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1 Introduction and statement of results

The Verlinde algebra is central to conformal field theory and consequently also
to the braided subfactor approach to modular invariants. In the braided sub-
factor approach to modular invariants one has first a factor N , which we can
take to be type III, and a non-degenerately braided system of endomorphisms
NXN of N whose fusion rules as sectors are precisely those of our Verlinde
algebra.

Fixing a braided system of endomorphisms on a type III factor N , we
look for inclusions ι : N ↪→ M such that its dual canonical endomorphism
θ = ῑι decomposes as a sum of endomorphisms from NXN . To produce a
modular invariant from such an inclusion, we first employ the Longo-Rehren
α±-induction method [LR] of extending endomorphisms of N to those in M
and then compute the dimensions of the intertwining spaces Zλ,µ := 〈α+

λ , α
−
µ 〉.

The matrix ZN⊂M = [Zλ,µ] thus constructed from a braided inclusion N ⊂M
is a modular invariant [BEK1, E2]. Now we use α-induction and the inclusion
map ι to construct finite systems whose general theory has been developed
in [BEK1, BEK2]. Let us choose representative endomorphisms of each ir-
reducible subsector of sectors of the form [ιλῑ], λ ∈ NXN . Any subsector of
[α+
λ α

−
µ ] is automatically a subsector of [ινῑ] for some ν in NXN and since we

assume the non-degeneracy of the braiding the converse also holds [BEK1].
This set of sectors yields a system MXM of sectors in general non-commutative
(the original sectors from the system NXN is commutative since it is braided).
We define in a similar fashion the chiral systems MX

±
M to be the subsystems

of β ∈ MXM such that [β] is an irreducible subsector of [α±λ ]. The neutral sys-
tem MX 0

M is defined as the intersection MX
−
M ∩MX

+
M and is non-degenerately

braided, so that we obtain MX 0
M ⊂ MX

±
M ⊂ MXM (see e.g [BE2]). A braided
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subfactor N ⊂M producing a modular invariant Z is said to be type I when
the dual canonical endomorphism is determined by the vacuum row or column
⊕Z0,λ[λ] = ⊕Zλ,0[λ]. In this case, which is equivalent to chiral locality, we can
identify both MX

±
M with NXM (by β 7→ β ◦ ι, β ∈ MX

±
M if ι is the inclusion

of N ⊂M .)
There are two cases of interest where there are natural constructions of

braided systems or Verlinde algebras. The first is the case of affine Lie alge-
bras or loop groups and their positive energy representations. In this WZW
or loop group settings, the modular data (S, and T matrices etc) can be
constructed from representation theory of unitary integrable highest weight
modules over affine Lie algebras or in exponentiated form from the positive
energy representations of loop groups. The subfactor machinery is invoked as
follows. Let LG be a loop group (associated to a simple, simply connected
loop group G). Let LIG denote the subgroup of loops which are trivial off
some proper interval I ⊂ T. Then in each level k vacuum representation π0 of
LG , we naturally obtain a net of type III factors {N(I)} indexed by proper
intervals I ⊂ T by taking N(I) = π0(LIG)′′ (see [W1, FG, B]). Since the
Doplicher-Haag-Roberts DHR selection criterion is met in the (level k) pos-
itive energy representations πλ, there are DHR endomorphisms λ naturally
associated with them. The rational conformal field theory RCFT modular
data matches that in the subfactor setting – in the RCFT Verlinde fusion co-
incides with the (DHR superselection) sector fusion, i.e. that Nν

λ,µ = 〈λµ, ν〉.
The statistics S- and T -matrices are identical with the Kac-Peterson S- and
T -modular matrices which perform the conformal character transformations.

The second is the case of quantum double of finite groups. A given finite
system of endomorphisms may not be commutative or even braided but by
taking the subfactor analogue of the quantum double of Drinfeld we obtain
a subfactor with a non-degenerately braided system of endomorphisms. This
construction can in particular be applied to a finite group G. This quantum
double subfactor is basically the same as the Longo-Rehren inclusion [LR]
and is a way of yielding braided systems from not necessarily commutative
systems. The modular data from a quantum double subfactor was first estab-
lished by Ocneanu [EK, Section 12.6] using topological insight, later by Izumi
[I1] with an algebraic flavour (see also [SW, KSW]).

Twisted equivariant K-theory [AS] is relevant for both of these settings.
Here the equivariant K-theory is twisted by an element of H4(BG,Z). When
G is a compact simply connected Lie group, this manifests itself through the
equivariant cohomology group H3

G(G,Z) [A, FHT, F2, F3, F4], and for a finite
group through H3(G,T) [F1, FQ].

The quantum double of the finite group subfactor M0 ⊂ M0 oG, (where
the finite group G acts outerly on a type III factor M0) was identified by
Ocneanu and later by Izumi (see [EK]) to be the group-subgroup subfactor
N = M0 o ∆(G) ⊂ M0 o (G×G) = M where ∆(G) = {(g, g) : g ∈ G}
denotes the diagonal subgroup of G × G. This data can be twisted for every
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[ω] ∈ H3(G,T) [CGP], and the subfactor interpretation of this data is in [I1].
The parameter [ω] is regarded as the level in this setting [CGP].

It is therefore natural to think in terms of ∆(G) ⊂ G×G and in particular
the ambient group G×G with the diagonal actions. Indeed according to [O1],
the module categories of the double are given by pairs (H,ψ) for H a subgroup
of G × G and ψ an arbitrary element of the 2-cohomology group H2(H,T).
The corresponding Frobenius algebra or Q-system gives rise to a subfactor
N ⊂ M and hence by [BEK1, E1] produces a modular invariant through
the α-induction machinery. The NXM sectors are identified with the ∆-H
bundles or the the equivariant K-group K∆×H

0 (G×G), and the MXM sectors
with the H-H bundles or the equivariant K- group KH×H

0 (G × G). These
identifications of sectors with bundles is compatible with the natural product
of sectors and the product of bundles mentioned above.

To translate between equivariant twisted bundles on G, for the adjoint
action, and equivariant twisted bundles on G×G with the diagonal action on
left and right we need a corresponding cocycle on G × G. If ω is a 3-cocycle
in Z3(G,T), we define the 3-cocycle α = π∗1ω − π∗2ω on G × G if π1, π2 are
the projections of G×G on the first and second factors respectively.

In Sect. 2.5, we make precise the relationship between αKG×G
0 (G×G) and

ωKG
0 (G) where G×G acts on G×G by the first factor acting on the left and

the second on the right using the diagonal embedding, and G acts G by the
adjoint action. The map (a, b) → ab−1 takes the G-G action to the adjoint G
action. This identifies the two K-theories

This work begins the study of understanding α-induction and the subfactor
approach to modular invariants through twisted equivariant K-theory for the
case of quantum doubles of finite groups. This has been thoroughly analysed in
[EP2] from the subfactor viewpoint and in [O1] from the viewpoint of module
cateogories. ¿From this we should understand the modular invariants which
can be realised by subfactors as arising from a subgroup H of G × G and
possible 2-cohomology from H2(H,T). The corresponding full system will be
the twisted equivariant K-theory KH×H

0 (G × G), where H acts on the left
and right in the natural way. We should identify two homomorphisms α±

K∆×∆
0 (G×G) → KH×H

0 (G×G) (1)

whose images commute and generate KH×H
0 (G × G). In the case of a type

I pair (H,ψ), where the Q-system satisifies chiral locality (or in categorical
language the corresponding Frobenius algebra is commutative), the images
are isomorphic to each other and to K∆×H

0 (G × G). The neutral system,
i.e. the intersection of the images, will not only be commutative, but a non-
degenerately braided system – such asK∆(K)×∆(K)

0 (K×K) for some subgroup
K of G, i.e. isomorphic to the Verlinde algebra of the quantum double of K.
For simplification we only discuss this here in the case of the doubles of the
finite cyclic groups Z2, Z3 and the symmetric group S3 on three symbols in
level zero (i.e. the untwisted case).
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2 Twisted quantum doubles of finite groups

2.1 G-kernels and 3-cohomology

Let G be a finite group, and take a G-kernel on an infinite factor M . That is
we have a homomorphism from G into the outer automorphism group Out(M)
of M , namely the automorphism group Aut(M) of M modulo Int(M) the inner
automorphisms of M . If νg in Aut(M) is a choice of representatives for each
g in G of the G-kernel, then

νgνh = Ad(u(g, h))νgh ,

for some unitary u(g, h) in M , for each pair g, h in G. We can assume the
normalisation νe = idM , u(g, e) = u(e, g) = 1M , for all g in G, where e is the
unit of the group. By associativity of νgνhνk, we have a scalar ω(g, h, k) in T
such that

u(g, h)u(gh, k) = w(g, h, k)νg(u(h, k))u(g, hk) , (2)

i.e. ω = ∂νu, the ν-coboundary of u. A computation [S] shows that ω is a
3-cocycle in Z3(G,T):

ω(g, h, k)ω(g, hk, l)ω(h, k, l) = ω(gh, k, l)ω(g, h, kl) , g, h, k, l ∈ G . (3)

Every element of Z3(G,T) arises in this way from some G-kernel [S, J1] (see
also [KT, W2]).

If α, β are two endomorphisms between two algebras we let Hom(α, β)
denote the intertwiner space {x : xα(a) = β(a)x,∀a} in the target algebra.
Then Hom(νgh, νgνh) is a line bundle P (g, h) spanned by u(g, h).

The conjugate νg of the automorphism νg can be taken to be νg−1 . We
define isometries:

rg = u(g−1, g), rg = ω(g, g−1, g)u(g, g−1) . (4)

Then rg ∈ Hom(1, νgνg) and rg ∈ Hom(1, νgνg) such that

r∗gνg(rg) = 1M , r∗gνg(rg) = 1M . (5)

Intertwiners can be written graphically in the notation and conventions
of [BEK1]. The set {νg : g ∈ G} of automorphisms forms a system of en-
domorphisms in the sense of [BEK1], and we can form the quantum double
system and consequently the associated topological quantum field theory. The
vanishing of the 3-cohomology class of ω in H3(G,T) is precisely when we can
adjoin unitaries {vg : g ∈ G} so that [S]:

vgvh = u(g, h)vgh, νg(m) = Ad(vg)(m), g, h ∈ G,m ∈M.

In this special case we can form the twisted cross product M oG = M oν G,
and then perform the iterated Jones construction

M ⊂M oG ⊂M1 ⊂M2 ⊂ . . .

and complete to obtain M∞. The quantum double system in this case is the
M∞-M∞ system for the subfactor A = M ∨M ′ ⊂ B = M∞.
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2.2 Rectangular algebra

Ocneanu has introduced tube algebras and double triangle algebras for un-
derstanding and handling the combinatorics of intertwiner spaces (see e.g.
[O1, O2, EK, BEK1]). We need variants of this - a rectangular algebra and a
super-tube algebra. First consider the rectangular algebra R = Rω(G):

Rω(G) =
⊕
a,h,k

Hom(νhνa, νhakνk) . (6)

Note that Hom(νhνa, νbνk) vanishes unless b = hak, when Hom(νhνa, νhakνk)
is one dimensional or a line bundle

R(h, a, k) ' P (hak, k−1)⊗ P (h, a)∗, (7)

spanned by the intertwiners

r(h, a, k) = u(hak, k−1)u(h, a)∗. (8)

There is a natural product map

Hom(νh′νa′ , νh′a′k′νk′)×Hom(νhνa, νhakνk)

→ Hom(νh′hνa, νh′hakk′νkk′) ,

given by
S′ × S → δa′,hakνh′(S′)S, (9)

so that we have the coherence:

R(h′, hak, k′)⊗R(h, a, k) ' R(h′h, a, kk′). (10)

In addition, there is an involution

Hom(νhνa, νhakνk) → Hom(νhakνk, νhνa, ) → Hom(νhνhak, νaνk)

S → S† = r∗hνh[S
∗νhak(rk−1)] ,

obtained by first taking the involution in the von Neumann algebra M and
then using Frobenius reciprocities [BEK1]. Here to avoid confusion we denote
∗ as the involution in the algebra M , and † as the involution in the rectangular
space. Conseqently,

R(h, a, k)† ' R(h−1, hak, k−1) . (11)

It is this involution that we will use to get a ∗-structure on our algebras and
when there is no likely confusion we will denote this by ∗ as usual.

However, there is another related conjugate linear automorphism. First,
note that there are natural identifications of intertwiner spaces
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Hom(νhνb, νhbkνk) → Hom(νhbkνk, νhνb) → Hom(νkνb, νhbkνh)

S → S[ = νhak[νh(r∗a)S
∗)]rhak ,

by first taking adjoints and then using Frobenius reciprocity. This is a conju-
gate linear automorphism so that

R(h, a, k)[ ' R(k−1, a−1, h−1) . (12)

This endows Rω(G) as a finite dimensional C∗-algebra. In terms of the
canonical generators we have the relations:

r(h′, a′, k′)r(h, a, k) = δa′,hakω(h′, h, a)ω(h′, hak, k−1)
× ω(h′hakk′, k′−1, k−1)r(h′h, a, kk′) , (13)

r(h, a, k)∗ = ω(h−1, h, a)ω(h−1, hak, k−1)
× ω(a, k, k−1)r(h−1, hak, k−1) , (14)

r(h, a, k)[ = ω(k−1, a, a−1)ω(k−1a−1h−1, hak, k−1)
× ω(k−1a−1h−1, h, a)r(k−1, a−1, h−1) . (15)

2.3 Tube algebra

We will use this rectangular space to construct the tube algebra and the super-
tube algebra. First the tube algebra is the space of intertwiners D = Dω(G):

Dω(G) =
⊕
a,h

Hom(νhνa, νhah−1νh) . (16)

Here Hom(νhνa, νhah−1νh) is one dimensional or a line bundle

C(a, h) ' P (hah−1, h)⊗ P (h, a)∗, (17)

spanned by the intertwiners

c(a, h) = r(h, a, h−1) = u(hah−1, h)u(h, a)∗. (18)

We have the coherence and involutive properties:

C(hah−1, h′)⊗ C(a, h) ' C(a, h′h) , (19)
C(a, h)† ' C(hah−1, h−1) , (20)

The tube algebra is then a finite dimensional C∗-algebra with generators
{c(a, h) : a, h} and relations:

c(a′, h′)c(a, h) = δa′,hah−1w(h′, h, a)w(h′, hah−1, h)
× w(h′hah−1h′−1, h′, h)c(a, h′h) , (21)

c(a, h)∗ = w(h−1, h, a)w(h−1, hah−1, h)
× w(a, h−1, h)c(hah−1, h−1) . . (22)
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The group G has two parent algebras. One is the function algebra C(G)
of complex valued functions on G under pointwise multiplication fg(a) =
f(a)g(a) and co-multiplication ∆(f)(a, b) = f(ab), spanned by the delta func-
tions δg(h) = δg,h. The other is its dual C(G)∗ as a Hopf algebra, the group
algebra C(G) with multiplication a⊗ b→ ab and co-multiplication a→ a⊗a.
The function algebra C(G) and group algebra C(G) embedd into the tube
algebra as δg → c(g, e), and h → c(e, h), so that indeed the tube algebra is
their tensor product C(G) ⊗ C(G) as a vector space, with c(g, h) identified
with δg ⊗ h, but the product on Dω(G) is twisted by the 3-cocycle ω. The
representations of the tube algebra Dω(G) is described by G-equivariant vec-
tor bundles over G. If ρ is a representation of D = Dω(G) on V , then since
it is in particular a representation of the function algebra C(G), we can write
Vg = ρ(δg)V to give a vector bundle over G.

We can read the coherence or the Dω(G)-action on V as G-equivariance
expressed as

C(a, h)⊗ Va ' Vhah−1 , (23)

where C(a, h) is the line bundle Hom(νhνa, νhah−1νh), so that we have maps

πVh : C(a, h)⊗ Va → Vhah−1

πVh (`⊗ va) = ρ(`)va.

By some abuse of notation we find it convenient to write this as

h.va = πVh (c⊗ va) = ρ(c)va,

for the particular interwiner ` = c(a, h) or cross section as in Eq. (18). Thus
h.va ∈ Vhah−1 , for va ∈ Va. We can think of this as one vector space Va sitting
over one end of the tube and Vhah−1 over the other, with one transported to
the other via the line bundle C(a, h). Note that the coherence Eq. (19) of line
bundles is reflected as a twisted left action:

h′.(h.va) = ω(h′, h, a)ω(h′, hah−1, h)ω(h′hah−1h′−1, h′, h)h′h.va . (24)

Elements of Rep(Dω(G)), the representations of Dω(G), are thus described
as vector bundles over G, with a twisted left action satisfying Eq. (24).

To take a fusion product of two representations of D = Dω(G), we need the
co-multiplication operator ∆ from D → D ⊗D, which is obtained as follows:

∆c(a, h) =
∑

a′,a′′:a′a′′=a

ω(h, a′, a′′)ω(ha′h−1, ha′′h−1, h)

× ω(ha′h−1, h, a′′)c(a′, h)⊗ c(a′′, h) . (25)

Suppose ρV 1 and ρV 2 are representations of Dω(G) on V 1 and V 2 respec-
tively, then we can define the fusion product representation ρV 1 � ρV 2 on
V 1 ⊗ V 2 by:
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(ρV 1 � ρV 2)(x) = (ρV 1 ⊗ ρV 2)∆(x), x ∈ Dω(G) .

This can be interpreted as a product on G-equivariant vector bundles, using

∆c(a, e) =
∑

a′,a′′:a′a′′=a

c(a′, e)⊗ c(a′′, e) .

We form the vector bundle V 1 � V 2 by

(V 1 � V 2)a = (ρV 1 � ρV 2)(c(a, e))(V 1 � V 2)

= (ρV 1 ⊗ ρV 2)∆(c(a, e))(V 1 ⊗ V 2) = ⊕a′a′′=aV 1
a′ ⊗ V 2

a′′ .

The G-action on V 1 � V 2 is then expressed as

h.(v1
a′ ⊗ v2

a′′) = ω(h, a′, a′′)ω(ha′h−1, ha′′h−1, h)
× ω(ha′h−1, h, a′′)h.v1

a′ ⊗ h.v2
a′′ , (26)

for v1 ∈ V 1, v2 ∈ V 2.
The trivial bundle V 0

a = δa,eC, with trivial action, defines a representation
or equivariant bundle V 0 so that V 0 � V 1 ' V 1 ' V 1 � V 0 for any other
bundle V 1.

The tube algebra Dω(G) is a (quasi-associative) Hopf algebra with R-
matrix:

R =
∑
a′,a′′

c(a′, e)⊗ c(a′′, a′) .

Then the braiding operator is the isomorphism

ε(V 1, V 2) = τ(ρV 1 ⊗ ρV 2)(R) : V 1 � V 2 → V 2 � V 1,

where τ is the transposition from V 1 ⊗ V 2 to V 2 ⊗ V 1. In terms of vector
bundles, this braiding takes the form:

ε(V 1, V 2)[v1
a′ ⊗ v2

a′′ ] = a′.v2
a′′ ⊗ v1

a′ (27)

for v1 ∈ V 1, v2 ∈ V 2, and is a G-equivariant bundle isomorphism.
This is one picture of the twisted quantum double of Drinfeld of the finite

group [AC, ACM, DPR, I1, M]. It is more convenient for us look at this from
another persepective starting in the next section.

2.4 Super-tube algebra and ∆-∆ equivariant bundles

We want to switch from G-equivariant vector bundles on G to equivariant
vector bundles over G × G. For this we consider the super-tube algebra E =
Eω(G), defined as the following finite dimensional C∗-algebra. First note that
there are natural identifications of intertwiner spaces

Hom(νhνb, νhbkνk) → Hom(νhbkνk, νhνb) → Hom(νkνb, νhbkνh)
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by first taking adjoints and then using Frobenius reciprocity [BEK1]. Let
S → S[ denote the composition of these identifications. We then combine to
form the map

Hom(νhνa, νhakνk)×Hom(νhνb, νhbkνk) → Hom(νhνaνb, νhakνhbkνh)

where
(T, S) → νhak(S[)T .

We denote this intertwiner by T×S. Furthermore there is an involution which
takes the intertwiner T × S to T † × S†.

The interwiner space

T (h, (a, b), k) = Hom(νhνaνb, νhakνhbkνh) ' R(h, a, k)⊗R(h, b, k)∗

has generators

t(h, (a, b), k) = νhak(r(h, b, k)[)r(h, a, k)

= [r(h, a, k)]× [r(h, b, k)]− .

We have the coherence and involutive properties:

T (h′, hak, k′)⊗ T (h′, a, k) ' T (h′h, a, kk′) , (28)
T (h, a, k)† ' T (k−1, hak, h−1) . (29)

Consequently, the super-tube algebra E = Eω(G) defined as

E = Eω(G) =
⊕
a,b,h,k

Hom(νhνaνb, νhakνhbkνh) , (30)

is a finite dimensional C∗-algebra, with generators {t(h, (a, b), k) : h, a, b, k ∈
G} and relations :

t(h′, x′, k′)t(h, x, k) = δx′,hxkα(h′, h, x)α(h′, hxk, k−1)
× α(h′hxkk′, k′−1, k−1)t(h′hxkk′, k′−1, k−1) , (31)
t(h, x, k)† = α(h−1, h, x)α(h−1, hxk, k−1)

× α(x, k, k−1)t(h−1, hxk, k−1) . . (32)

for x, y in Γ = G×G and h, k in ∆(G), the diagonal subgroup identified with
G. Here if ω is a 3-cocycle in Z3(G,T), we define the 3-cocycle α = π∗1ω−π∗2ω
on Γ if π1, π2 are the projections of G × G on the first and second factors
respectively.

We now consider Rep(Eω(G)), the representations of Eω(G). We claim that
these are described by∆-∆ equivariant twisted vector bundles over G×G. The
function algebra on G×G embedds in Eω(G) by δx → t(e, x, e) , x ∈ G×G.
Thus if ρ is a representation of Eω(G) on W , it is in particular a representation
of the function algebra and so we can write
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Wx = ρ(δx)W , x ∈ G×G , (33)

to get a vector bundle over G×G. The ∆-∆ equivariance is expressed as

T (h, x, k)⊗Wx 'Whxk , x ∈ G×G, h, k ∈ ∆(G) .

In other words, we can act with the diagonal subgroup G = ∆(G) on the left
and right as

h.vx = t(h, x, e)vx , (34)

vx.k = t(e, xk, k−1)∗vx . (35)

So for vx ∈Wx, we have h.vx ∈Whx, vx.k ∈Wxk. Then we have the projective
relations:

h′.(h.vx) = α(h′, h, x)h′h.vx , (36)

(vx.k).k′ = α(x, k, k′)vx.kk′ . (37)

Note that the left and right actions do not in general commute but

h.(vx.k) = α(h, x, k)(h.vx).k , (38)

as a consequence of the super-tube relation:

t(h, xk, e)t(e, xk, k−1)∗ = α(h, x, k)t(e, hxk, k−1)∗t(h, x, e) .

To take the fusion product of two representations of Rep(Eω(G)), we need
the co-multiplication operator ∆ from E → E ⊗ E . The co-multiplication is
given by:

∆t(h, x, k) =
∑

l,x′x′′=x

α(h, x′, x′′)α(hx′l, l−1x′′k, k−1)

× α(hx′l, l−1, x′′)t(h, x′, l)⊗ t(l−1, x′′, k) . (39)

Suppose ρW 1 and ρW 2 are representations of Eω(G) on W 1 and W 2 re-
spectively, then we can define the fusion product representation ρW 1 � ρW 2

on W 1 ⊗W 2 by:

(ρW 1 � ρW 2)(x) = (ρW 1 ⊗ ρW 1)∆(x), x ∈ Eω(G) .

This can be interpreted as a product on ∆-∆-equivariant vector bundles on
G×G, using

∆t(e, x, e) =
∑

l,x′x′′=x

α(hx′l, l−1, x′′)t(e, x′, l)⊗ t(l−1, x′′, e) .

The bundle is given by

(W 1 �W 2)x = (ρW 1 ⊗ ρW 2)∆(t(e, x, e))(W 1 ⊗W 2) = ⊕x′x′′=xW 1
x′ ⊗W 2

x′′ ,



Twisted K-theory and Modular Invariants 11

where we must identify according to the equivalence relation:

vx′ .l ⊗ wx′′ = α(x′, l, x′′)vx′ ⊗ l.wx′′ . (40)

Then the ∆-∆ action on W 1 �W 2 is given by

∆t(h, x, e) =
∑

l,x′x′′=x

α(h, x′, x′′)α(hx′l, l−1, x′′)t(h, x′, l)⊗ t(l−1, x′′, e) ,(41)

∆t(e, x, k) =
∑

l,x′x′′=x

α(x′l, l−1x′′k, k−1)α(x′l, l−1, x′′)

× t(e, x′, l)⊗ t(l−1, x′′, k) . (42)

Thus the diagonal group ∆ acts on the left and right of W 1 �W 2 by

h.(v1
x′ ⊗ v2

x′′) = α(h, x′, x′′)h.v1
x′ ⊗ v2

x′′ , (43)

(v1
x′ ⊗ v2

x′′).k = α(x′, x′′, k)v1
x′ ⊗ v2

x′′ .k . (44)

The trivial bundleW 0
x = δx,eC, with trivial action, defines a representation

or equivariant bundle W 0 so that W 0 �W 1 'W 1 'W 1 �W 0 for any other
bundle W 1.

2.5 Morita equivalence of G equivariant and ∆-∆ equivariant
bundles

We relate the tube algebra D and the super-tube algebra E via a Morita
equivalence implemented by an intermediary D-E bimodule V which we define
as

Vω(G) =
⊕
a,b,h

Hom(νhνaνb, νhab−1h−1νh) . (45)

We can embedd elements of the tube algebra D in the super-tube algebra
E by

Hom(νhνa, νhah−1νh) → Hom(νhνaνe, νhah−1νeνh)

by S → S × c(e, h)−, if S ∈ Hom(νhνa, νhah−1νh), so that we identify c(a, h)
and t(h, (a, e), h).

Similarly, we can regard an element of the space V as an element of the
super-tube algebra E by identifying

Hom(νhνa, νhab−1h−1νhb)×Hom(νhbνb, νh) = Hom(νhνaνb, νhab−1h−1νh)

in V with

Hom(νhνa, νhakνk)×Hom(νhνb, νhbkνk) = Hom(νhνaνb, νhakνhbkνh)

in E , for k = (hb)−1. Then using the product in the super-tube algebra E , we
can regard V as a D-E bimodule. This space V has generators
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v((a, b), h) = t(h, (a, b), (hb)−1) , h, a, b ∈ G , (46)

with the D-E bimodule relations:

v(x′, h′)t(h, x, k) = δx′,hxkα(h′, h, x)α(h′hxk(h′hbk)−1, h′hbk, k−1)
× α(h, hxk, k)v(x, h′h) , (47)

c(x′, h′)v(x, h) = δx′,hab−1h−1α(h′, h, x)α(h′hx(h′hb)−1, h′, hb)
× α(h′, hx(hb)−1, hb)v(x, h′h) , (48)

for x = (a, b) .
Thus if W is an E module, we can form V⊗EW as a natural D module, and

if V is an D module, we can form V∗⊗DV as a natural E module. This gives an
equivalence of D and E-modules or a correspondence between G-equivariant
vector bundles on G and ∆-∆ equivariant vector bundles on G × G. Let us
look at this in more detail at the level of vector bundles. If V is a D-module
or a G-equivariant twisted vector bundle, then we form a vector bundle over
G×G by:

Wa,b = P (a, b−1)⊗ Vab−1 , (49)

where P is the vector bundle P (a, b−1) = Hom(νab−1 , νaνb), as before. Then
W becomes an E-module by the coherent actions:

T (h, (a, b), k)⊗Wa,b ' T (h, (a, b), k)⊗ P (a, b−1)⊗ Vab−1

' P (hak, (hbk)−1)⊗ C(ab−1, h)⊗ Vab−1

' P (hak, (hbk)−1)⊗ Vhab−1h−1 'Whak−1,hbk−1 .

In particular if v ∈ V , we define w ∈W by

wa,b = v((a, b), e)∗ ⊗ vab−1 . (50)

Then W becomes a ∆-∆ equivariant twisted bundle by the actions:

h.wa,b = α(h−1, h, x)α(xb−1, h−1, hb)α(h−1, hxb−1, hb) (51)
× v(h(a, b), e)⊗ h.vab−1 , (52)

wa,b.k = ω(ab−1, b, k−1)v((a, b)k, e)⊗ vab−1 . (53)

Conversely, suppose that W is an E-module or an equivariant ∆-∆ twisted
bundle over G×G, then we can form a bundle V over G by:

Vd = ⊕ab−1=dP (a, b−1)∗ ⊗Wa,b . (54)

This becomes a D module by the coherence:

C(d, h)⊗ Vd ' ⊕ab−1=dC(d, h)⊗ P (a, b−1)∗ ⊗Wa,b

' ⊕ab−1=dP (ha, (hb)−1)∗ ⊗Wha,hb ' Vhdh−1 .

In particular if w ∈W , we define v ∈ V by
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vd = ⊕ab−1=dv((a, b), e)⊗ wa,b . (55)

Then V becomes a G equivariant twisted vector bundle over G by

h.vd = ⊕ab−1=dω(h, ab−1, b)ω(hab−1h−1, h, b)v(h(a, b), e)⊗ h.wa,b . (56)

This gives a (Morita) equivalence ofRep(Dω(G)) andRep(Eω(G)), because
V ⊗E V∗ = D and V∗ ⊗D V = E , cf [R].

The multiplicative properties of these equivalences are as follows. Suppose
V 1, V 2 are D modules. Then we form the fusion product module V = V 1�V 2,
and the corresponding E modules, W 1 = V∗ ⊗D V 1,W 2 = V∗ ⊗D V 1 and
W = V∗ ⊗D V respectively. Then

Wa,b ' P (a, b−1)⊗ Vab−1 ' P (a, b−1)⊗ (V 1 � V 2)ab−1

' ⊕ab−1=xy−1P (a, b−1)⊗ P (x, y−1)∗ ⊗ V 1
x ⊗ V 2

y−1

' ⊕a=a′a′′P (a′, a′′)∗ ⊗ P (a′′, b−1)⊗ V 1
a′ ⊗ V 2

a′′b−1

' ⊕a=a′a′′P (a′, a′′)∗ ⊗W 1
a′,e ⊗W 2

a′′,b ' (W 1 �W 2)a,b ,

so that W 'W 1 �W 2.
On the other hand suppose that W 1,W 2 are E modules. Then we form

the fusion product module W = W 1 �W 2, and the corresponding D modules,
V 1 = V ⊗E W 1, V 2 = V ⊗E W 2 and V = V ⊗E W resepectively. Then

Vd ' ⊕ab−1=dP (a, b−1)∗ ⊗Wa,b ' ⊕ab−1=dP (a, b−1)∗ ⊗ (W 1 �W 2)a,b
' ⊕ab−1=d ⊕a′a′′=a P (a, b−1)∗ ⊗ P (a′, a′′)∗ ⊗W 1

a′,e ⊗W 2
a′′,b

' ⊕d′d′′=d ⊕a′′b−1=d′′ P (d′, d′′)∗ ⊗ P (a′′, b−1)∗ ⊗W 1
d′,e ⊗W 2

a′′,b

' ⊕d′d′′=dP (d′, d′′)∗ ⊗ V 1
d′ ⊗ V 2

d′′ ' (V 1 � V 2)d ,

so that V ' V 1 � V 2.

2.6 Braiding on ∆-∆ equivariant bundles

We can use this Morita equivalence to understand the braiding on the repre-
sentations of super-tube algebra E . Thus the ∆-∆ twisted equivariant bundles
on G×G becomes a braided tensor category.

Suppose that W 1,W 2 are E modules. Then we form the fusion product
module W = W 1 � W 2, and the corresponding D modules, V 1 = V ⊗E
W 1, V 2 = V ⊗E W 2 and V = V ⊗E W resepectively, so that W 1 � W 2 '
V ⊗D V 1 � V 2. The braiding on Rep(Eω(G)) is then simply: ε(W 1,W 2) from
W 1 �W 2 →W 2 �W 1 given by

ε(W 1,W 2) = 1V ⊗D ε(V 1, V 2) : V ⊗D V 1 � V 2 → V ⊗D V 2 � V 1

To be more explicit in terms of twisted vector bundles, we first have:
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(V 1 � V 2)d ' ⊕d′d′′=dP (d′, d′′)∗ ⊗ V 1
d′ ⊗ V 2

d′′

' ⊕d′d′′=d ⊕a′′b−1=d′′ P (d′, d′′)∗ ⊗ P (a′′, b−1)∗ ⊗W 1
d′,e ⊗W 2

a′′,b ,

If v1 ∈ V 1, v2 ∈ V 2, then according to Eq. (27), we have

ε(V 1, V 2)[v1
d′ ⊗ v2

d′′ ] = d′.v2
d′′ ⊗ v1

d′ ∈ V 2
d′d′′d′−1 ⊗ V 1

d′ (57)

If w1 ∈W 1, w2 ∈W 2, we define v1 ∈ V 1, v2 ∈ V 2 by

v1
d′ = v((d′, e), e)⊗ w1

d′,e , (58)

v2
d′′ = v((d′′, e), e)⊗ w2

d′′,e . (59)

Writing v = v2, w = w2, we compute:

d′vd′′ = c(d′′, d′)v((d′′, e), e)⊗ wd′′,e

= v((d′d′′d′−1, e), e)t(d′, (d′′, e), d′)wd′′,e
= v((d′d′′d′−1, e), e)t(e, d′(d′′, e), d′)t(d′, (d′′, e), e)wd′′,e
= v((d′d′′d′−1, e), e)ω(d′d′′, d′−1, d′)ω(d′, d′−1, d′)(d′w2

d′′,e)d
′−1 .

Untangling this, we get that

ε(W 1,W 2)[w1
d′,e ⊗ w2

d′′,e] =

ω(d′d′′, d′−1, d′)ω(d′, d′−1, d′)(d′w2
d′′)d

′−1 ⊗ w1
d′,e ∈W 2

d′d′′d′−1,e ⊗W 1
d′,e . (60)

By equivariance, this is enough to compute the brading on anything. For
example, we have:

ε(W 1,W 2)[w1
e,b ⊗ w2

a,e]

= ω(b, b−1, b)ε(W 1,W 2)[b(b−1w1
e,b)⊗ w2

a,e]

= ω(b, b−1, b)ω(b, b−1, a)ε(W 1,W 2)[b(b−1w1
e,b ⊗ w2

a,e)]

= ω(b, b−1, b)ω(b, b−1, a)bε(W 1,W 2)[b−1w1
e,b ⊗ w2

a,e]

= ω(b, b−1, b)ω(b, b−1, a)ω(b−1a, b, b−1)ω(b−1, b, b−1)b.[(b−1w2
a,e)b⊗ b−1w1

e,b]

= ω(b, b−1, b)ω(b, b−1, a)ω(b−1, b, b−1)b.[b−1w2
a,e ⊗ b(b−1w1

e,b)]

= ω(b, b−1, a)ω(b−1, b, b−1)b.[b−1w2
a,e ⊗ w1

e,b]

= ω(b, b−1, a)[b.(b−1w2
a,e)⊗ w1

e,b]

= w2
a,e ⊗ w1

e,b .

We record this as:

ε(W 1,W 2)[w1
e,b ⊗ w2

a,e] = w2
a,e ⊗ w1

e,b . (61)

In the case of trivial twisting ω = 1, we have

ε(W 1,W 2)[w1
a1,b1 ⊗ w2

a2,b2 ] = a1w
2
a2,b2b

−1
2 ⊗ a−1

1 w1
a1,b1b2 . (62)

Taking inverses, ε(W 1,W 2)−1 : W 2�W 1 →W 1�W 2 will then be determined
as:

ε(V,W )−1[w2
a2,b2 ⊗ w1

a1,b1 ] = b2w
1
a1,b1a

−1
1 ⊗ b−1

2 w2
a2,b2a1 . (63)
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3 Twisted equivariant bundles over finite groups

Let Γ be a finite group, α a 3-cocycle in Z3(Γ,T), with H and K subgroups
of Γ , and ψ and ψ′ are 2-cocycles in Z2(H,T), Z2(K,T) respectively. We
consider a H-K bundle V twisted by α with base space Γ , where H and K
act on the fibres on the left and right with multipliers ψ and ψ′ respectively,
satisfying the following consistency relations:

(h1h2)w = α(h1, h2, g)ψ(h1, h2)(h1(h2w)) , (64)
w(k1k2) = α(g, k1, k2)−1ψ′(k1, k2)((wk1)(k2) , (65)

h(wk) = α(h, g, k)(hw)k , (66)

where h1, h2, h ∈ H, k1, k2, k ∈ K, and w = wg ∈ Vg, the fibre over g ∈
Γ . Here hw, wk lie in the fibres over hg, and gk respectively, etc. We let
αBunH−K(Γ ) denote such twisted bundles.

The equivalence classes generate the equivariant twistedK-group αKH×K
0 (Γ ).

If V is an H-K bundle, we can naturally associate the conjugate K-H bundle
V ∗. If L is another subgroup of Γ , we can naturally form from an H-K bundle
V and a K-L bundle W a H-L bundle V ⊗K W :

αBunH×K(Γ )× αBunK×L(Γ )→ αBunH×L(Γ ) (67)

and hence a product on K-theory:

αKH×K
0 (Γ )× αKK×L

0 (Γ )→ αKH×L
0 (Γ ). (68)

We divide the tensor product V ⊗W over Γ × Γ by the relation:

vak ⊗ wb = α(a, k, b)va ⊗ kwb (69)

and then push forward under the product map Γ ×Γ → Γ to obtain V ⊗KW,
a bundle over Γ where (V ⊗KW )g = ⊕ab=gVa⊗Wb. Then V ⊗KW becomes
a H-K α twisted bundle HV ⊗K WL under the natural actions:

h(va ⊗ wb) = α(h, a, b)hva ⊗ wb (70)
(va ⊗ wb)l = α(a, b, l)va ⊗ wbl (71)

Now if V is a bundle, we let s(V ) denote its support {g ∈ Γ : Vg 6= 0}.
For an irreducible bundle, the support s(V ) is a single double coset HgK. To
compute the equivariant K-group αKH×K

0 (Γ ), we first take representatives
for the double cosets H \ Γ/K. Then for each double coset HgK we consider
the stabilizer subgroup H ×g K = {(h, k) ∈ H ×K : hg = gk} which is iso-
morphic to H∩ gK and Hg ∩K, where gK = gKg−1,Hg = g−1Hg, under the
projections (h, g−1hg) = (gkg−1, k) → to h and k respectively as h determines
k and vice versa. Then (h, k) : wg → h(wgk) gives a projective representation
of H ×g K on Vg, with multiplier or 2-cocycle
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αg(h, h′) := ψ1(h, h′)ψ2(g−1h′
−1
g, g−1h−1g)α(hh′g, g−1h′

−1
g, g−1h−1g)

×α(h, h′, g)α(h, h′g, g−1h′
−1
g) .

Then the irreducible bundles are labelled by a coset and an irreducible pro-
jective representation of the stabilizer.

Suppose G is a finite group and let Γ = G × G, and ∆(G) = {(g, g) :
g ∈ G} denote the diagonal subgroup which we denote simply by ∆ when
there is no confusion. If ω is a 3-cocycle in Z3(G,T), we define the 3-cocycle
α = π∗1ω − π∗2ω on G × G if π1, π2 are the projections of G × G on the first
and second factors respectively.

The Verlinde algebra NXN for the quantum double of G is then the space
of ∆-∆ bundles or the equivariant K-group K∆×∆

0 (G×G). Since

∆(G)(g, h)∆(G) = ∆(G)(gh−1, 1)∆(G)

for any g, h ∈ G, it is the case that every double coset ∆(G)(g, h)∆(G) gives
rise to a conjugacy class Cgh−1 of ∆(G). Moreover, the stabilizer of (g, h)
equals the centraliser of gh−1, i.e.

(g, h)∆(G)(g−1, h−1) ∩∆(G) = {x ∈ G : xgh−1 = gh−1x}.

Consequently, the primary fields or irreducible bundles are given by pairs
(a, χ) where a are representatives of conjugacy classes of G and χ are irre-
ducible representations of the centraliser CG(a) of a ∈ G.

There are a number of special cases of particular interest. One is when
H = ∆, and ψ = 1. The double cosets ∆ \ Γ/K are labelled by

∆(G)(g, h)K = ∆(G)(gh−1, 1)K

i.e. of the form ∆(x, 1)K where x in G is defined up to an action of (h, k) ∈
K ×K by conjugation x→ hxk−1. For each such x, we identify the stabiliser
subgroup ∆×(x,1)K with the subgroup Kx = {(h1, h2) ∈ K : h1xh

−1
2 = x} of

K. Again, since h2 is determined by h1 the group Kx can be understood as
a subgroup of G through projecting K ⊂ G×G to the first component. The
multiplier ω(x,1) of the subgroup ∆ ×(x,1) K is then regarded as a multiplier
on Kx.

3.1 The Frobenius algebra

For the remaining exposition, we take for simplicity the case of trivial twist or
level zero ω = 1 in Z3(G,T), for a finite group G. The quantum double of the
group G is idenified with the inclusion N = M0 o ∆(G) ⊂ M0 o (G×G) =
M = M∆ where ∆(G) = {(g, g) : g ∈ G} denotes the diagonal subgroup
of G × G. The N -N system is described by Bun∆−∆(Γ ), if Γ = G × G
[KY, KMY, EP2].
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For H a subgroup of G×G, we define an irreducible element ι, a bundle
in BunH−∆(Γ ), using the trivial representation on the trivial double coset:

ι = ιH = [H∆, 0]

and similarly,
ῑ = ῑH = [∆H, 0]

in Bun∆−H(Γ ). Again for simplicity, we take ψ = 1 in Z2(H,T), We compute
the products using [KMY]:

θ = ῑι =
∑

h∈∆∩H\H/∆∩H

[∆h∆, Ind(0)∆
h∩∆

∆h∩H∩∆] ,

γ = ιῑ =
∑

k∈∆∩H\∆/∆∩H

[HkH, Ind(0)H
k∩H

Hk∩H∩∆] ,

in Bun∆−∆(Γ ), BunH−H(Γ ) respectively. The former yields a Frobenius alge-
bra Θ = ΘH , or Q-system in the braided tensor category Bun∆−∆(Γ ). Since
this is identified with the N -N system, we thus have a subfactor N ⊂ MH .
Thus if we have two such subgroups Ha and Hb of Γ , then the corresponding
Ma-Mb system is identified with BunHa−Hb(Γ ) ( the irreducible components
of {ιaλῑb : λ}. In particular, we identify the N -MH sectors with Bun∆−H(Γ )
and the MH -MH system with BunH−H(Γ ).

In particular, for the special cases:

∆ ⊂ H : ῑι =
∑

h∈∆\H/∆

[∆h∆, 0] = [H, 0] ,

H ⊂ ∆ : ῑι = [∆, Ind(0)∆H ] .

3.2 α-induction and modular invariants

We can use the Frobenius algebra Θ = ΘH or Q-system for each H to define
α-induction from Bun∆−∆(Γ ) to BunH−H(Γ ) and hence construct a modular
invariant.

We identify BunH−∆(Γ ), with left Θ modules Bun∆−H(Γ ) with right
Θ modules and BunH−H(Γ ), with Θ-Θ bimodules. More generally, if Θa =
ΘHa , and Θb = θHb

, we identify following [EP2] BunHa−Hb(Γ ) with Θa-
Θb bimodules. Recall that a Θa-Θb bimodule [O1, EP2] is an element M of
Bun∆−∆(Γ ) with morphisms from θa ⊗GM and M ⊗G θb into M satisfying
natural compatibility conditions.

Every irreducible β in BunHa−Hb(Γ ) arises from the decomposition ιaλῑb
with λ in Bun∆−∆(Γ ) . Define now Φ : BunHa−Hb(Γ ) → Θa-Θb-bimodules
by Φ(β) = ῑaβιb for β ∈ BunHa−Hb(Γ ). In particular, Φ(ιaλῑb) = θaλθb.
If β, β′ ∈ BunH1−H2(Γ ), then we map an intertwiner t ∈ Hom(β, β′) to
Φ(t) = ῑatιb ∈ Hom(ῑaβιb, ῑaβ′ιb) = Hom(Φ(β), Φ(β′). Then Φ is a Θa-Θb
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morphism. We note that Φ is injective. Suppose that ῑaβιb ' ῑaβ
′ιb as Θa-

Θb bimodules. Then t = 1ῑa ⊗ t′′ ⊗ 1ιb with t′′ ∈ Hom(β, β′). If t is an
isomorphism so is t′′, therefore β ' β′. That Φ is surjective can be seen by
counting dimension (cf. proof of Lemma 3.1 in [EP2].

In this formulation, α-induction looks as follows. Take a bundle V in
Bun∆−∆(Γ ), and form the bundle V ⊗G θ again in ωBun∆−∆(Γ ). The latter
determines a Θ-Θ bimodule, since θ itself is a Θ-Θ bimodule. Consequently,
V ⊗G θ becomes a Θ-Θ bimodule using the natural action of θ on the right
on θ, and the braiding ε±(V, θ) to hit θ in V ⊗G θ on the left. We can then
identify these induced bimodules α±V with elements of BunH−H(Γ ) using the
previous paragraph.

In the special case when ∆ ⊂ H ⊂ Γ , we can also view this construction
as follows. For a bundle V in Bun∆−∆(Γ ) we form the product ∆-∆ bundle
V ⊗∆ θ. This can be considered as a H-H bundle since θ can be viewed as a
H-H bundle, and so V ⊗∆ θ has a natural right H action on θ, and using the
braiding to identify V ⊗∆ θ with θ ⊗∆ V , which has a natural left H action.
Since we can use the braiding ε+ = ε(V, θ) or its adjoint ε− = ε(V, θ)∗, we can
form two inductions α± in this way. Note that the relation ι⊗GV ' α±V ⊗H ιG
as H-G bundles since ι⊗G V ' (V ⊗G ῑι)⊗H ι, as θ⊗H ι ' ι as H-G bundles.

Any such subgroup ∆ ⊂ H ⊂ Γ , is of the form H = ∆(1, N) = ∆(N, 1),
where N is a normal subgroup of G (or ∆). Indeed N = p(H), where p is
the projection (g1, g2) → g1g

−1
2 from Γ to G. Clearly any such subgroup H is

invariant under the flip σ on Γ . We will see in the examples of Sect. 4 that the
neutral system can be identified with the non-degenerately braided system,
Bun∆(N)−∆(N)(N ×N), i.e. the quantum double of N .

We compute explicitly the induced bundle α±V when V = [∆a∆,χ] is an
irreducible ∆-∆ bundle, with a ∈ Γ and a representation π of the stabiliser
∆a = ∆ ∩ a∆ with character χ. We have

h+(va1b1 ⊗ ea2b2) = ε(V, θ)−1[h(ε(V, θ)(a1(ea2,b2b
−1
2 )⊗ (a−1

1 va1,b1)b2)]

= ε(V, θ)−1[h.(a1(ea2,b2b
−1
2 )⊗ (a−1

1 va1,b1)b2)]

= ε(V, θ)−1[ha1(ea2,b2b
−1
2 ))⊗ (a−1

1 va1,b1)b2]

= h1a1[a−1
1 va1b1b2]b

−1
2 ⊗ (h1a1)−1[ha1(ea2,b2b

−1
2 )]b2

= h1va1b1(ad(a
−1
1 )(h1)⊗ (ad(a−1

1 (h))(ea2,b2) .

We arrive at:

α±[∆a∆,π] = [HaH, Ind∆∩aHa−1

∆∩a∆a−1(π)π±] = [HaH, π±] , (72)

for π ∈ Rep[∆ ∩ a∆a−1] where π± : (h+, h−) → (h+, h+) or (h−,h−) takes
H ∩ aHa−1 → ∆ ∩ aHa−1 .

Let us examine this case ∆ ⊂ H ⊂ Γ when G is abelian. Then

π+(h1, h2) = π(h1), π−(h1, h2) = π(h2).
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This means that:

α+
[a∆,χ] = [aH, (χ× 1)|H ] ,

α−[a∆,χ] = [aH, (1× χ)|H ] . (73)

Now we can write H = ∆ × N , as sets using the identification (a, b) →
(a, a−1b) = (δ, n), so that (χ× 1)|H(a, b) = χ(δ), (1× ψ)|H(a, b) = ψ(δ)ψ(n).
Then

〈(χ× 1)|H , (ψ × 1)|H〉 = 〈χ, ψ〉 ,

〈(χ× 1)|H , (1× ψ)|H〉 = 〈χ, ψ〉〈ψ|N , 1〉 .

Consequently, 〈α+
[a∆,χ], α

+
[b∆,ψ]〉 = 1, if ab−1 ∈ H, χ = ψ, and 0 otherwise.

Moreover, the modular invariant mass matrix is given as 〈α+
[a∆,χ], α

−
[b∆,ψ]〉 = 1

if ab−1 ∈ H, χ = ψ and χ|N = 1, and 0 otherwise.

4 Examples

For a cyclic groups Zd, the primary fields are parametrized by pairs (m,n)
for m,n ∈ Zd (the first factor labels the double cosets and the second the
stabilisers) whose conjugate is (−m,−n), and the S and T matrices:

S(m,n),(m′,n′) = d−1exp[−2π
√
−1(nm′ +mn′)/d] ,

T(m,n),(m,n) = exp[(2π
√
−1nm/d)] . (74)

When d = p is a prime number, the complete list of all modular invariants
is described in [CGP, EP4]. There are four non-permutation modular invari-
ants: Z4 = xx∗,Z7 = xy∗, Z8 = yx∗, and Z5 = yy∗ where x =

∑p−1
i=0 χi0 and

y =
∑p−1
j=0 χ0j . For any prime p > 2, there will be four permutation modular

invariants: Z1 =
∑p−1
i,j=0 χijχ

∗
ij , Z2 =

∑p−1
i,j=0 χijχ

∗
ji, Z3 =

∑p−1
i,j=0 χijχ

∗
−j,−i

and Z6 =
∑p−1
i,j=0 χijχ

∗
−i,−j the charge conjugation. When p = 2, Z6 = Z1

and Z3 = Z2 and we have six distinct modular invariants. When p = 3, there
are precisely eight distinct modular invariants. In the cases p = 2, 3, these
exhaust all the modular invariants.

4.1 G = Z2

Here there are six distinct modular invariants, four of which are symmetric.
All can be realised from subfactors or from module categories. The following
are the 5 subgroups of Z2 × Z2:
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H1 = {(0, 0)} ,
H3 = {(0, 0), (1, 1)} = ∆(Z2) ,

H4 = Z2 × {0} ,
H5 = {0} × Z2 ,

H6 = Z2 × Z2 .

In this case the 2-cohomology groups H2(H,T) are all trivial except for H6

when it is Z2 and only H1, H3 and H6 give rise to type I modular invariants
or commutative Q-systems.
(i) Example: H3 and H6.
The subgroups H3 and H6 contain ∆ with N = 0, and N = G = Z2 re-
spectively. We see that the corresponding modular invariants are Z = 1, and
Xc = xx∗ = Z4.
(ii) Example: H1.
The subgroup H1 ⊂ ∆. To understand α-induction we first take V =
[x, ψ] → ι[x, ψ]ῑ. Now BunH1−H1(Γ ) ' Bun(Γ ), and α±-induction takes
[x, ψ] → [(x, 0)], [(0, x)] respectively. Consequently, the corresponding modu-
lar invariant is Z5 = yy∗ = Xs.
(iii) Example: H4 and H5.
There are two further non symmetric groups H4 = Z2 × {0}, and H5 =
{0}×Z2. Writing H = H4, there are two double cosets H(0, 0) = Z2×{0} and
H(0, 1) = Z2×{1}, both with stabilisers H, so that there are four irreducible
objects in BunH4−H4(Γ ) which we write as [[i, j]], where i = 0, 1 represents the
double coset H(0, i), and j is a character of H. The double cosets decompose
as

H∆(0, 0)∆H = H∆ = H(0, 0) +H(0, 1) ,

H∆(0, 1)∆H = H(0, 0) +H(0, 1) .

Then α-induction gives:

α0,0 = [[0, 0]] ,

α+
0,1 = [[0, 0]] , α−0,1 = [[0, 1]] ,

α+
1,0 = [[1, 0]] , α−1,0 = [[0, 0]] ,

α+
1,1 = [[1, 0]] , α−1,1 = [[0, 1]] .

This gives the modular invariant Q = xy∗ and Qt = yx∗.
(iv) Example: H6 with nontrivial twist. This yields the permutation invariant
Z2 = Z3.

4.2 G = Z3

Here there are 8 distinct modular invariants. All can be realised from subfac-
tors or module categories. The following are the 6 subgroups of Z3 × Z3:
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H1 = {(0, 0)} ,
H2 = {(0, 0), (1, 2), (2, 1)} ,
H3 = {(0, 0), (1, 1), (2, 2)} = ∆(Z3) ,

H4 = Z3 × {0} ,
H5 = {0} × Z3 ,

H6 = Z3 × Z3. .

In this case the cohomology H2(H,T) is nontrivial only for H6 when it is Z3.
OnlyH1,H2,H3 andH6 give rise to type I modular invariants or commutative
Q-systems. As for Z2, the subgroups H3 and H6 give the modular invariants
Z1 = 1 and Z4 = xx∗ respectively and H1 gives Z5 = yy∗. The subgroups H4

and H5 give Z7 = xy∗ and Z8 = yx∗, whilst H6 with its nontrivial twists from
H2 = Z3 give Z2 and Z3. The remaining subgroup H2 yields the conjugation
invariant Z6.

4.3 G = S3

There are 48 distinct modular invariants but only 28 can be realised from sub-
factors from module categories. There are 22 distinct non-conjugate subgroups
of S3 × S3, which together with some non-trivial 2-cohomology is enough to
produce all the 28 invariants. The following are the subgroups of S3×S3 which
give rise to type I modular invariants or commutative Q-systems:

H1 = {(1, 1)} ,
H4 = ∆(Z2) ,

H7 = ∆(Z3) ,

H8 = Z2 × Z2 ,

H11 = ∆(S3) ,

H14 = Z3 × Z3 ,

H19 = K = ∆(S3) · (1× Z3) ' (Z3 × Z3) o Z2 ,

H20 = S3 × S3 .

The 2-cohomology H2(H,T) is non trivial only for H8,H14,H19,H20 in the
above list as well as for Z2 × S3 and S3 × Z2.

The group S3 is generated by σ and τ , with σ3 = τ2 = 1, τστ = σ2. There
are three ∆-∆ double cosets: ∆(1, 1)∆,∆(σ, 1)∆,∆(τ, 1)∆, with stabilisers
isomorphic to S3,Z3,Z2, respectively. Denote the correspoding irreducible
representations by {1, ε, π}, (where ε is the parity and π the two dimensional
representation), {1, ω, ω2},{1, ε}, and we denote in this order the correspond-
ing irreducible bundles as {0, 1, 2, 3, 4, 5, 6, 7} as usual as in [CGP, EP2].
(i) Example: H11 = ∆(S3) ,H19 = (Z3 × Z3) o Z2 ,H20 = S3 × S3 .
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The subgroups H11,H19,H20 contain ∆ and (in the case of the untwisted 2-
cohomology) have corresponding modular invariants 1, Z(33), Z55 respectively:

Z(33) = |χ0 + χ3|2 + |χ1 + χ3|2 + |χ6|2 + |χ7|2 ,
Z55 = |χ0 + χ3 + χ6|2 .

Next consider the symmetric cases contained in ∆, namely H1,H4 and H7

(where H2 always vanishes).
(ii) Example: H1 = {(1, 1)} .
Take an irreducible bundle [∆k∆,ψ] of Bun∆−∆(Γ ), where ψ is an irreducible
representation of the stabiliser ∆k of the double coset ∆k∆. Then, for the
subgroup H1 = 0, α±-induction is again [∆(g, 1)∆,ψ] → dim(ψ)[(g, 1)] and
dim(ψ)[(1, g)] respectively, so that the corresponding modular invariant is

〈α+[∆(g, 1)∆,ψ], α−[∆(h, 1)∆,χ]〉 = dim(ψ)dim(χ)[δg,1, δh,1],

i.e. the mass matrix Z22:

Z22 = |χ0 + χ1 + 2χ2|2

There are two further subgroups contained in ∆, namely H4 = ∆(Z2) and
H7 = ∆(Z3).
(iii) Example: H4 = ∆(Z2) .
Consider first the case H = H4, which has ten double cosets:

H(1, 1)H = H,H(1, σ)H,H(σ, 1)H,H(σ, σ)H,H(σ, σ2)H,

H(1, στ)H,H(στ, 1)H,H(στ, σ)H,H(στ, σ2)H,H(1, τ)H ,

with corresponding stabilisers Z2 for the first and last listed cosets and 1 for
the remaining eight cosets, giving twelve irreducible bundles in BunH−H(Γ ).
We decompose as H-H double cosets:

H∆(1, 1)∆H = H(1, 1)H +H(σ, σ)H ,

H∆(σ, 1)∆H = H(σ, 1)H +H(σ, σ2)H +H(1, σ)H ,

H∆(τ, 1)∆H = H(τ, 1)H +H(στ, 1)H +H(1, στ)H

+ H(σ, στ)H +H(στ, σ2)H .

Then α-induction becomes:
α1,1 = [(1, 1), 0)] ,

α±1,ε = [(1, 1), 1)] ,

α±1,π = [(1, 1), 0)] + [(1, 1), 1)] ,

α±(σ,1),1 = [(σ, 1), 0)] , [(1, σ), 0)] ,

α±(σ,1),ω = [(σ, 1), 0)] , [(1, σ), 0)] ,

α±(σ,1),ω2 = [(σ, 1), 0)] , [(1, σ), 0)] ,

α±(τ,1),1 = [(τ, 1), 0)] + [(στ, 1), 0] , [(1, τ), 0)] + [(1, στ), 0] ,

α±(τ,1),ε = [(τ, 1), 1)] + [(στ, 1), 0] , [(1, τ), 1)] + [(1, στ), 0] .
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Consequently, we have the irreducible objects [α±0 ], [α±1 ], [α±2 ] = [α0]⊕ [α±1 ],
[α±3 ] = [α±4 ] = [α±5 ], [α±6 ] = [α±(1)

6 ] ⊕ [α±(2)
6 ] and [α±7 ] = [α±(1)

6 ] ⊕ [α±(2)
7 ].

Moreover, [α+
1 ] = [α−1 ] denoted henceforth by [α1], [α+(2)

6 ] = [α−(2)
6 ] denoted

from now by [α(2)
6 ] and similarly [α(2)

7 ]. Thus MX 0
M = {α0, α1, α

(2)
6 , α

(2)
7 }.

Also the X±-chiral systems are MX
±
M = {α0, α1, α

(2)
6 , α

(2)
7 , α±3 , α

±(1)
6 }. The

corresponding modular invariant is Z(22):

Z(22) = |χ0 + χ2|2 + |χ1 + χ2|2 + |χ6|2 + |χ7|2

(iv) Example: H7 = ∆(Z3).
The next case H = H7 has 8 double cosets:

H(1, 1) = H,H(1, σ)H = H(1, σ),H(1, σ2)H = H(1, σ2),H(1, τ)H = (Z3×Z3)(1, τ),

H(τ, 1)H = (Z3 × Z3)(τ, 1),H(τ, τ)H = H(τ, τ),H(στ, τ)H,H(σ2τ, τ)H ,

with corresponding stabilisers Z3,Z3,Z3, 1, 1,Z3,Z3,Z3 respectively giving
twenty irreducible objects in BunH7−H7(Γ ). We decompose as H-H double
cosets:

H∆(1, 1)∆H = H(1, 1)H +H(τ, τ)H ,

H∆(σ, 1)∆H = H(1, σ)H +H(τ, στ)H +H(στ, τ)H +H(1, σ2)H ,

H∆(τ, 1)∆H = H(1, τ)H +H(τ, 1)H .

Then α-induction becomes:

α1,1 = [(1, 1), 0)] ,

α±1,ε = [(1, 1), 0)] ,

α±1,π = [(1, 1), ω)] + [(1, 1), ω2)] ,

α±(σ,1),1 = [(σ, 1), 1)] + [(1, σ), 1)] ,

α±(σ,1),ω = [(σ, 1), ω)] + [(1, σ), ω2)] ,

α±(σ,1),ω2 = [(σ, 1), ω2)] + [(1, σ), ω)] ,

α±(τ,1),1 = [(τ, 1), 1)] , [(1, τ), 1] ,

α±(τ,1),ε = [(τ, 1), 1)] , [(1, τ), 1] .

Consequently, we have the irreducible objects: [α±0 ] = [α±1 ], [α±2 ] = [α±(1)
2 ]⊕

[α±(2)
2 ], [α±3 ] = [α±(1)

3 ]⊕ [α±(2)
3 ], [α±4 ] = [α±(1)

4 ]⊕ [α±(2)
4 ], [α±5 ] = [α±(1)

5 ]⊕
[α±(2)

5 ], [α±6 ] = [α±7 ], with [α±0 ], [α±(i)
j ] and [α±6 ] irreducible sectors (i =

1, 2; j = 2, 3, 4, 5). The commutative neutral system as sectors is formed with
nine automorphisms [α0], [α

(i)
j ], with i = 1, 2; j = 2, 3, 4, 5 isomorphic to

Z3×Z3. Hence the system MX
±
M = MX 0

M ∪{α±6 }, with the other fusion rules
given by [α(i)

j ][α±6 ] = [α±6 ][α(i)
j ] = [α±6 ], i = 1, 2; j = 2, 3, 4, 5. The other nine

irreducible objects are from the decomposition:
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α+
6 α

−
6 =

∑
i,j

[(τ, σiτ), ωj ] .

The corresponding modular invariant is:

Z5 = |χ0 + χ1|2 + 2|χ2|2 + 2|χ3|2 + 2|χ4|2 + 2|χ5|2 .

There are two further symmetric groups H8 = Z2×Z2, and H14 = Z3×Z3.
(vi) Example: H8 = Z2×Z2. Here with H = H8, there are four double cosets:

H(1, 1)H = H,H(σ, 1)H,H(1, σ)H,H(σ, σ)H

with stabilisers Z2 × Z2 , 1× Z2 ,Z2 × 1 , 1 respectively so that there are nine
irreducible objects in BunH−H(Γ ). We decompose as H-H double cosets:

H∆(1, 1)∆H = H(1, 1)H +H(σ, σ)H ,

H∆(σ, 1)∆H = H(1, σ)H +H(σ, 1) +H(σ, σ)H ,

H∆(τ, 1)∆H = H(1, 1)H +H(1, σ)H +H(σ, 1) +H(σ, σ)H .

Then α-induction becomes:

α1,1 = [(1, 1), 0)] ,

α±1,ε = [(1, 1), (1, 0))] , [(1, 1), (0, 1))] ,

α±1,π = [(1, 1), 0)] + [(1, 1), (1, 0)] , [(1, 1), 0)] + [(1, 1), (0, 1)] ,

α±(σ,1),1 = [(σ, 1), (0, 0)] , [(1, σ), (0, 0)] ,

α±(σ,1),ω = [(σ, 1), (0, 0)] , [(1, σ), (0, 0)] ,

α±(σ,1),ω2 = [(σ, 1), (0, 0)] , [(1, σ), (0, 0)] ,

α±(τ,1),1 = [(1, 1), 0] + [(σ, 1), 0] , [(1, 1), 0] + [(1, σ), 0] ,

α±(τ,1),ε = [(1, 1), (1, 0)] + [(σ, 1), (1, 0)] , [(1, 1), (0, 1)] + [(1, σ), (0, 0)] .

So computing we get that MX
±
M = {α0, α

±
1 , α

±
3 } with [α±2 ] = [α0] ⊕

[α±1 ], [α±5 ] = [α±4 ] = [α±3 ], [α±6 ] = [α0] ⊕ [α±3 ], [α±7 ] = [α±1 ] ⊕ [α±3 ]. The
sectors of MX

±
M are Ŝ3. The corresponding modular invariant is

Z44 = |χ0 + χ2 + χ6|2 .

(vi) Example: H = H14 = Z3 × Z3.
Taking H = H14, we have four double cosets:

H(1, 1)H = H ,H(τ, 1)H ,H(1, τ)H,H(τ, τ)H ,

all with stabilisers H so that there are 36 irreducible objects in BunH−H(Γ ).
We decompose as H-H double cosets:



Twisted K-theory and Modular Invariants 25

H∆(1, 1)∆H = H(1, 1)H +H(τ, τ)H ,

H∆(σ, 1)∆H = H(1, 1)H +H(τ, τ)H ,

H∆(τ, 1)∆H = H(1, τ)H +H(τ, 1)H .

Then α-induction becomes:

α1,1 = [(1, 1), 1)] ,

α±1,ε = [(1, 1), 1] ,

α±1,π = 2[(1, 1), 1] ,

α±(σ,1),1 = [(1, 1), (ω, 1)] + [(1, 1), (ω2, 1)] , [(1, 1), (1, ω)] + [(1, 1), (1, ω2)] ,

α±(σ,1),ω = [(1, 1), (ω, 1)] + [(1, 1), (ω2, 1)] , [(1, 1), (1, ω)] + [(1, 1), (1, ω2)] ,

α±(σ,1),ω2 = [(1, 1), (ω, 1)] + [(1, 1), (ω2, 1)] , [(1, 1), (1, ω)] + [(1, 1), (1, ω2)] ,

α+
(τ,1),1 = [(τ, 1), (1, 1)] + [(τ, 1), (ω, 1)] + [(τ, 1), (ω2, 1)] ,

α−(τ,1),1 = [(1, τ), (1, 1)] + [(1, τ), (1, ω)] + [(1, τ), (1, ω2)] ,

α+
(τ,1),ε = [(τ, 1), (1, 1)] + [(τ, 1), (ω, 1)] + [(τ, 1), (ω2, 1)] ,

α−(τ,1),ε = [(1, τ), (1, 1)] + [(1, τ), (1, ω)] + [(1, τ), (1, ω2)] .

Hence we have the chiral system:

MX+
M = {α0, α

+(1)
3 , α

+(2)
3 , α

+(1)
6 , α

+(2)
6 , α

+(3)
6 }

with [α0] = [α+
1 ], [α+

2 ] = 2[α0], [α+
3 ] = [α+

4 ] = [α+
5 ] = [α+(1)

3 ] ⊕ [α+(2)
3 ],

[α+
7 ] = [α+

6 ] = [α+(1)
6 ]⊕ [α+(2)

6 ]⊕ [α+(3)
6 ], and similarly

MX−
M = {α0, α

−(1)
3 , α

−(2)
3 , α

−(1)
6 , α

−(2)
6 , α

−(3)
6 } .

We can conclude that MX
±
M is as sectors S3. The corresponding modular

invariant is Z33:
Z33 = |χ0 + χ1 + 2χ3|2 .
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