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Summary. We extend Rørdam’s stable classification result for purely infinite C∗-
algebras with exactly one non-trivial ideal to allow for the lifting of an isomorphism
on the level of the invariants to a ∗-isomorphism, and to allow for unital isomorphism
when the isomorphisms of the invariant respect the relevant classes of units.

1 Introduction

Rørdam in [14] establishes that the six term exact sequence

K0(A)
ι∗ // K0(E)

π∗ // K0(E/A)

∂

��
K1(E/A)

∂

OO

K1(E)
π∗

oo K1(A)
ι∗

oo

(1)

is a complete invariant for stable isomorphism of C∗-algebras E with precisely
one non-trivial ideal A, provided that the ideal A and the quotient E/A are
both in the class of purely infinite simple C∗-algebras classified by Kirchberg
and Phillips ([9]).

Most classification results of C∗-algebras by K-theoretical invariants are
established in such a way that one with little or no extra effort can prove
that any isomorphism between a pair of invariants may be lifted to a
∗-isomorphism. It is often also easy to pass between results yielding stable
isomorphism for general C∗-algebras and isomorphism of unital C∗-algebras
in a certain class, by adding or leaving out the class of the unit in the invariant.

Rørdam’s classification result forms a notable exception to these two rules.
Indeed, there is no obvious way to extract from Rørdam’s proof a way to estab-
lish these kinds of sligthly improved classification results. It is the purpose
of this note to show that by invoking more recent results by Bonkat and
Kirchberg, one may prove such results in the class considered by Rørdam.
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Using the language promoted by Elliott ([6]) this proves that the classification
functor used by Rørdam is indeed a strong classification functor.

We are first going to prove, by straightforward observations on central
results in Bonkat’s thesis, that every isomorphism among invariants of the type
(1) – i.e., a 6-tuple of coherent group isomorphisms – lifts to a ∗-isomorphism.
With this in hand we can then prove a unital classification result by appealing
to a useful principle which we shall develop in a rather general context.

An update on the status of the work of Bonkat may be in order. Bonkat sets
out to reprove the classification result of Rørdam using Kirchberg’s results.
However, the class classified by Bonkat is, a priori, smaller than the class
classified by Rørdam, and to prove that they coincide in this case, Bonkat
is forced to appeal to Rørdam’s result. Fortunately, more recent results by
Kirchberg or Toms and Winter ([16]) show in a direct way that the classes
coincide, rendering Bonkat’s proof truly independent of [14]. More details are
given after Lemma 4.

2 Bonkat’s method

We shall concentrate on C∗-algebras E having exactly one non-trivial ideal A,
noting that this is the case exactly when the extension

0 // A
ι // E

π // E/A // 0 (2)

is essential and the C∗-algebras A and E/A are simple. The primitive ideal
spectrum of such C∗-algebras we denote by X1; it has two points of which the
closure of one is the whole space while the other point is closed.

Kirchberg proves in [7, Corollary N] (cf. [8, Folgerung 4.3]) a result which in
the case of C∗-algebras with one non-trivial ideal specializes to the following:

Theorem 1. Let E and E′ be strongly purely infinite, separable, stable and nu-
clear C∗-algebras, each with exactly one non-trivial ideal. If z ∈ KK(X1;E,E′)
is a KK(X1;−,−)-equivalence then there exists a ∗-isomorphism

φ : E −→ E′

with [φ] = z.

Analogously to the characterization of the bifunctor KK by universal
means (cf. [1, Corollary 22.3.1] we may describe KK(X1;−,−) by the uni-
versal property that any stable, homotopy invariant and split exact functor
from the category of extensions of separable C∗-algebras into an additive cat-
egory factorises uniquely through KK(X1;−,−). Strong pure infiniteness is
considered in [11], and it is shown that a separable, stable and nuclear C∗-
algebra E is strongly purely infinite if and only if E absorbs O∞, i.e. if and
only if E ∼= E⊗O∞.
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This extremely general and powerful result should be considered as an
isomorphism theorem allowing one to conclude from the existence of a very
weak kind of isomorphism, at the level of ideal-preserving KK-theory, the
existence of a genuine ∗-isomorphism at the level of C∗-algebras.

This result could be turned into a bona fide classification result for such
algebras with one non-trivial ideal by a suitable universal coefficient theorem
allowing one to lift an isomorphism at the level of K-theory to one at the level
of ideal-preserving KK. And by a very generally applicable trick originating
with Rosenberg and Schochet, cf. Lemma 3 below, all one seems to need is a
surjective group homomorphism

KK(X1;E,E′) −→ Hom(k(E), k(E′)).

where k is an appropriately chosen variant of K-theory. The main challenge
for carrying out such a program thus becomes to identify a feasible flavour
of K-theory to use as k(−), and to establish the existence of such an epimor-
phism. However, we are aware of no approach to doing so which does not also
involve identifying the kernel of this map.

Indeed, this is exactly what Bonkat manages to do in his thesis work [2] in
the case when Rørdam’s classification result indicates that the correct flavor
of K-theory is the class of six term exact sequences considered in [14], thus
providing an alternative proof for many of the results there.

A UCT for Kirchberg’s KK(X1;−,−) is established in [2] as follows.
Bonkat works in the category of 6-periodic complexes

G

G0
φ0 // G1

φ1 // G2

φ2

��
G5

φ5

OO

G4
φ4

oo G3
φ3

oo

of abelian groups and group homomorphisms, which he establishes is additive.
For two such complexes G and G′ the natural notion of homomorphisms is
the abelian group of coherent 6-tuples of group homomorphisms:

Hom9(G,G′) = {(ξi)5i=0 | ξi : Gi −→ G′i, φ
′
iξi = ξi+1φi}

Note that any C∗-algebra E with precisely one non-trivial ideal A gives rise
to a 6-periodic complex

K0(A)
ι∗ // K0(E)

π∗ // K0(E/A)

∂

��
K1(E/A)

∂

OO

K1(E)
π∗

oo K1(A)
ι∗

oo

which we may denote K9(E) without risk of confusion, and that any ∗-isomor-
phism φ : E −→ E′ (as well as any other ∗-homomorphism sending A into A′)
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induces an element φ∗ ∈ Hom9(K9(E),K9(E′)). We let K9+1(E) denote the
complex obtained by shifting the groups by three indices.

Bonkat identifies the projective objects in this category as those com-
plexes which are exact and have projective, i.e. free, groups at each entry and
proves that there are enough projectives so that the Hom9-functor of coher-
ent 6-tuples defines left derived functors Extn

9. It is then proved ([2, Korollar
7.2.14]) that all exact such periodic complexes have a projective resolution of
length at most one, and by giving in [2, Abschnitt 7.4] a geometric resolution
– i.e. a realization at the level of C∗-algebras – of this, Bonkat arrives at the
following universal coefficient theorem

Theorem 2. [2, Cf. Satz 7.5.3] Let E and E′ be separable C∗-algebras each
with exactly one non-trivial ideal A and A′, respectively. Assume further that
A,A′,E/A and E′/A′ lie in the UCT class N . There is a short exact sequence

Ext19(K9(E),K9+1(E′)) // KK(X1;E,E′) Γ // Hom9(K9(E),K9(E′))

Along the way Bonkat works in a different picture of KK(X1;E,E′); the
differences are explained in [2, Abschnitt 5.6]. By naturality of the UCT one
proves as in [15, Proposition 7.3]:

Lemma 3. [2, Proposition 7.7.2] Let E and E′ be as in Theorem 2. The ele-
ment z ∈ KK(X1;E,E′) is an equivalence precisely when

Γ (z) ∈ Hom9(K9(E),K9(E′))

is a 6-tuple of group isomorphisms.

Following Rørdam we say that a C∗-algebra is a Kirchberg algebra if it is
purely infinite, simple, nuclear and separable. We need to use the following:

Lemma 4. Let E be an essential extension of two stable Kirchberg algebras
from the UCT class N . Then E is strongly purely infinite.

In Bonkat’s thesis ([2, Satz 7.8.8]) this is established using Rørdam’s clas-
sification, but more recent results by Kirchberg or (using the fact that strong
purely infiniteness coincides with O∞-stability in this case) by Toms and Win-
ter [16, Theorem 4.3] this may be proved directly.

Theorem 5. Let E and E′ be C∗-algebras each with exactly one non-trivial
ideal A and A′, with the property that A,A′,E/A,E′/A′ are all Kirchberg al-
gebras in the UCT class N . Any invertible element of Hom9(K9(E),K9(E′))
can be realized by a ∗-isomorphism φ : E⊗K −→ E′ ⊗K.

Proof. We may assume that E and E′ are themselves stable. By Lemma 3
and Theorem 2 there exists an equivalence γ ∈ KK(X1;−,−) realizing this
6-tuple of morpisms. Thus by Theorem 1 and Lemma 4 the map is realized
by a ∗-isomorphism φ : E −→ E′.
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Corollary 6. Let E be a C∗-algebra with exactly one non-trivial ideal A, with
the property that A and E/A are both stable Kirchberg algebras in the UCT
class N . The map

Aut(E) −→ Aut9(K9(E))

is surjective.

It would be interesting to investigate when two such realizing ∗-isomorphisms
φ, φ′ were approximately unitarily equivalent. It is necessary that φ and φ′

induce the same map on K∗(E;Z/n),K∗(A;Z/n), and K∗(B;Z/n) for any
n ∈ {2, 3 . . . }, and it is tempting to conjecture that this condition is also
sufficient. It is, however, not even clear that any automorphism on a six term
exact sequence of total K-theory lifts to a ∗-automorphism.

3 Unital classification

Using the main theorem of preceding section, Theorem 5, we will extend
Rørdam’s stable classification to allow for unital isomorphism when the iso-
morphisms of the invariant respect the relevant classes of units. This will be
done by appealing to a useful principle which we shall develop in a rather
general context. First we need some facts about properly infinite projections.

In [5] Cuntz considers C∗-algebras A that contain a set P of projections
satisfying the following conditions:

(Π1) If p, q ∈ P and p ⊥ q, then p + q ∈ P.
(Π2) If p ∈ P and p′ is a projection in A such that p ∼ p′, then p′ ∈ P.
(Π3) For all p, q ∈ P, there is p′ ∈ P such that p ∼ p′, p′ < q and q−p′ ∈ P.
(Π4) If q is a projection in A, which majorizes an element of P, then q ∈ P.

If p is a projection in a C∗-algebra, then we let [p] denote the Murray–von
Neumann equivalence class of this projection. Cuntz shows in [5, Theorem 1.4]
following theorem:

Theorem 7. Let A be a C∗-algebra with a non-empty set P ⊆ A of pro-
jections satisfying (Π1), (Π2) and (Π3) above. Then G = {[p] | p ∈ P} is a
group with the natural addition [p]+[q] = [p′+q′], where p′, q′ ∈ P are chosen
such that p ∼ p′, q ∼ q′ and p′ ⊥ q′ by (Π3). Moreover, if A is unital and P
also satisfies (Π4), then G 3 [p] 7→ [p]0 ∈ K0(A) defines a group isomorphism.

Recall that a projection p in a C∗-algebra A is called full if A is the
only ideal in A containing p, and p is called properly infinite if there exist
projections p1, p2 ≤ p in A such that p1 ⊥ p2 and p1 ∼ p2 ∼ p. See e.g. [10]
and [11] for more on infinite projections and related topics.

Lemma 8. Let A be a C∗-algebra and let P be the set of full, properly infinite
projections in A. Then P satisfies (Π1), (Π2), (Π3) and (Π4).
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Proof. (Π1): Suppose there are given projections p, q ∈ P with p ⊥ q. Then
there exist projections p1, p2, q1, q2 in A such that

p1, p2 ≤ p, q1, q2 ≤ q, p1 ⊥ p2, q1 ⊥ q2, p1 ∼ p2 ∼ p, q1 ∼ q2 ∼ q.

Put r1 = p1 + q1, r2 = p2 + q2 and r = p+ q. It is easy to check that these are
projections satisfying r1, r2 ≤ r, r1 ⊥ r2 and r1 ∼ r2 ∼ r; i.e. r is properly
infinite. Clearly r is full, so r ∈ P.

(Π2): Let there be given projections p ∈ P and p′ ∈ A such that p ∼ p′.
Then there exist orthogonal projections p1, p2 ≤ p, such that p1 ∼ p2 ∼ p,
and there exists a partial isometry v ∈ A such that p = vv∗ and p′ = v∗v.
Define p′1 = v∗p1v and p′2 = v∗p2v. Then one easily shows, that p′1 and p′2
are orthogonal projections such that p′1, p

′
2 ≤ p′ and p′1 ∼ p′2 ∼ p′. From

p = p2 = vv∗vv∗ = vp′v∗ it is clear that p′ is full. Hence p′ ∈ P
(Π4): Let q be a projection in A such that p ≤ q for a p ∈ P. Then p - q,

and hence q is properly infinite by [10, Lemma 3.8] (see Section 2 in the same
paper for more on Cuntz comparison -). From p ≤ q we immidiately get that
pq = p, so q is clearly full. Thus we have shown that q ∈ P.

(Π3): Let p, q ∈ P be given projections. Then the ideal AqA generated
by q is A (q is full). According to [10, Proposition 3.5] we have p - q, i.e.
there exists a projection p′ ≤ q such that p ∼ p′. So there exist orthogonal
projections p′1, p

′
2 ≤ p′ in A such that p′1 ∼ p′2 ∼ p′. The projection p is in P,

which by (Π2) implies that p′1, p
′
2 ∈ P. From p′1 +p′2 ≤ p′ ≤ q we deduce that

p′2 ≤ q − p′1 < q. From (Π4) we get q − p′1 ∈ P, because p′2 ∈ P.

Analogous to Brown’s result ([3, Corollary 2.7]) one easily proves the fol-
lowing theorem:

Theorem 9. Let p be a full projection in a separable C∗-algebra A. Then the
embedding ι : pAp → A induces an isomorphism K0(ι) : K0(pAp) → K0(A).

Proposition 10. Let p and q be full, properly infinite projections in a sepa-
rable C∗-algebra A. Then [p]0 = [q]0 if and only if p is Murray–von Neumann
equivalent to q.

Proof. Let p and q be full, properly infinite projections in a separable C∗-alge-
bra A. Assume that [p]0 = [q]0. We want to show, that p ∼ q. By (Π3) we can
w.l.o.g. assume that p ⊥ q. Put r = p + q.

The hereditary corner algebra rAr of A is unital. The set P of full, prop-
erly infinite projections in rAr contains p and q. By Theorem 9, [p]0 = [q]0
in K0(rAr). By Cuntz’ result is p ∼ q (in rAr).

The claims in this proposition are stated several places in the literature
for unital C∗-algebras without the separability condition, but the proofs do
not readily generalize to the non-unital case. It is likely that one can get by
without the separability condition – it may even be a known result – but we
will not need this here.

We can use Cuntz’ argument in the proof of [13, Theorem 6.5] to prove
the following meta-theorem:
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Theorem 11. Let C be a subcategory of the category of C∗-algebras, and let
F : C → D be a covariant functor defined on this subcategory. Assume that

(i) For every C∗-algebra A in C , A⊗K belongs to C , and the ∗-homomorphism
A 3 a 7→ a⊗e ∈ A⊗K induces an isomorphism from F(A) onto F(A⊗K),
where e is a minimal projection in K.

(ii) For all stable C∗-algebras A and B in C , every isomorphism from F(A)
to F(B) is induced by a ∗-isomorphism from A to B.

(iii) There exists a covariant functor G from D into the category of abelian
groups such that G ◦ F = K0

Let A and B be unital, properly infinite, separable C∗-algebras from C . If
there exists an isomorphism ρ from F(A) onto F(B), such that G(ρ) maps
[1A]0 onto [1B]0, then the C∗-algebras A and B are ∗-isomorphic. (If A⊗K
and B⊗K have the cancellation property, we may omit the assumption of the
algebras being properly infinite.)

Proof. Let ρ : F(A) → F(B) be an isomorphism such that α = G(ρ) maps [1A]0
onto [1B]0, i.e. α([1A]0) = [1B]0. Let e denote a minimal projection in K. The
homomorphisms A 3 a 7→ a⊗ e ∈ A⊗K and B 3 b 7→ b⊗ e ∈ B⊗K induce
isomorphisms from F(A) to F(A ⊗ K) and from F(B) to F(B ⊗ K), resp.
Therefore we get an induced isomorphism ρ̃ from F(A⊗K) to F(B⊗K), with
α̃ = G(ρ̃) being an isomorphism from K0(A ⊗ K) to K0(B ⊗ K) such that
α̃([1A ⊗ e]0) = [1B ⊗ e]0.

By assumption, ρ̃ (and therefore also α̃) is induced by a ∗-isomorphism
φ : A⊗K → B⊗K. So

[φ(1A ⊗ e)]0 = K0(φ)([1A ⊗ e]0) = α̃([1A ⊗ e]0) = [1B ⊗ e]0.

The projections φ(1A ⊗ e) and 1B ⊗ e are full and properly infinite – we
show this only for 1B ⊗ e (φ is a ∗-isomorphism). It is clear that 1B ⊗ e
is a full projection. The projection 1B is properly infinite, so there exist
partial isometries u1 and u2 such that u1u

∗
1 = u2u

∗
2 = 1B and u∗1u1 ⊥ u∗2u2;

from this we see that (u1 ⊗ e)(u1 ⊗ e)∗ = 1B ⊗ e = (u2 ⊗ e)(u2 ⊗ e)∗ and
(u1⊗e)∗(u1⊗e)(u2⊗e)∗(u2⊗e) = u∗1u1u

∗
2u2⊗e = 0. We have thus shown that

the projection is properly infinite. By Proposition 10, therefore φ(1A ⊗ e) is
Murray–von Neumann equivalent to 1B⊗e. So there exists a partial isometry v
such that

vv∗ = 1B ⊗ e and v∗v = φ(1A ⊗ e).

Then x ⊗ e 7→ vφ(x ⊗ e)v∗ is a ∗-isomorphism from A ⊗ Ce onto B ⊗ Ce.
Because it is

• well-defined: For all x ∈ A is

vφ(x⊗ e)v∗ = (1B ⊗ e)vφ(x⊗ e)v∗(1B ⊗ e) ∈ B⊗ Ce.
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• a homomorphism: The map x ⊗ e 7→ vφ(x ⊗ e)v∗ is clearly linear and
∗-preserving. For x, y ∈ A is

vφ(xy ⊗ e)v∗ = vφ(x⊗ e)φ(1A ⊗ e)φ(y ⊗ e)v∗ = vφ(x⊗ e)v∗vφ(y ⊗ e)v∗.

• surjective: Let y ∈ B be given. Then there exists x ∈ A ⊗ K such that
φ(x) = v∗(y ⊗ e)v. So

vφ((1A ⊗ e)x(1A ⊗ e))v∗ = vφ(x)v∗ = vv∗(y ⊗ e)vv∗ = y ⊗ e.

Because (1A ⊗ e)x(1A ⊗ e) ∈ A⊗ Ce the homomorphism is surjective.
• injective: Let x, y ∈ A. If vφ(x⊗ e)v∗ = vφ(y ⊗ e)v∗, then

φ(x⊗ e) = φ(1A ⊗ e)φ(x⊗ e)φ(1A ⊗ e) = v∗vφ(x⊗ e)v∗v
= v∗vφ(y ⊗ e)v∗v = φ(1A ⊗ e)φ(y ⊗ e)φ(1A ⊗ e) = φ(y ⊗ e)

and, consequently, x = y.

Corollary 12. Let A,A′,B and B′ be Kirchberg algebras from the UCT
class N , and assume that E and E′ are unital, essential extensions:

0 // A
ι // E

π // B // 0

0 // A′
ι′ // E′

π′
// B′ // 0.

Then E ∼= E′ if and only if there exists an isomorphism between the six term
exact sequences from K-theory mapping [1E]0 onto [1E′ ]0.

Proof. By [14, Proposition 4.1] E and E′ are properly infinite. This Corollary
follows now directly from the Theorems 5 and 11 (where the objects of the
subcategory are the C∗-algebras, which are essential extensions of Kirchberg
algebras from the UCT class N , and the morphisms are the ∗-homomorphisms
mapping the non-trivial essential ideal into the non-trivial essential ideal).

Let 0 → A → E → B → 0 be an essential extension of (non-zero) Kirch-
berg algebras. It is well known that Kirchberg algebras are either stable or
unital. This forces A to be stable. Then, as pointed out in [14], there are three
kinds of extensions: (i) E (and hence B) is unital, (ii) B is unital but E has no
unit, and (iii) B (and hence E) has no unit. In the latter case, both E and B
are stable. Assuming that the algebras belong to the UCT class N , we have
classified the algebras of the first type up to ∗-isomorphism, while Rørdam has
classified the algebras of the third type up to ∗-isomorphism. What remains
is to classify the algebras in the intermediate case, where E is neither unital
nor stable1.
1 Note added in proof: This problem has been solved by the second named author

and Efren Ruiz in On Rørdam’s classification of certain C∗-algebras with one
non-trivial ideal, II, preprint, 2006. The range question for the case considered in
the present paper is also addressed there.
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Corollary 13. Let A and A′ be non-degenerate {0, 1}-matrices in the follow-
ing block form

A =
(

M 0
X N

)
, A′ =

(
M ′ 0
X ′ N ′

)
,

where N and N ′ are irreducible non-permutation matrices, the maximal
non-degenerate principal submatrices of M and M ′ are irreducible non-
permutationmatrices, X 6= 0, and X ′ 6= 0. So the matrices A and A′ satify
condition (II) of Cuntz ([4]) and the Cuntz-Krieger algebras OA and OA′ have
exactly one non-trivial closed ideal.

Then OA
∼= OA′ if and only if there exist isomorphisms

γ1 : ker(I −NT) → ker(I −N ′T),

α0 : cok(I −MT) → cok(I −M ′T),

β0 : cok(I −AT) → cok(I −A′
T)

such that

ker(I −NT)
y 7→[XTy]//

∼= γ1

��

cok(I −MT)
[x] 7→[ x

0 ]
//

∼= α0

��

cok(I −AT)

∼= β0

��
ker(I −N ′T)

y 7→[X′Ty]// cok(I −M ′T)
[x] 7→[ x

0 ]
// cok(I −A′

T)

commutes and β0([1 1 · · · 1]T) = [1 1 · · · 1]T.

Proof. This follows from the previous Corollary combined with the paper [12]
– the invariant there also asks for an isomorphism between the K0-groups of
the quotients, but here the existence is automatic, and no other commutative
diagrams are required (because we have only one non-trivial ideal).
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15. J. Rosenberg and C. Schochet, The Künneth theorem and the universal coeffi-
cient theorem for Kasparov’s generalized K-functor, Duke Math. J. 55 (1987),
431–474.

16. A. S. Toms and W. Winter, Strongly self-absorbing C∗-algebras, preprint, 2005,
OA.0502211.


