not converge to id
as s→∞ as shown as follows:
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Example 7. Let A be a unital simple AF algebra and let α be a flow on A
such that there is an increasing sequence (An) of unital finite-dimensional
C∗-subalgebras of A such that A =

⋃
nAn and

⋃
nAn ⊂ D(δα). Suppose

that
⋃

nAn is a core for δα and δα is unbounded. Then there is a continuous
function h : R+→Asa such that δα is the graph limit of ad ih(s) as s→∞ but
δα − ad ih(s) does not converge to zero in the graph sense as s→∞.

In the above situation there is a kn ∈ Asa such that δα|An = ad ikn|An.
Then since

⋃
nAn is a core for δα, we get that ad ikn converges to δα as n→∞

in the graph sense. Moreover, since δα − ad ikn converges to zero on each
element of

⋃
nAn, we get that δα−ad ikn converges to zero in the graph sense.

By passing to a subsequence of (An) and by giving a small inner perturbation
to δα, we may suppose that δα(An) ⊂ An+1.

Assume that A1 is not commutative and fix a, x ∈ (A1)sa such that ‖a‖ = 1
and [a, x] 6= 0. We find a sequence (bn) in Asa and a sequence (`n) in N such
that bn ∈ An ∩ A′`n

, ‖bn‖ = 1, ‖δα(bn)‖→∞, n ≥ `n, and `n→∞. We set
un = eiεnabn , where εn = max{1, ‖δα(bn)‖}−1. We define hn = unkn+1u

∗
n.

Since un→1 and

Ad eithn(y) = unAd eitkn+1(u∗nyun)u∗n,

Ad eithn converges to αt as n→∞ or ad ihn converges to δα in the graph sense.
We can interpolate (hn), i.e., we have a continuous function h : R+→Asa

such that h(n) = hn (and perhaps taking on kn+1 after and before n) and
ad ih(s) converges to δα in the graph sense.

We assert that δα−ad ih(s) does not converge to zero (in the graph sense).
For this purpose it suffices to show that δα−ad ihn does not converge to zero.

Suppose that δα− ad ihn converge to zero, which implies that Adu∗n(δα−
ad ihn)Adun = δα + adu∗nδα(un)− ad ikn+1 also converge to zero.

Since ‖δα(un)− iεnaδα(bn)‖→0, we get that

δα − ad ikn+1 + ad iεnaδα(bn)→0.

For the x ∈ A1 we have chosen before, we get a sequence (xn) in D(δα) such
that ‖x− xn‖→0 and

δα(xn)− ad ikn+1(xn) + iεn[a, xn]δα(bn)→0,

where we have used that δα(bn) ∈ An+1 ∩ A′`n−1. We will show that this is
absurd.

Let β denote the flow generated by δα − ad ikn+1. Then βt|An+1 = id.
Note that [a, x] ∈ A1 and δα(bn) ∈ An+1 ∩ A′`n−1 as asserted above. Since A
is simple, we get that ‖[a, x]δα(bn)‖ = ‖[a, x]‖ · ‖δα(bn)‖ 6= 0 for all large n.
Let φn be a state of An+1 such that |φn(εn[a, x]δα(bn))| = ‖[a, x]‖ for such n.
Let φn be an extension of φn to a state of A and let ψn be an average of φnβt

over t ∈ R. Then, since ψn ◦ (δα − ad ikn+1) = 0 and ψn|An+1 = φn, we get
that
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|ψn(δα(xn)− ad ikn+1(xn) + ad iεn[a, xn]δα(bn))|
→ lim

n→∞
|ψn(iεn[a, x]δα(bn))| = ‖[a, x]‖,

which is a contradiction.

We note the following result.

Proposition 8. Suppose that the C∗-algebra is unital. The following state-
ments hold.

1. A cocycle perturbation of an asymptotically inner flow is asymptotically
inner.

2. A asymptotically inner perturbation of an asymptotically inner flow is
asymptotically inner.

Proof. Let α be an asymptotically inner flow on A and let h : R+→Asa be
such that αt is the limit of Ad eith(s) as s→∞.

If b ∈ Asa, let ut denote the α-cocyle such that dut/dt|t=0 = ib and let
u

(s)
t denote the Ad eith(s)-cocycle such that du(s)

t /dt|t=0 = ib. Then, by the
explicit series expansions of ut and u(s)

t , we have that

lim
s→∞

max
|t|≤1

‖ut − u
(s)
t ‖ = 0.

Thus it follows that α(b)
t = Adutαt is obtained as the limit of Ad eit(h(s)+b) =

Adu(s)
t Ad eith(s).

If z ∈ A is a unitary, there is a unitary w ∈ D(δα) such that ‖z −w‖ < 2.
We express zw∗ = eih for some h ∈ Asa and find a continuous function
k : R+→D(δα) ∩ Asa such that k(0) = 0 and lims→∞ ‖k(s)− h‖ = 0 (where
we assume that s 7→ δα(k(s)) is continuous as well as s 7→ k(s)). Namely,
by taking s 7→ eik(s)w, we find a continuous function v : R+→D(δα) ∩ U(A)
such that lims→∞ ‖z − v(s)‖ = 0. Define a continuous function h→Asa by
h(s) = −iv(s)δα(v(s)∗). Then α

(h(s))
t converges to Ad zαtAd z∗ (although

‖h(s)‖→∞ if z 6∈ D(δα)). This completes the proof of (1) (by using (2) below)
since any α-cocycle is given as zutαt(z∗) with ut differentiable.

Furthermore if k : R+→Asa is continuous and a flow β is obtained as the
limit of α(k(s)) with α as above, one can easily see that for any x ∈ A, the
continuous function [−1, 1] 3 t 7→ βt(x) can be approximated by [−1, 1] 3
t 7→ α

(k(s))
t (x) for large s ∈ R+ and then approximated by [−1, 1] 3 t 7→

Ad eit(h(σ)+k(s))(x) (from the first part of the proof of (1)), where σ should
be large depending on s. In this way we find a continuous function σ : s→R+

such that eit(k(σ(s))+h(s)) converges to βt. This completes the proof of (2).

We note the following easy implication; we could not prove the converse.

Proposition 9. Let A be a separable C∗-algebra and I an ideal of A. Let α be
an asymptotically inner flow on A. Then it follows that α leaves I invariant,
the restriction α|I is asymptotically inner, and so is the quotient α̇|A/I.
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Proof. Let h : R+→Asa be a continuous function such that αt is the limit
of Ad eith(s) as s→∞. If Q denotes the quotient map from A onto A/I, then
Ad eitQ(h(s)) converges to α̇t on A/I. Hence α̇ is asymptotically inner.

For x ∈ D(δα) ∩ I = D(δα|I), let x(s) = (1 + ad ih(s))−1(1 + δα)(x). It
then follows that x(s) ∈ I, ‖x(s) − x‖→0, and ‖ad ih(s)(x(s)) − δα(x)‖→0,
i.e., the graph limit of ad ih(s)|I is δα|D(δα)∩ I, which is equivalent to saying
that max|t|≤1 ‖Ad eith(s)(x)−αt(x)‖→0 as s→∞ for x ∈ I. We will replace h
by a function h′ of R+ into Isa such that ‖adh(s)(x(s))−ad ih′(s)(x(s))‖→0.

For each n ∈ N let M(n) = max{‖h(s)‖ |0 ≤ s ≤ n}, which we may
suppose is positive.

Since D(δα)∩ I is a separable Banach ∗-algebra, let (Fn) be an increasing
sequence of finite subsets of D(δα)∩ I such that F∗

n = Fn and
⋃

n Fn is dense
in D(δα) ∩ I. Note that then

⋃
n Fn is dense in I too.

Let en ∈ I be such that 0 ≤ en ≤ 1, ‖(1 − en)x(s)‖ < (nM(n))−1, and
‖(1−en)h(s)x(s)‖ < n−1 for all x ∈ Fn and s ∈ [0, n]. We define a continuous
function e : R+→Isa by

e(s) = (n− s)en + (s− n+ 1)en+1, s ∈ [n− 1, n],

where n = 1, 2, . . .. Then if s ∈ [n− 1, n], we get that

‖(1− e(s))(x(s))‖ < 1
nM(n)

and
‖(1− e(s))h(s)x(s)‖ < 1

n

for all x ∈ Fn and s ∈ [0, n]. Let h′(s) = e(s)h(s)e(s) ∈ I. Then,
h′ is a continuous function of R+ into Isa. By computation, we get that
‖ad ih′(s)(x(s)) − ad ih(s)(x(s))‖ < 4/n for x ∈ Fn and s ∈ [0, n] because
‖[h′(s), x(s)]− [h(s), x(s)]‖ is dominated by

‖h(s)‖‖(e(s)− 1)x(s)‖+ ‖x(s)(e(s)− 1)‖‖h(s)‖
+‖(e(s)− 1)h(s)x(s))‖+ ‖x(s)h(s)(e(s)− 1)‖.

Thus the graph limit of ad ih′(s) as s→∞ is δα|D(δα)∩ I. This concludes the
proof.

For a flow α we define the Connes spectrum R(α) as a closed subgroup
of R (see [14] for details). In the following result we actually show that the
flow α has the following property: For any non-empty open set O ⊂ R the
spectral subspace Aα(O) has a central sequence (xn) such that ‖xn‖ = 1 and
limn→∞ ‖xny‖ = ‖y‖, y ∈ A, which insures that R(α) = R.

Theorem 10. Let A be a separable C∗-algebra. Then there is an asymptoti-
cally inner flow α on A such that the Connes spectrum R(α) of α is full if
and only if A is antiliminary.
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Proof. This is only a slight modification of Theorem 1.3 of [8].
Suppose that there is such a flow α on A. Let I be the largest ideal of

A such that I is of type I and suppose that I 6= 0. Then, since α leaves an
ideal of I invariant, it follows that α|I is universally weakly inner and that
R(α|I) = {0}. Thus we get that R(α) = {0} (since R(α) ⊂ R(α|I)), which
is a contradiction. Hence I must be zero, i.e., A must be antiliminary.

Suppose that A is antiliminary. There are a countable family {πi} of irre-
ducible representations of A such that

⋂
i kerπi = {0} and πi(A)∩K(Hπi) =

{0}, where K(Hπ) denotes the compact operators on the Hilbert space Hπi .
In the proof of 1.3 of [8] we worked with just one of such representations,

say π, and constructed a bounded central sequence (hn) in Asa such that the
flow α is defined as the limit of Ad eitHn and is covariant in π with the induced
flow on π(A) having the desired properties, where Hn = h1 + h2 + · · · + hn.
(More precisely we also construct a bounded central sequence (bn) such that
various subsequences of (bn) would produce a sequence (xn) as stated before
this theorem).

What we have to do now is to work with the direct sum π1⊕π2⊕· · ·⊕πn at
the n’th step of induction. The main tools we used in the proof are a version
of Haagerup’s result (Lemma 4.2 of [12]) and Kadison’s transitivity, which are
both available for finite direct sums of irreducible representations of the above
type. Thus we can complete the proof in much the same way as in [8].

The flow α obtained this way is as a matter of fact asymptotically inner
by Proposition 6; (hn) satisfies that if h : R+→Asa is defined by h(s) =
Hn−1 + (s − n + 1)hn, s ∈ [n − 1, n] with H0 = 0 for n = 1, 2, . . ., then
Ad eitH(s) converges to αt.

Given an antiliminary C∗-algebra we get the existence of a non-trivial
asymptotically inner flow as above, but we do not know how many cocycle-
conjugacy classes of such flows there are.

3 Lifting

Theorem 11. Let A be a separable C∗-algebra and I a (closed) ideal of A.
Let B = A/I be the quotient of A by I with Q the canonical quotient map
of A onto B. If β is an asymptotically inner flow on B, then there is an
asymptotically inner flow α on A such that Qα = βQ and α|I is universally
weakly inner.

Proof. Let h be a continuous function of R+ into Bsa such that

lim
s→∞

max
|t|≤1

‖βt(y)−Ad eith(s)(y)‖→0

for every y ∈ B.
Let (Fn) be an increasing sequence of finite subsets of the unit ball A1

of A such that the union
⋃

n Fn is dense in A1 and let (εn) be a decreasing
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sequence of positive numbers such that
∑

n εn <∞. We choose an increasing
sequence (sn) in R+ such that for any s ≥ sn and y ∈ Q(Fn),

max
|t|≤1

‖βt(y)−Ad eith(s)(y)‖ < εn.

Since I is a separable ideal, there is an approximate identity (en) in I such
that enen+1 = en and

‖[x, en]‖→0, x ∈ A.

It also follows that ‖Q(x)‖ = limn ‖x(1 − en)‖ for any x ∈ A. We will use
these facts in the arguments below.

We will find a continuous functionH of R+ into Asa such that Q(H(sn)) =
h(sn) and

max
|t|≤1

‖Ad eitH(sn)(x)−Ad eitH(s)(x)‖ < 7εn

for s ∈ [sn, sn+1] and x ∈ Fn and H(s)en = H(sn)en for s ≥ sn and n =
1, 2, . . ., where (en) is an approximate unit for I. Then it would follow that
Ad eitH(s)(x) converges uniformly in t ∈ [−1, 1] for any x ∈ A and thus defines
an asymptotically inner flow α on A. Since Q(H(sn)) = h(sn), we get that
Qαt = βtQ.

Since δα|enAen = ad iH(sn)|enAen, we get that δα − ad iH(sn) vanishes
on enAen. Hence the flow α(−H(sn)) generated by δα−ad iH(sn) fixes each ele-
ment of enAen. This implies that if φ is a state of A such that ‖φ|enAen‖ = 1,
then πφ is covariant under α, which is just an inner perturbation of α(−H(sn)).
Since the set of states φ with the property ‖φ|enAen‖ = 1 for some n is dense
in the states of I, we get that α|I is universally extendible (i.e., t 7→ α∗∗t (x) is
weak∗-continuous for x ∈ I∗∗), which is equivalent to being universally weakly
inner [7]. Thus α has the desired properties.

Now we turn to the construction of H : R+→Asa. We fix an approximate
unit (en) for I such that enen+1 = en for all n. We choose an H1 ∈ Asa such
that Q(H1) = h(s1) and set H(s) = (s/s1)H1 for s ∈ [0, s1].

Suppose that we have defined a continuous function H : [0, sn]→Asa such
that

max
|t|≤1

‖Ad eitH(sk)(x)−Ad eitH(s)(x)‖ < 7εk, x ∈ Fk

for s ∈ [sk, sk+1] and k = 1, 2, . . . , n− 1 and

H(s)ek = H(sk)ek, s ∈ [sk, sk+1].

We find a continuous function K : [sn, sn+1]→Asa such that K(sn) =
H(sn) and Q(K(s)) = h(s), s ∈ [sk, sk+1]. Since max|t|≤1 ‖Ad eith(sn)(y) −
Ad eith(s)(y)‖ < 2εn for s ∈ [sn, sn+1] and y ∈ Q(Fn), we get that

‖Q(Ad eitK(sn)(x)−Ad eitK(s)(x))‖ < 2εn, t ∈ [−1, 1], x ∈ Fn

for s ∈ [sn, sn+1]. Hence there is an e = em ∈ I for some m ≥ n such that
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‖(1− e)(Ad eitK(s)Ad e−itK(sn)(x)− x)‖ < 2εn, t ∈ [−1, 1], x ∈ Fn

for s ∈ [sn, sn+1].
Let γ denote the flow t 7→ Ad eitK(sn) = Ad eitH(sn) on A. Then u(s) : t 7→

eitK(s)e−itK(sn) is a γ-cocycle. We set W (s) = K(s)−K(sn) and note that

u
(s)
t =

∞∑
n=0

∫
· · ·

∫
Γn(t)

dt1dt2 · · · dtninγt1(W (s))γt2(W (s)) · · · γtn(W (s))

where Γn(t) means 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t if t ≥ 0 and similar inequalities
otherwise. Let M = maxs∈[sn,sn+1] ‖W (s)‖ and let N ∈ N be such that

∞∑
n=N+1

Mn

n!
< εn/8.

We will choose a δ > 0 very small below. We find a finite sequence (σi)L
i=0

in [sn, sn+1] such that sn = σ0 < σ2 < · · · < σL = sn+1 and ‖K(σi) −
K(σi−1)‖ < δ for i = 1, 2, . . . , L. We find a finite sequence (pi)K

i=0 in I such
that 0 ≤ pi ≤ 1, p0e = e, pipi+1 = pi, and

‖[pi,K(s)]‖, ‖[pi, x]‖, s ∈ [sn, sn+1], x ∈ Fn

are all very small.
For i = 1, 2, . . . , L we define

Wi =
i−1∑
k=1

(pk−pk−1)1/2W (σk)(pk−pk−1)1/2+(1−pi−1)1/2W (σi)(1−pi−1)1/2.

Since ‖W (σi)−W (σi−1)‖ < δ and (pk−pk−1)1/2 and W (σ) almost commute,
it follows that ‖Wi −Wi−1‖ is at most of the order of δ. It also follows that
Wien = 0 as p0en = en.

For i = 1, 2, . . . , L and t ∈ R we define u
(i)
t = eit(K(sn)+Wi)e−itK(sn),

which is a γ-cocycle. Since ‖Wi‖ ≤M , the norm difference of u(i)
t and

N∑
n=0

∫
· · ·

∫
Γn(t)

dt1 · · · dtninγt1(Wi)γt2(Wi) · · · γtn(Wi)

is smaller than εn/8 for t ∈ [−1, 1].
Let j = 1, 2, . . . , i − 1. We shall identify (pj − pj−1)ui

t. Since ‖(pj −
pj−1)(Wi − W (σj))‖ < δ and (pk − pk−1)1/2 is almost invariant under γ
and are almost central as we have assumed, we can derive that

‖(pj − pj−1)(γt1(Wi) · · · γtn(Wi)− γt1(W (σj)) · · · γtn(W (σj)))‖

is of the order of δnMn−1, where we used that |tk| ≤ 1. Thus we get that
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‖(pj − pj−1)(u
(i)
t − eit(K(sn)+W (σj))e−itK(sn))‖ < Cδ(eM − 1) + εn/4,

for t ∈ [−1, 1], where C is a constant depending on N and M but can be
made arbitrarily close to 1 by taking pk’s so that they almost commute with
K(s)’s. So our choice of δ must be made such that Cδ(eM −1) is smaller than
εn/4. In the same way we get that

‖(1− pi−1)(u
(i)
t − eit(K(sn)+W (σi))e−itK(sn))‖ < εn/2

and
‖(1− p0)(u

(i)
t − 1)‖ < εn/2.

Since 1 − e dominates pj − pj−1 etc. and pk’s almost commute with x ∈ Fn

and K(s), we get that

‖(pj − pj−1)(u
(i)
t x(u(i)

t )∗ − x)‖ < 2εn + 2 · εn/2 = 3εn,

for t ∈ [−1, 1]. Together with similar estimates we can show that

‖Adu(i)
t (x)− x‖ < 6εn, x ∈ Fn, t ∈ [−1, 1],

where we use that (pj − pj−1)(pk − pk−1) = 0 for |j − k| > 1 etc. and that
[pj − pj−1, u

(i)
t x(u(i)

t )∗ − x] ≈ 0 as closely as we wish.
Thus we have constructed Wi, i = 1, 2, · · ·L such that ‖Wi −Wi−1‖ is of

the order of δ, Q(Wi) = h(σi)− h(sn), and

‖Ad eit(K(sn)+Wi)(x)−Ad eitK(sn)(x)‖ < 6εn, x ∈ Fn, t ∈ [−1, 1].

We define a continuous H : [sn, sn+1]→Asa as follows: if s ∈ [σj−1, σj ], then

H(s) =
σj − s

σj − σj−1
(H(sn) +Wj−1) +

s− σj−1

σj − σj−1
(H(sn) +Wj).

Since ‖H(s) − (H(sn) + Wj)‖ < δ for such s, we have that ‖eitH(s) −
eit(H(sn)+Wj)‖ < δ for t ∈ [−1, 1]. Thus we have that

‖Ad eitH(sn)(x)−Ad eitH(s)(x)‖ < 6εn + 2δ < 7εn, x ∈ Fn, t ∈ [−1, 1].

We also note thatH(s)en = H(sn)en for s ∈ [sn, sn+1] and thatQ(H(sn+1)) =
Q(H(sn) +W (sn+1)) = h(sn+1). This completes the proof.

Proposition 12. Let A be a separable C∗-algebra and I an ideal of A. Let β
be an asymptotically inner automorphism of the quotient B = A/I in the sense
that there is a continuous map u : R+→U(B) such that β = lims→∞ Adu(s).
Moreover suppose that u satisfies that u(0) ∈ Q(U(A)), where Q is the quotient
map of A onto B. Then there is an asymptotically inner automorphism α of
A such that Qα = βQ and α|I is universally weakly inner.
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Proof. Let (Fn) be an increasing sequence of finite subsets of the unit ball
A1 such that

⋃
nAn is dense in A1 and let (εn) be a decreasing sequence

of positive numbers such that
∑

n εn < ∞. Let u : R+→U(B) be as in the
statement. We note that β−1 = lims→∞ Adu(s)∗ since ‖β(y)−Adu(s)(y)‖ =
‖β−1β(y)−Adu(s)∗β(y)‖.

We find an increasing sequence (sn) in R+ such that for all s ≥ sn and
y ∈ Q(Fn),

‖β(y)−Adu(s)(y)‖ < εn,

‖β−1(y)−Adu(s)∗(y)‖ < εn.

We will define a continuous map U : R+→U(A) such that Q(U(sn)) =
u(sn) for all n and

‖AdU(s)(x)−AdU(sn)(x)‖ < 5εn,
‖AdU(s)∗(x)−AdU(sn)∗(x)‖ < 5εn

for all x ∈ Fn and s ∈ [sn, sn+1] and for all n.
Since

∑
n εn < ∞, this implies that (AdU(s)(x)) is a Cauchy sequence

for x ∈
⋃

n Fn. Hence we can define an endomorphism α of A by α(x) =
lims→∞ AdU(s)(x). Since we can also define an endomorphism γ of A by
γ(x) = lims→∞ AdU(s)∗(x) such that αγ = id = γα, we get that α
is an automorphism. Since Q(U(sn)) = u(sn), we also have that Qα =
limn→∞ Adu(sn)Q = βQ.

We will require the map U : R+→U(A) to satisfy an additional condition
as follows. There is an approximate unit (en) in I such that enen+1 = en

and U(s)U(sn)∗en = en for s ≥ sn. This implies that αAdU(sn)∗|In = id|In,
where In = enIen = enAen. Hence if φ is a state of A such that ‖φ|In‖ = 1,
then φαAdU(sn)∗ = φ, i.e., πφ is covariant under α. Since

⋃
n In is dense in

I, we get that if φ is a state of I, then πφ is covariant under α. Hence we can
conclude that α|I is universally weakly inner [7].

Now we turn to the construction of such U : R+→U(A).
We have specified u : R+→U(B) and (sn), such that

‖Adu(s)(y)−Adu(sn)(y)‖ < 2εn,
‖Adu(s)∗(y)−Adu(sn)∗(y)‖ < 2εn

for all y ∈ Q(Fn) and s ∈ [sn, sn+1] and all n = 1, 2, . . .. We also specify an
approximate unit (en) for I such that enen+1 = en for all n.

Let s0 = 0 and we choose a continuous map U : [s0, s1]→U(A) such that
Q(U(s)) = u(s) for s = s0 and s = s1 (or for all s ∈ [s0, s1]). This is possible
by the assumption.

Suppose that we have defined U : [s0, sn]→U(A) as required, i.e., we have
that Q(U(sk)) = u(sk), U(s)U(sk)∗ek = ek for s ∈ [sk, sk+1], and

‖AdU(s)(x)−AdU(sn)(x)‖ < 5εk,
‖AdU(s)∗(x)−AdU(sn)∗(x)‖ < 5εk
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for all x ∈ Fk and s ∈ [sk, sk+1] and for k = 1, 2, . . . , n− 1.
We choose a continuous V : [sn, sn+1]→U(A) such that V (sn) = U(sn)

and Q(V (s)) = u(s), s ∈ [sn, sn+1]. Since

‖Q(AdV (s)(x)−AdV (sn)(x))‖ < 2εk,
‖Q(AdV (s)∗(x)−AdV (sn)∗(x))‖ < 2εk

for x ∈ Fn and s ∈ [sn, sn+1], we find an e = em ∈ I for some m ≥ n such
that

‖(1− e)(AdV (s)(x)−AdV (sn)(x))‖ < 2εk,
‖(1− e)(AdV (s)∗(x)−AdV (sn)∗(x))‖ < 2εk

for x ∈ Fn and s ∈ [sn, sn+1].
Let δ > 0, which will be chosen later to be a sufficiently small constant.

Let (ti)N
i=0 be a sequence in [sn, sn+1] such that sn = t0 < t1 < t2 < · · · <

tN = sn+1 and
‖V (ti)− V (ti−1)‖ < δ

for i = 1, 2, . . . , N . We find a sequence (fi)N
i=0 in I such that 0 ≤ fi ≤ 1,

ef0 = e, fifi+1 = fi, and

‖[fi, V (tj)]‖ ≈ 0, ‖[fi, x]‖ ≈ 0

for all i, j and x ∈ Fn. We define a sequence (Wi)N
i=0 in Ã by W0 = 1 and

Wi = f0 +
i−1∑
j=1

V (tj)V (t0)∗(fj − fj−1) + V (ti)V (t0)∗(1− fi−1)

for i = 1, 2, . . . , N . If 0 < j < i, then we have that

Wi(fj − fj−1) = V (tj−1)V (t0)∗(fj−1 − fj−2)(fj − fj−1)
+V (tj)V (t0)∗(fj − fj−1)2

+V (tj+1)V (t0)∗(fj+1 − fj)(fj − fj−1)
= V (tj−1)V (t0)∗(fj−1 − f2

j−1)

+V (tj)V (t0)∗(f2
j + f2

j−1 − 2fj−1)

+V (tj+1)V (t0)∗(fj − f2
j ).

By replacing V (tj±1)V (t0)∗ by V (tj)V (t0)∗, we get that

‖(Wi − V (tj)V (t0)∗)(fj − fj−1)‖ < δ.

Moreover we have that ‖(Wi−1)f0‖ < δ and ‖(Wi−V (ti)V (t0)∗)(1−fi−1)‖ <
δ. Assuming that ‖[V (tj)V (t0)∗, fk − fk−1]‖ ≈ 0, we get that ‖(W ∗

i Wi −
1)(fj − fj−1)‖ < 2δ etc., where we have ignored an error of δ2 (which may
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result if ‖Wi‖ > 1). Hence, by taking the summation over j and noting that
(fj − fj−1)(fk − fk−1) = 0 for j > k + 1, we can conclude that

‖W ∗
i Wi − 1‖ < 4δ.

In the same way we get that ‖WiW
∗
i − 1‖ < 4δ, i.e., Wi is close to a unitary.

Note also that ‖W (ti)−W (ti−1)‖ < δ, which follows from

Wi −Wi−1 = −V (ti−1)V (t0)∗(1− fi−1) + V (ti)V (t0)∗(1− fi−1).

We will claim that ∆i ≡ WiU(sn)xU(sn)∗W ∗
i − U(sn)xU(sn)∗ ≈ 0 for

x ∈ Fn. Since V (t0) = U(sn), this follows because if 0 < j < i,

∆i(fj − fj−1) ≈ (V (tj)xV (tj)∗ − V (t0)xV (t0)∗)(1− e)(fj − fj−1)

with an error of at most 2δ assuming that ‖[V (tk), fj−fj−1]‖ ≈ 0 and ‖[x, fj−
fj−1]‖ ≈ 0. Thus we get that

‖(WiAdU(sn)(x)W ∗
i −AdU(sn)(x))(fj − fj−1)‖ < 2εn + 2δ.

Together with similar inequalities with f0 and 1− fi−1 in place of fj − fj−1,
we get that

‖WiAdU(sn)(x)W ∗
i −AdU(sn)(x)‖ < 4(εn + δ).

Define a continuous function W : [sn, sn+1]→U(A) by

W (t) =
ti − t

ti − ti−1
Wi−1 +

t− ti−1

ti − ti−1
Wi, t ∈ [ti−1, ti]

for i = 1, 2, . . . , N . Since ‖W (t)−Wi‖ < δ for t ∈ [ti−1, ti], we get that

‖W (t)AdU(sn)(x)W (t)∗ −AdU(sn)(x)‖ < 4εn + 6δ.

We let U(s) be the unitary obtained from the polar decomposition of
W (s)U(sn) for s ∈ [sn, sn+1]. Then by choosing δ > 0 sufficiently small (or
roughly 12δ < εn; see below), we get that

‖AdU(s)(x)−AdU(sn)(x)‖ < 5εn, x ∈ Fn.

Similarly we can also require that

‖AdU(s)∗(x)−AdU(sn)∗(x)‖ < 5εn, x ∈ Fn.

By the construction we also have that U(s)U(sn)∗en = en. This concludes the
proof.

Lemma 13. Let δ ∈ (0, 1/2) and let W ∈ Ã = A+C1 be such that ‖WW ∗−
1‖ < δ and ‖W ∗W − 1‖ < δ. If U denotes the unitary obtained from the polar
decomposition of W , then ‖W‖ < 2 and ‖U −W‖ < 2δ. Hence for x ∈ A with
‖x‖ ≤ 1, it follows that ‖UxU∗ −WxW ∗‖ < 6δ.

The proof of this lemma is standard.
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