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In index theory and in noncommutative geometry one often associates C∗-
algebras with geometric objects. These algebras can for instance arise from
pseudodifferential operators, differential forms, convolution algebras etc.. How-
ever they are often given a priori as locally convex algebras and one looses a
certain amount of information by passing to the C∗-algebra completions. In
some cases, for instance for algebras containing unbounded differential oper-
ators, there is in fact no C∗-algebra that accommodates them. On the other
hand, it seems that nearly all algebraic structures arising from differential
geometry can be described very naturally by locally convex algebras (or by
the slightly more general concept of bornological algebras). The present note
can be seen as part of a program in which we analyze constructions, that are
classical in K-theory for C∗-algebras and in index theory, in the framework
of locally convex algebras. Since locally convex algebras have, besides their
algebraic structure, only very little structure, all arguments in the study of
their K-theory or their cyclic homology have to be essentially algebraic (thus
in particular they also apply to bornological algebras).

This paper is triggered by an analysis of the proof of the Baum-Douglas-
Taylor index theorem, [2], in the locally convex setting. Consider the extension

EΨ : 0 → K → Ψ(M) → C(S∗M) → 0

determined by the C∗-algebra completion Ψ(M) of the algebra of pseudodif-
ferential operators of order 0 on M and the natural extension

EB∗M : 0 → C0(T ∗M) → C(B∗M) → C(S∗M) → 0

determined by the evaluation map on the boundary S∗M of the ball bundle
B∗M . Both extensions determine elements which we denote by KK(EΨ ) and
KK(EB∗M ), respectively, in the bivariant K-theory of Kasparov.
∗ Research supported by the Deutsche Forschungsgemeinschaft
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The Baum-Douglas-Taylor index theorem determines the K-homology
class KK(EΨ ) in KK1(C(S∗M),C) as

KK(EΨ ) = KK(EB∗M ) · [∂̄T∗M ]

where [∂̄T∗M ] is the fundamental K-homology class defined by the Dolbeault
operator on T ∗M . Note that multiplication by KK(EB∗M ) describes the
boundary map K0(C0(T ∗M)) → K1(C(S∗M) in K-homology.

This theorem which determines KK(EΨ ) may be considered as a funda-
mental theorem in index theory, since it contains all the relevant information
on the K-theoretic connections between symbols and indices of pseudodiffer-
ential operators on a given manifold. In particular, it contains the classical
Atiyah-Singer theorem as well as Kasparov’s bivariant version of the index
theorem and determines not only the index of a given elliptic operator P , but
also the K-homology class determined by P . (Note however that Kasparov
proves his theorem in the equivariant case and for manifolds which are not nec-
essarily compact. In this generality Kasparov’s theorem remains the strongest
result). The connection between the index theorems by Baum-Douglas-Taylor,
Kasparov and Atiyah-Singer will be explained briefly in section 6.

The proof, by Baum-Douglas-Taylor, of their index theorem is a combina-
tion of a formula by Baum and Douglas [1], with a construction of Boutet de
Monvel [4], [3]. The formula of Baum-Douglas determines the image under the
boundary map, in the long exact sequence associated with an extension, of
K-homology elements described by cycles satisfying certain conditions. ¿From
this formula they derive a formula for the bivariant K-theory class determined
by the Toeplitz extension on a strictly pseudoconvex domain. The construction
by Boutet de Monvel identifies the extension of pseudodifferential operators
on a manifold M with the Toeplitz extension on the strictly pseudoconvex
domain given by the ball bundle on M with boundary given by the sphere
bundle.

The original proof by Baum-Douglas of their formula for the boundary
map has been streamlined substantially by Higson in [10], [11]. Higson gives
in fact two proofs. One makes use of Skandalis’ connection formalism the
other one of Paschke duality, see also [12]. Both approaches rely on a certain
amount of technical background. Higson also proves a formula in the case
of odd Kasparov modules (Baum-Douglas consider only the even case). We
also mention, even though this is not of direct relevance to our purposes that
a simplification of the proof that the relative K-homology of Baum-Douglas
coincides with the K-homology of the ideal is due to Kasparov [13].

We give algebraic proofs for the boundary map formula in the even and
in the odd case. It turns out that the Baum-Douglas situation is exactly the
one where the cycle representing the given K-homology element extends to a
cycle for a K-homology element of the mapping cone or dual mapping cone
(in the sense of [5]) associated with the given extension, respectively. This
leads to a simple proof in the odd case. In the even case there is a completely
direct proof which is very short. This proof depends on a new description of
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the boundary map which uses comparison to a free extension. We also include
another, slightly longer proof, using the dual mapping cones of [5], because
of its complete parallelism to the proof in the odd case using the ordinary
mapping cone. The dual mapping cones have also been used in the paper by
Baum-Douglas and this second proof resembles the proof by Baum-Douglas,
but it has been reduced to its algebraic content.

Our discussion contains much more material than what is needed to de-
termine the boundary map in the Baum-Douglas situation. We give different
descriptions of the boundary map for bivariant K-theory, but also for more
general homotopy functors. The argument for the Baum-Douglas formula it-
self is very short indeed and essentially contained in 4.2. In other descriptions
of the boundary map we also have to study its compatibility with the Bott
isomorphism. This compatibility has some interest for its own sake.

We would also like to emphasize the fact that our argument, even though
formulated in the category of locally convex algebras for convenience, is com-
pletely general. Because of its algebraic nature it works in many other cate-
gories of topological algebras. In particular it can be readily applied to the
category of C∗-algebras and gives there the original result of Baum-Douglas.
For this, one has to use the appropriate analogs of the tensor algebra and of
its ideal JA in the category of C∗-algebras as explained in [7]. We will discuss
this in section 5.

1 Boundary maps and Bott maps

1.1 Locally convex algebras

By a locally convex algebra we mean an algebra over C equipped with a
complete locally convex topology such that the multiplication A× A → A is
(jointly) continuous. This means that, for every continuous seminorm α on A,
there is another continuous seminorm α′ such that

α(xy) ≤ α′(x)α′(y)

for all x, y ∈ A. Equivalently, the multiplication map induces a continuous
linear map A ⊗̂ A → A from the completed projective tensor product A ⊗̂
A. All homomorphisms between locally convex algebras will be assumed to
be continuous. Every Banach algebra or projective limit of Banach algebras
obviously is a locally convex algebra. But so is every algebra over C with a
countable basis if we equip it with the “fine” locally convex topology, see e.g.
[8]. The fine topology on a complex vector space V is given by the family
of all seminorms on V . Homomorphisms between locally convex algebras will
always be assumed to be continuous. We denote the category of locally convex
algebras by LCA.
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1.2 The boundary map for half-exact homotopy functors

By a well-known construction any half-exact homotopy functor on a category
of topological algebras associates with any extension a long exact sequence
which is infinite to one side. This construction is in fact quite general and
works for different notions of homotopy (continuous, differentiable or C∞) and
on different categories of algebras as well as for different notions of extensions.

We review this construction here in some detail, since we need, for our
purposes, the explicit description of the boundary map in the long exact se-
quence. To be specific we will work in the category of locally convex algebras
with C∞-homotopy. An extension will be a sequence

0 → I → A→ B → 0

of locally convex algebras, where the arrows are continuous homomorphisms,
which is split exact in the category of locally convex vector spaces, i.e. for
which there is a continuous linear splitting s : B → A. An extension will be
called a split-extension if there is a continuous splitting B → A which at the
same time is a homomorphism.

Let [a, b] be an interval in R. We denote by C[a, b] the algebra of complex-
valued C∞-functions f on [a, b], all of whose derivatives vanish in a and in
b (while f itself may take arbitrary values in a and b). Also the subalgebras
C(a, b],C[a, b) and C(a, b) of C[a, b], which, by definition consist of functions
f , that vanish in a, in b, or in a and b, respectively, will play an important
role. The topology on these algebras is the usual Fréchet topology.

Given two complete locally convex spaces V and W , we denote by V ⊗̂W
their completed projective tensor product (see [14], [8]). We note that C[a, b]
is nuclear in the sense of Grothendieck [14] and that, for any complete locally
convex space V , the space C[a, b]⊗̂V is isomorphic to the space of C∞-functions
on [a, b] with values in V , whose derivatives vanish in both endpoints, [14], §
51.

Given a locally convex algebra A, we write A[a, b], A(a, b] and A(a, b) for the
locally convex algebras A⊗̂C[a, b], A⊗̂C(a, b] and A⊗̂C(a, b) (their elements
are A - valued C∞-functions whose derivatives vanish at the endpoints). The
algebra A(0, 1] is called the cone over A and denoted by CA. The algebra
A(0, 1) is called the suspension of A and denoted by SA. The cone extension
for A is

0 → SA→ CA→ A→ 0

(it has an obvious continuous linear splitting). This extension is fundamental
for the construction of the boundary maps.
In the following we will usually consider covariant functors E on the category
LCA. The contravariant case is of course completely analogous and, in fact,
in later sections we will also apply the results discussed here to contravariant
functors (such as K-homology).
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Definition 1. Let E : LCA → Ab be a functor from the category of locally
convex algebras to the category of abelian groups. We say that

• E is diffotopy invariant, if the maps evt : E(A[0, 1]) → E(A) induced by
the different evaluation maps for t ∈ [0, 1] are all the same (it is easy to
see that this is the case if and only if the map induced by evaluation at
t = 0 is an isomorphism).

• E is half-exact, if, for every extension 0 → I → A → B → 0 of locally
convex algebras, the induced short sequence E(I) → E(A) → E(B) is
exact.

Definition 2. Two homomorphisms α, β : A → B between locally convex
algebras are called diffotopic if there is a homomorphism ϕ : A→ B[0, 1] such
that

α = ev0 ◦ϕ β = ev1 ◦ϕ.

A locally convex algebra A is called contractible if the endomorphisms idA
and 0 are diffotopic. If α and β are diffotopic and E is diffotopy invariant,
then clearly E(α) = E(β). Moreover E(A) = 0 for every contractible algebra
A.

Let α : A → B be a continuous homomorphism between locally convex alge-
bras. The mapping cone Cα ⊂ A⊕B(0, 1] is defined to be

Cα = {(x, f) ∈ A⊕B(0, 1] |α(x) = f(1)}

Similarly, the mapping cylinder Zα is

Zα = {(x, f) ∈ A⊕B[0, 1] |α(x) = f(1)}

Lemma 3. (a)The maps Zα → A, (x, f) 7→ x and A → Zα, x 7→ (x, α(x)1)
are homotopy inverse to each other, i.e. their compositions both ways are
diffotopic to the identity on Zα and on A, respectively.

(b) If there is a continuous linear map s : B → A such that α ◦ s = idB, then
the natural exact sequence

0 → Cα → Zα → B → 0

is an extension (i.e. admits a continuous linear splitting).
(c) If E is half-exact and π : Cα → A is defined by π((x, f)) = x, then the

sequence

E(Cα)
E(π)−→ E(A)

E(α)−→ E(B)

is exact.

Lemma 4. Let 0 → I → A
q→B → 0 be an extension of locally convex alge-

bras. Denote by e : I → Cq the map defined by e(x) = (x, 0) ∈ Cq ⊂ A⊕ CB.
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(a)The following diagram commutes

I → A → B
↓ e ‖ ↓

0 → SB
κ−→ Cq

π−→ A → 0

and the natural map κ : SB → Cq defined by κ(f) = (0, f) makes the
second row exact.

(b) One has E(Ce) = 0 and the map E(e) : E(I) → E(Cq) is an isomorphism.

Proof. (a) Obvious. (b) This follows from the exact sequences 0 = E(CI) →
E(Ce) → E(SCB) = 0 and E(Ce) → E(I) → E(Cq) (cf. 3 (c)).

Proposition 5. Let
0 → I

j→A
q→B → 0

be an extension of locally convex algebras. Then there is a long exact sequence

∂−→ E(SI)
E(Sj)−→ E(SA)

E(Sα)−→ E(SB)

∂−→ E(I)
E(j)−→ E(A)

E(q)−→ E(B)

which is infinite to the left. The boundary map ∂ is given by ∂ = E(e)−1E(κ).

Proof. Let π : Cq → A be as above. Consider the following diagram

E(I) //

∼=
��

E(A) // E(B)

E(SB) //

∂

::uuuuuuuuu

∼=
��

E(Cq) // E(A)

E(SA)

E(Sq)
::ttttttttt

// E(Cπ) // E(Cq)

The rows are exact and the diagram is commutative except possibly for the
first triangle. By a well known argument one shows that the composition of the
maps SA

Sq−→SB → Cπ is diffotopic to the natural map SA→ Cπ composed
with the self-map of SA that switches the orientation of the interval [0, 1].

In the category of locally convex algebras we can also define an algebraic
suspension and algebraic mapping cones in the following way.

Definition 6. Let A[t] = A ⊗̂ C[t] denote the algebra of polynomials with
coefficients in A. The topology is defined by choosing the fine topology on C[t].
We denote by CalgA and SalgA the ideals tA[t] and t(1− t)A[t] of polynomials
vanishing in 0 or in 0 and 1, respectively.
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Clearly, CalgA is contractible and we have an extension 0 → SalgA →
CalgA→ A→ 0. The associated long exact sequence shows that E(SalgA) =
E(SA) for every half-exact diffotopy functor E.

The algebraic mapping cone Calg
α for a homomorphism α : A → B is

defined as the subalgebra of A⊕CalgB consisting of all pairs (x, f) such that
α(x) = f(1). Again it is easily checked that the natural map E(Calg

α ) → E(Cα)
is an isomorphism for every half-exact diffotopy functor E (compare the long
exact sequences associated with the extensions 0 → SalgB → Calg

α → A → 0
and 0 → SB → Cα → A→ 0).

1.3 The universal boundary map

A description of the boundary map which is, at the same time, elementary and
universal can be obtained by comparing a given extension to a free extension.

Let V be a complete locally convex space. Consider the algebraic tensor
algebra

TalgV = V ⊕ V⊗V ⊕ V ⊗
3
⊕ . . .

with the usual product given by concatenation of tensors. There is a canonical
linear map σ : V → TalgV mapping V into the first direct summand. We equip
TalgV with the locally convex topology given by the family of all seminorms of
the form α◦ϕ, where ϕ is any homomorphism from TalgV into a locally convex
algebra B such that ϕ◦σ is continuous on V , and α is a continuous seminorm
on B. We further denote by TV the completion of TalgV with respect to this
locally convex structure. TV has the following universal property:

for every continuous linear map s : V → B where B is a locally convex
algebra, there is a unique homomorphism τs : TV → B such that s = ϕ ◦ σ.

(Proof. τs maps x1 ⊗ x2 ⊗ . . .⊗ xn to s(x1)s(x2) . . . s(xn) ∈ B.)

For any locally convex algebra A we have the natural extension

0 → JA→ TA
π→ A→ 0.

Here π maps a tensor x1 ⊗ x2 ⊗ . . .⊗ xn to x1x2 . . . xn ∈ A and JA is defined
as Kerπ. This extension is (uni)versal in the sense that, given any extension
E : 0 → I → D → B → 0 of a locally convex algebra B with continuous
linear splitting s, and any continuous homomorphism α : A → B, there is a
morphism of extensions

0 → JA → TA → A → 0
↓ γ ↓ τ ↓ α

0 → I → D → B → 0

The map τ : TA→ D maps x1 ⊗ x2 ⊗ . . .⊗ xn to s′(x1)s′(x2) . . . s′(xn) ∈ D,
where s′ := s ◦ α.
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Definition 7. If α = id : B → B , then the map γ : JB → I (defined to be
the restriction of τ) is called the classifying map for the extension E.

The classifying map depends on s only up to diffotopy. In fact, if s̄ is a second
continuous linear splitting, then the classifying maps associated to ts+(1−t)s̄
define a diffotopy between γ and the classifying map associated with s̄. Thus,
up to diffotopy, an extension has a unique classifying map. More generally, let
s : A→ D be a continuous linear map between locally convex algebras and I
a closed ideal in D such that s(xy) − s(x)s(y) is in I for all x, y ∈ A. Then
the restriction γs, of τs to JA, maps JA into I. We have the following useful
observation.

Lemma 8. If s′ : A→ D is a second continuous linear map which is congru-
ent to s in the sense that s(x)− s′(x) ∈ I for all x ∈ A, then γs, γs′ : JA→ I
are diffotopic.

Proof. The diffotopy is induced by the linear map ŝ : A → D[0, 1], where
ŝt = ts+ (1− t)s′.

Denote the classifying map JB → SB for the cone extension 0 → SB →
CB

p−→B → 0 by ψB . Let E be a half-exact diffotopy functor. Comparing
the long exact sequneces for the extension 0 → JB → TB → B → 0 and for
the cone extension 0 → SB → CB → B → 0 gives

E(SB)
∂B //

=

��

E(JB) //

E(ψB)

��

E(TB) //

��

E(B)

��
E(SB) = // E(SB) // E(CB) // E(B)

Moreover E(CB) = E(TB) = 0, since CB and TB are contractible. Therefore
the boundary map, which we denote here by ∂B , is an isomorphism and ∂B =
E(ψB)−1.

Proposition 9. Let 0 → I → A → B → 0 be an extension of locally con-
vex algebras with classifying map γ : JB → I. Then the boundary map
∂ : E(SB) → E(I) in the long exact sequence associated with this extension
is given by the formula ∂ = E(γ) ◦ ∂B = E(γ) ◦ E(ψB)−1.

Proof. Consider the following commutative diagram

I //

e

��

A //

��

B

0 // Cq
π // Zq // B // 0

JB //

κ◦ψB

OO

TB //

OO

B
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The maps e ◦ γ and κ ◦ ψB are both classifying maps for the extension in
the middle row. By uniqueness of the classifying map they are diffotopic.
Therefore ∂ = E(e)−1E(κ) = E(e)−1E(e)E(γ)E(ψB)−1.

1.4 The Toeplitz extension and Bott periodicity

The algebraic Toeplitz algebra T alg is the unital complex algebra with two
generators v and v∗ satisfying the identity v∗v = 1. It is a locally convex
algebra with the fine topology. There is a natural homomorphism T alg →
C[z, z−1] to the algebra of Laurent polynomials. The kernel is isomorphic to
the algebra

M∞(C) = lim
−→

k

Mk(C)

of matrices of arbitrary size (to see this note that the kernel is the ideal gen-
erated by the idempotent e = 1 − vv∗. The isomorphism maps an element
vne(v∗)n of the kernel to the matrix unit Enm in M∞(C)). M∞(C) is a lo-
cally convex algebra with the fine topology (which is also the inductive limit
topology in the representation as an inductive limit).

Given a locally convex algebra A, we consider also the algebra M∞A de-
fined by

M∞(A) = M∞(C) ⊗̂A ∼= lim
−→

k

Mk(A)

Another standard locally convex algebra is the algebra K of “smooth compact
operators” consisting of all N×N-matrices (aij) with rapidly decreasing matrix
elements aij ∈ C, i, j = 0, 1, 2 . . . . The topology on K is given by the family
of norms pn, n = 0, 1, 2 . . . , which are defined by

pn
(
(aij)

)
=

∑
i,j

|1 + i|n|1 + j|n |aij |

Thus, K is isomorphic to the projective tensor product s ⊗̂ s, where s denotes
the space of rapidly decreasing sequences a = (ai)i∈N.

Definition 10. A functor E : LCA → Ab is called M∞-stable (K-stable),
if the natural inclusion A → M∞A (A → K ⊗̂ A) induces an isomorphism
E(A) → E(M∞A) (E(A) → E(K ⊗̂A)) for each locally convex algebra A.

We introduce the dual suspension ŜA of a locally convex algebra A as
the kernel of the natural map A[z, z−1] → A, that maps z to 1 and abbre-
viate ŜC to Ŝ. The dual cone ĈA is defined as the kernel of the canonical
homomorphism T alg ⊗̂A→ A that maps v to 1 and ĈC is abbreviated to Ĉ.
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0 // ŜA // A[z, z−1] // A // 0

0 // ĈA //

OO

T alg ⊗̂A //

OO

A // 0

0 // M∞A //

OO

M∞A //

OO

0 //

OO

0

The terminology “dual cone” and “dual suspension” is motivated by the fol-
lowing

Proposition 11. For every half-exact and M∞-stable diffotopy functor E and
for every locally convex algebra A , we have E(ĈA) = 0.

Proof (Sketch of proof). In the terminology explained in 3.3 there is a quasi-
homomorphism (ϕ, ϕ̄) : ĈA→M∞ĈA[0, 1] such that E(ϕ0, ϕ̄0) = E(j) while
E(ϕ1, ϕ̄1) = 0 (for a complete proof see [8], 8.1, 8.2 ).

We obtain the dual cone extension

0 →M∞A→ ĈA→ ŜA→ 0

Applying the long exact sequence, one immediately gets

Proposition 12. For every half-exact and M∞-stable diffotopy functor E
and for every locally convex algebra A there is a natural isomorphism β :
E(SŜA) → E(A).

Proof. β : E(SŜA) → E(M∞A) ∼= E(A) is given by the boundary map in the
long exact sequence for the dual cone extension.

Remark 13. It is clear that the dual suspension is very closely related to the
construction of negative K-theory by Bass.

1.5 A dual boundary map

In this subsection we assume throughout that E is a diffotopy invariant, half-
exact and M∞-stable functor. Let α : A→ B be a continuous homomorphism
between locally convex algebras and 0 → M∞B → ĈB

π−→ ŜB → 0 the dual
cone extension for B. We define the dual mapping cone by

Ĉα = {(x, y) ∈ ŜA⊕ ĈB | Ŝα(x) = π(y)}

There is a natural extension 0 →M∞B → Ĉα → ŜA→ 0.
Consider now an extension 0 → I

j−→A → B → 0 and the dual mapping
cone Ĉj . There are two natural extensions

0 →M∞A→ Ĉj
π1−→ ŜI → 0
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and
0 → ĈI → Ĉj

π2−→M∞B → 0

The second extension and the fact that E(ĈI) = 0 for any locally convex
algebra I, shows that E(π2) : E(Ĉj) → E(M∞B) ∼= E(B) is an isomorphism.

Setting δ = E(π1)◦E(π2)−1, we obtain the following commutative diagram

E(I) // E(A) //

E(κ) ++

E(B)
δ

��
E(Ĉj)

E(π1) //

E(π2)

OO

E(ŜI)

where E(κ) is induced by the natural inclusion κ : A→M∞A ⊂ Ĉj .
Since A ∼= κ(A) is isomorphic under E to the kernel M∞A of the natural

surjection π1 : Ĉj → ŜI, it can be shown easily that the two sequences

E(I) // E(A) // E(B) δ // E(ŜI)

and

E(I) // E(A) κ // E(Ĉj)
E(π1) // E(ŜI)

obtained from this diagram are exact and can in fact be continued indefinitely
to the right (this is the dual mapping cone sequence discussed in [5]). We
mention that the surjective map Ĉj

π−→ ŜI ⊕ B with π = π1 ⊕ π2 is exactly
analogous to the dual inclusion map SB⊕ I −→ Cq that has been used in the
construction of the boundary map ∂ in 5.

We show now that, after identification by the Bott isomorphism β, the
boundary maps ∂ and δ coincide up to a sign.

Proposition 14. Let ∂ : E(SB) → E(I) be the boundary map for the exten-
sion 0 → I → A→ B → 0 and δ : E(SB) → E(ŜSI) the dual boundary map
for the suspended extension 0 → SI → SA→ SB → 0. Then ∂ = −β ◦ δ

Proof. Consider the mapping cones Cϕ, Cπ and Cq for the natural surjections
ϕ : ĈI → ŜI, π : Ĉj → ŜI ⊕ B and q : A → B together with the associated
inclusion maps in the Puppe sequence SŜI → Cϕ, SŜI → Cπ, SB → Cπ and
SB → Cq. We identify SŜI with ŜSI.

We obtain the following diagram in which the upper half and the lower
half commute:
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SŜI
κ1 //

α1
!!B

BB
BB

BB
B

Cϕ

∼

~~~~
~~

~~
~~

SĈj

ψ1
33

ψ2 ,,

Cπ I

e1
kk

e3oo

e2ssSB

α2

==|||||||||
κ2

// Cq

∼

``@@@@@@@@

We have E(e1)−1E(κ1) = β and E(e2)−1E(κ2) = ∂.
Moreover, E(α1 ◦ ψ1) + E(α2 ◦ ψ2) = 0, since α1 ◦ ψ1 + α2 ◦ ψ2 is the

composition of the maps SĈj → SŜI ⊕ SB → Cπ in the mapping cone
sequence for π. Thus

0 = E(e3)−1(E(α1 ◦ ψ1) + E(α2 ◦ ψ2)) = βE(ψ1) + ∂E(ψ2)

Since, by definition δ = E(ψ1)E(ψ2)−1, the assertion follows.

2 The categories kkalg and kk

From now on we will describe our constructions in the category kkalg. Since
kkalg acts on every diffotopy invariant, half-exact functor which is also K-
stable in the sense of 10, statements derived in kkalg will pass to any functor
with these properties. Some of the statements that we prove in the kkalg-
setting could also be proved for functors which are just M∞-stable, rather
than K-stable. This slight loss of generality could easily be recovered by the
interested reader wherever necessary. We mention at any rate that the argu-
ments below depend in general only on some formal properties of the theory
kkalg and work just as well for other functors or bivariant theories satisfying
the same conditions.

Explicitly, kkalg
∗ is defined as

kkalg
n (A, B ) = lim

−→
k

[Jk−nA, K⊗̂SkB ]

where, given two locally convex algebras C and D, [C,D] denotes the set of
diffotopy classes of homomorphisms from C to D, see [8].

Here are some properties of kkalg which are essential for our constructions:

• Every continuous homomorphism α : A→ B determines an element kk(α)
in kkalg

0 (A,B). Given two homomorphisms α and β, we have kk(α ◦ β) =
kk(β)kk(α).

• Every extension E : 0 → I
i−→ A

q−→B → 0 determines canonically an
element kk(E) in kkalg

−1(B, I). The class of the cone extension

0 → SA→ A(0, 1] → A→ 0
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is the identity element in kkalg
0 (A,A) = kkalg

−1(A,SA).
If

(E) : 0 → A1 → A2 → A3 → 0
↓ α ↓ ↓ β

(E ′) : 0 → B1 → B2 → B3 → 0

is a morphism of extensions (a commutative diagram where the rows are
extensions), then kk(E)kk(α) = kk(β)kk(E ′).

Moreover, for each fixed locally convex algebraD, the functorA 7→ kkalg
0 (D,A)

is covariant, half-exact, diffotopy invariant andM∞-stable, whileA 7→ kkalg
0 (A,D)

is a contravariant functor with the same properties. Thus both of these func-
tors have long exact sequences where the boundary maps are given by the
construction described in section 1.2. We refer to [8] for more details.

In [9] we considered the category kkL
p

∗ defined by kkL
p

∗ (A,B) = kkalg
∗ (A,B⊗̂

Lp) where Lp denotes the Schatten ideal of p-summable operators for 1 ≤ p <
∞. We showed that it follows from a result in [6] that kkL

p

∗ does not depend
on p. Let us denote kkL

p

∗ by kk∗ (this notation was not used in [9]). As shown
in [9], a big advantage of the resulting theory kk∗ is that its coefficient ring
can be determined as kk0(C,C) = Z and kk1(C,C) = 0. Otherwise, the theory
kk∗ has the same good formal properties as kkalg

∗ and there is a natural func-
tor from the category kkalg

∗ to kk∗. Thus all identities proved in the category
kkalg
∗ carry over to kk∗.

3 Abstract Kasparov modules

Baum and Douglas consider K-homology elements in K0(A) for a C∗-algebra
A which are represented by an even Kasparov module. Such a Kasparov mod-
ule consists of a pair (ϕ, F ), where ϕ is a homomorphism from A into the alge-
bra L(H) of bounded operators on a Z/2-graded Hilbert space H = H+⊕H−
and F is a (self-adjoint) element of L(H) such that ϕ is even, F is odd, and
such that for all x ∈ A the following expressions lie in the algebra K(H) of
compact operators on H

ϕ(x)(F − F 2), [ϕ(x), F ]

In the direct sum decomposition of H, F and ϕ correspond to matrices of the
form

F =
(

0 v
v∗ 0

)
ϕ =

(
α 0
0 ᾱ

)
The corresponding K-homology element can be described by an associated
quasihomomophism (see below).

Higson considers also the case of K-homology elements in K1(A) rep-
resented by an odd Kasparov module. Such a module consists again of a
pair (ϕ, F ), where ϕ is a homomorphism from A into the algebra L(H) of
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bounded operators on a Hilbert space H (which is this time trivially graded)
and F is a (self-adjoint) element of L(H) such that for all x ∈ A we have
ϕ(x)(F − F 2), [ϕ(x), F ] ∈ K(H).
In this case the K-homology element defined by (ϕ, F ) is the one associated
with the extension

0 → K(H) → D → A→ 0

where D is the subalgebra of A⊕L(H) generated by products of x⊕ϕ(x), x ∈
A together with elements of the algebra generated by 1⊕ F .

We will now describe kkalg-elements associated with a Kasparov module
in an abstract setting.

3.1 Morphism extensions

Let A and B be locally convex algebras. A morphism extension from A to B
will be a diagram of the form

A

ϕ

��
0 // K // D

q // B // 0

where ϕ is a homomorphism and the row is an extension.
We can encode the information contained in a morphism extension in a

single (pull back) extension in the following way.
Define D′ as the subalgebra of A ⊕ D consisting of all elements (a, d)

such that ϕ(x) = q(d). The natural homomorphism π : D′ → D defined by
π((a, d)) = d gives the following morphism of extensions

0 // K // D′ //

π

��

A //

ϕ

��

0

0 // K // D // B // 0

If E is the original extension in the second row and E ′ the pull back extension,
then kk(E ′) = kk(ϕ)kk(E). We say that this element kk(E ′) = kk(ϕ)kk(E) is
the element of kkalg

−1(A,K) associated with the given morphism extension and
denote it by kk(E , ϕ).

3.2 Abstract odd Kasparov modules

Definition 15. Let A be a locally convex algebra and 0 → K → D → D/K →
0 an extension of locally convex algebras where D is unital. An abstract odd
Kasparov (A,K)-module relative to D is a pair (ϕ, P ) where

• ϕ is a continuous homomorphism from A into D.
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• P is an element in D such that the following expressions are in K for all
x ∈ A:

[P,ϕ(x)], ϕ(x)(P − P 2)

With an odd Kasparov module we can associate the following morphism ex-
tension

A

τ

��
0 // K // D

q // D/K // 0

where q is the quotient map and τ(x) = q(Pϕ(x)P ). We denote by kk(ϕ, P )
the element of kkalg

−1(A,K) associated with this morphism extension.

3.3 Quasihomomorphisms

Let α and ᾱ be two homomorphisms A→ D between locally convex algebras.
Assume that B is a closed subalgebra of D such that α(x) − ᾱ(x) ∈ B and
α(x)B ⊂ B, Bα(x) ⊂ B for all x ∈ A. We call such a pair (α, ᾱ) a quasiho-
momorphism from A to B relative to D and denote it by (α, ᾱ) : A→ B.

We will show that (α, ᾱ) induces a homomorphism E(α, ᾱ) : E(A) →
E(B) in the following way. Define α′, ᾱ′ : A→ A⊕D by α′(x) = (x, α(x)), ᾱ′ =
(x, ᾱ(x)) and denote by D′ the subalgebra of D⊕A generated by all elements
α′(x), x ∈ A and by 0⊕B. We obtain an extension with two splitting homo-
morphisms α′ and ᾱ′ :

0 → B → D′ → A→ 0

where the map D′ → A by definition maps (x, α(x)) to x and (0, b) to 0.
The map E(α, ᾱ) is defined to be E(α′) − E(ᾱ′) : E(A) → E(B) ⊂ E(D′)
(this uses split-exactness). Note that E(α, ᾱ) is independent of D in the sense
that we can enlarge D without changing E(α, ᾱ) as long as B maintains the
properties above.

Proposition 16. The assignment (α, ᾱ) → E(α, ᾱ) has the following proper-
ties:

(a)E(ᾱ, α) = −E(α, ᾱ)
(b) If the linear map ϕ = α− ᾱ is a homomorphism and satisfies ϕ(x)ᾱ(y) =

ᾱ(x)ϕ(y) = 0 for all x, y ∈ A, then E(α, ᾱ) = E(ϕ).
(c) Assume that α is diffotopic to α′ and ᾱ is diffotopic to ᾱ′ via diffotopies

ϕ, ϕ̄ such that ϕt(x) − α(x), ϕ̄t(x) − ᾱ(x) ∈ B for all x ∈ A (we denote
this situation by α ∼B α′, ᾱ ∼B ᾱ′). Then E(α, ᾱ) = E(α′, ᾱ′).

Proof. (a) This is obvious from the definition. (b) This follows ϕ + ᾱ = α
and the fact that E(ϕ+ ᾱ) = E(ϕ) +E(ᾱ). (c) follows from the definition of
E(α, ᾱ) and diffotopy invariance of E.
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Choosing E(?) = kkalg
0 (A, ?) produces in particular an element kk(α, ᾱ)

in kkalg
0 (A,B) (obtained by applying E(α, ᾱ) to the unit element 1A in

kkalg
0 (A,A)) .

3.4 Abstract even Kasparov modules

Definition 17. Let A,K and D be locally convex algebras. Assume that D is
unital and contains K as a closed ideal. An abstract even Kasparov (A,K)-
module relative to D is a triple (α, ᾱ, U) where

• α, ᾱ are continuous homomorphisms from A into D.
• U is an invertible element in D such that Uᾱ(x)− α(x)U is in K for all

x ∈ A.

¿From an even Kasparov module we obtain a quasihomomorphism (α,AdU◦
ᾱ) : A → K. We write kk(α, ᾱ, U) for the element of kkalg

0 (A,K) associated
with this quasihomomorphism. More generally, if E is a half-exact diffotopy
functor we write E(α, ᾱ, U) for the morphism E(A) → E(K) obtained from
this quasihomomorphism.

Remark 18. The connection with Kasparov’s definition in the C∗-algebra/Hilbert
space setting mentioned at the beginning of section 3 is obtained by setting

U =
(√

f1 v
−v∗

√
f2

)
where f1 = 1− vv∗ and f2 = 1− v∗v, and by replacing α, ᾱ by α⊕ 0, 0⊕ ᾱ.

This corresponds to replacing the Kasparov module (H,F ) by the inflated
module (H ′, F ′) where H ′ is the Z/2-graded Hilbert space H ⊕ H with H =
H+ ⊕H− and F by

F ′ =
(

0 U
U−1 0

)

3.5 Special abstract even Kasparov modules

Let ϕ : A → D be a homomorphism of locally convex algebras where D is
unital and contains a closed ideal K. Assume that D contains elements v, v∗

such that the expressions

[ϕ(x), v], [ϕ(x), v∗], ϕ(x)(vv∗ − 1), ϕ(x)(v∗v − 1)

are in K for all x ∈ A.
If we assume moreover that, in D, there are square roots for the elements

f1 = 1−vv∗ and f2 = 1−v∗v, we can form an abstract even Kasparov module
(relative to M2D) by choosing
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α = ᾱ =
(
ϕ 0
0 0

)
U =

(
v

√
f1√

f2 −v∗
)

If we suppose in this case moreover that there is a continuous linear split-
ting D/K → D, we can associate with this even Kasparov module (α, α, U)
also a morphism extension

ŜA

ρ

��
0 // K // D

π // D/K // 0

by defining ρ(
∑
xiz

i) = π(
∑
α(xi)U i).

It can be checked that the element in kkalg
−1(ŜA,K) defined by this mor-

phism extension corresponds to the element kk(α, α, U) constructed above
under the Bott isomorphism kkalg

−1(ŜA,K) ∼= kkalg
0 (A,K).

We will later consider the case where v∗v = 1 and thus f1 = 1− vv∗ is an
idempotent.

Remark 19. In [9] we had considered a different notion of an even Kasparov
module. This notion is closely related to the situation considered here.

4 The boundary map in the Baum-Douglas situation

Baum and Douglas consider an extension 0 → I → A → B → 0 of C∗-
algebras and obtain for K-homology elements, that are realized by a special
kind of Kasparov modules, a formula for the boundary map K0I → K1B
in K-homology in the long exact sequence associated with the extension

0 // I
j // A

q // B // 0 . The basic assumption on the given ele-
ment in K0I for which the boundary is determined is that it should be realized
by a Kasparov module (ϕ, F ) for which ϕ extends to a homomorphism such
that ϕ(A) still commutes with F modulo compacts (however ϕ(x)F 2 = ϕ(x)
holds only for x ∈ I and not necessarily for x ∈ A). Higson gives a similar
formula under analogous conditions for the boundary map K1I → K0B.

It turns out that the condition imposed by Baum-Douglas on the Kasparov
module means exactly that the Kasparov module for ŜI extends to a Kasparov
module for the dual mapping cone Ĉj , while Higson’s condition in the odd
case means that the corresponding Kasparov module extends to one for the
ordinary mapping cone Cq.

With this observation and the preliminaries explained in the previous sec-
tions it is completely straightforward to deduce explicit formulas for the im-
ages of the given K-homology elements under the boundary map.
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4.1 The odd case

Higson has stated and proved a formula, for the image under the boundary
map of certain odd K-homology elements, which is analogous to the Baum-
Douglas formula for even elements, [10], [11]. In this subsection we give a
simple proof for this formula. As in the even case, our proof carries over
verbatim to the case of C∗-algebras and thus to the case considered by Higson.
Let 0 → I → A

q→B → 0 be an extension of locally convex algebras with a
continuous linear splitting s.
Assume, we are given an odd Kasparov (I,K)-module (ϕ, P ), where ϕ is a
continuous homomorphism into a locally convex algebra D, P is an element
of D and K is a closed ideal in D. Thus by definition [ϕ(I), P ] ⊂ K and
ϕ(I)(P − P 2) ⊂ K.

Suppose now that ϕ extends to a homomorphism ϕ : A → D such that
also [ϕ(A), P ] ⊂ K.
Consider the morphism extension (E , τ)

I

τ

��
0 // K // D

π // D/K // 0

associated to (ϕ, P ) as in 3.2.

Proposition 20. Let ∂ : kkalg
−1(I,K) −→ kkalg

−1(SalgB,K) be the boundary
map. Then ∂(kk(E , τ)) is represented by the morphism extension (E , ψ) given
by the diagram

SalgB

ψ

��
0 // K // D

π // D/K // 0

where π is the quotient map and ψ is defined by ψ(
∑
bit

i) = π(
∑
ϕ(sbi)P i) .

Proof. We define a homomorphism ρ : Calg
q → D/K as follows. Let (x, f) ∈

Calg
q where f =

∑
bit

i is in CalgB and f(1) = q(x). We set ρ((x, f)) =
π(ϕ(x− sq(x)) +

∑
ϕ(sbi)P i).

We have now three morphism extensions defined by the extension 0 →
K → D → D/K → 0 together with the homomorphisms I → D/K, SalgB →
D/K and Calg

q → D/K. Consider the three extensions E1, E2 and E3 associated
to these morphism extensions as in 3.1. We obtain the following commutative
diagram of extensions
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0 // K //

��

D1
//

��

I //

e

��

0

0 // K // D3
// Calg
q

// 0

0 // K //

OO

D2
//

OO

SalgB //

κ

OO

0

where the first row is E1, the last one E2 and the extension in the middle is E3.
It follows that kk(E3)kk(κ) = kk(E2) and kk(E3)kk(e) = kk(E1). Since kk(e) is
invertible we conclude kk(E2) = kk(E1)kk(e)−1kk(κ). But kk(e)−1kk(κ) = ∂
by 5.

4.2 The even case

This subsection contains the proof of the Baum-Douglas formula for the image,
under the boundary map, of certain even K-homology elements. Our proof is
extremely short. It uses only a small part of the discussion above, namely the
description of the boundary map in subsection 1.3.

Proposition 21. Let 0 → I → A→ B → 0 be an extension of locally convex
algebras and s : B → A a continuous linear splitting.
Let (α, ᾱ, U) be an even (I,K)-Kasparov module relative to D and z =
kk(α, ᾱ, U) the corresponding element of kkalg

0 (I,K). Then ∂z ∈ kkalg
1 (B,K) =

kkalg
0 (JB,K) is given by kk((α⊕0)◦γs, AdU(ᾱ⊕0)◦γs) where γs : JB → I

is the classifying map.

Proof. This follows immediately from 9 applied to E(?) = kkalg
0 (?,K) and

using the identification kk0(JB,K) ∼= kk0(SB,K) via E(ψB).

In order to transform this formula for ∂z into a more usable form we need
the following trivial lemma.

Lemma 22. Let B,D,K be locally convex algebras such that K is a closed
ideal in D. Let ρ, ρ̄ : B → D be continuous linear maps such that for the
induced maps γρ, γρ̄ : JB → D we have γρ(x) − γρ̄(x) ∈ K for all x ∈ JB.
Assume moreover that ρ′, ρ̄′ : B → D is another pair of continuous linear
maps which are congruent to ρ, ρ̄ : B → D in the sense that ρ(x)− ρ′(x) ∈ K
and ρ̄(x)− ρ̄′(x) ∈ K for all x in B. Then the quasihomomorphism (γρ, γρ̄) :
JB → K is diffotopic to (γ′ρ, γ

′
ρ̄) in the sense of 16 (c).

Proof. Let σ, σ̄ : B → D[0, 1] denote the linear maps defined by σt(x) =
tρ(x) + (1− t)ρ′(x) and σ̄t(x) = tρ̄(x) + (1− t)ρ̄′(x). Then (γσ, γσ̄) defines a
diffotopy between (γρ, γρ̄) and (γ′ρ, γ

′
ρ̄).
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Consider again the situation of 21. We will assume now that the unital
algebra D admits a “2×2-matrix decomposition” (i.e. D is a direct sum of
subspaces Dij , i, j = 1, 2, with DijDjk ⊂ Dik) and that α, ᾱ and U are of the
form

α(x) =
(
α0(x) 0

0 0

)
ᾱ(x) =

(
0 0
0 ᾱ0(x)

)
U =

(
e v

−v∗ ē

)
where v ∈ D12, v

∗ ∈ D21 are elements such that e = 1D11 − vv∗ and ē =
1D22 − v∗v are idempotents. We also assume that the ideal K is compatible
with this 2 × 2-matrix decomposition. Recall that this is a typical form in
which Kasparov modules arise in applications.

Theorem 23. Let 0 → I → A → B → 0 be an extension of locally convex
algebras, s : B → A a continuous linear splitting and ∂ : kkalg

0 (I,K) →
kkalg
−1(B,K) the associated boundary map.

Let (α, ᾱ, U) as above represent an even (I,K)-module relative to D.
Assume that α0, ᾱ0 : I → D extend to homomorphisms, still denoted by α0, ᾱ0,
from A to D11, resp. to D22, and assume moreover that the elements vᾱ0(x)−
α0(x)v, ᾱ0(x)v∗ − v∗α0(x) are in K for all x ∈ A. Let z = kk(α, ᾱ, U) ∈
kkalg

0 (I,K). Then ∂z is represented by kk(γτ ) − kk(γτ̄ ) where τ, τ̄ : B → D
are given by τ(x) = e α0s(x) e and τ̄(x) = ē ᾱ0s(x) ē and γτ , γτ̄ : JB → K
are the corresponding homomorphisms.

Proof. We have α ◦ γs = γα◦s, AdU ◦ ᾱ ◦ γs = γAdU◦ᾱ◦s (here we use the fact
that α and ᾱ extend to A!). Therefore, from 21, the element ∂z is represented
by the quasihomomorphism (γρ, γρ̄) : JB → K where ρ(x) = α(sx) and
ρ̄(x) = Uᾱ(sx)U−1.
Writing e⊥ = 1−e = vv∗ we have vᾱ0(sx)v∗−e⊥α0(sx)e⊥ ∈ K and α0(sx)−
e⊥α0(sx)e⊥ − τ(x) ∈ K for all x ∈ B. Therefore, setting ρ0(x) = α0(sx),
ρ̄0(x) = ᾱ0(sx) we have the following congruences

ρ '
(
e⊥ρ0e

⊥ + τ 0
0 0

)
ρ̄ '

(
vρ̄0v

∗ 0
0 τ̄

)
Thus, by Lemma 22,

γρ ∼
(
γvρ0v∗ + γτ 0

0 0

)
γρ̄ ∼

(
γvρ0v∗ 0

0 γτ̄

)
whence kk(γρ, γρ̄) = kk(γτ , γτ̄ ) = kk(γτ ) − kk(γτ̄ ) (here it is important that
the homomorphisms γτ , γτ̄ themselves and not only their difference map into
K).

4.3 The dual boundary map in the even case

There is an alternative way of describing the boundary map in the Baum-
Douglas situation using the dual mapping cone construction described in 1.5.
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We limit our discussion here to the case of special (see 3.5) even Kasparov
modules.

Let 0 → I
j−→A → B → 0 be an extension of locally convex algebras

with a continuous linear splitting s. Assume that ϕ : I → D and v, v∗ ∈ D
satisfy the conditions in 3.5 and thus, by the construction in 3.5, define an
even Kasparov (I,K)-module relative to D. We now assume that it satisfies
the Baum-Douglas condition that ϕ extends from I to a homomorphism still
denoted ϕ from A to D such that [ϕ(A), v], [ϕ(A), v∗] ⊂ K. Assume moreover
that v∗v = 1 and denote by e the idempotent e = 1− vv∗.

Consider the morphism extension (E , τ)

ŜI

τ

��
0 // K // D

π // D/K // 0

associated to (ϕ, v) as in 3.5.

Proposition 24. Let ∂ : kkalg
−1(ŜI,K) −→ kkalg

−1(B,K) be the boundary map
(where we identify kkalg

−1(SŜB,K) with kkalg
−1(B,K) via Bott periodicity).

Then ∂(kk(E , τ)) is represented by the morphism extension (E , ψ) given by
the diagram

B

ψ

��
0 // K // D

π // D/K // 0

where π is the quotient map and ψ is defined by ψ(b) = π(eϕ(sb)e) .

Proof. The proof is exactly analogous to the proof of 20. We define a homo-
morphism ρ : Ĉj → D/K as follows. Let f ∈ Ĉj ⊂ ĈA where f =

∑
aiz

i. We
set ρ(f) = π(

∑
ϕ(ai)vi) (where we use the convention that v−k = (v∗)k for

k ∈ N).
We have now three morphism extensions defined by the extension 0 →

K → D → D/K → 0 together with the homomorphisms ŜI → D/K, B →
D/K and Ĉj → D/K. Consider now the three pull back extensions E1, E2 and
E3 associated to these morphism extensions as in 3.1. We obtain the following
commutative diagram of extensions

0 // K // D1
// ŜI // 0

0 // K //

OO

��

D3
//

OO

��

Ĉj //

π1

OO

π2

��

0

0 // K // D2
// B // 0



22 Joachim Cuntz

where the first row is E1, the last one E2 and the extension in the middle
is E3. It follows that kk(E3) = kk(π1)kk(E1) and kk(E3) = kk(π2)kk(E2).
Since kk(π2) is invertible we conclude kk(E2) = kk(π2)−1kk(π1)kk(E1). But
kk(π2)−1kk(π1) = δ and δ corresponds to ∂ after identifying by Bott period-
icity, see 14.

5 The case of C∗-algebras

We can carry through the construction of bivariant K-theory described above
in the case of locally convex algebras in many other categories of algebras
and in particular in the category of C∗-algebras. We have to replace the basic
ingredients by the appropriate constructions in that category. Thus we replace:

the algebras of functions such as A[a, b], A(a, b), SA,CA by the correspond-
ing algebras of continuous (rather than smooth) functions, and diffotopy
by homotopy
the locally convex algebra K of smooth compact operators by the C∗-
algebra K of compact operators
the projective tensor product by the C∗-tensor product
the smooth Toeplitz algebra by the well known Toeplitz C∗-algebra
and - most importantly - the tensor algebra TA by the tensor algebra in
the category of C∗-algebras described in the next paragraph.

Let A be a C∗-algebra. To construct the tensor algebra TA in the category of
C∗-algebras consider as before the algebraic tensor algebra

TalgA = A ⊕ A⊗A ⊕ A⊗
3
⊕ . . .

with product given by concatenation of tensors and let σ denote the canonical
linear map σ : A→ TalgA.

Equip TalgA with the C∗-norm given as the sup over all C∗-seminorms of
the form α◦ϕ, where ϕ is any homomorphism from TalgA into a C∗-algebra B
such that ϕ ◦σ is completely positive contractive on A, and α is the C∗-norm
on B. Let TA be the completion of TalgA with respect to this C∗-norm. TA
has the following universal property:

for every contractive completely positive map s : A→ B where B is a C∗-
algebra, there is a unique homomorphism ϕ : TA→ B such that s = ϕ ◦ σ.

The tensor algebra extension:

0 → JA→ TA
π→ A→ 0

is (uni)versal in the sense that, given any extension 0 → I → E → B → 0
admitting a completely positive splitting, and any continuous homomorphism
α : A→ B, there is a morphism of extensions
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0 → JA → TA → A → 0
↓ γ ↓ τ ↓ α

0 → I → E → B → 0

We can now define

KKn(A, B ) = lim
−→

k

[Jk−nA, K ⊗ SkB ]

This definition is exactly analogous to the definition of kkalg in section 2.
By the same arguments as in the case of kkalg it is seen that this functor has a
product, long exact sequences associated to extensions with cp splitting and is
Bott-periodic and K-stable. In fact, it is universal with these properties and
this shows that KK gives an alternative construction for Kasparov’s KK-
functor.

The description of the boundary maps given above now carry over basically
word by word. In particular, for an extension

0 → I → A→ B → 0

of C∗-algebras with a completely positive splitting, the associated element
in KK−1(B, I) is represented by the classifying map γs : JB → I and the
boundary map is given by composition with this homomorphism.

6 The index theorem of Baum-Douglas-Taylor

For completeness we briefly recall the argument by Baum-Douglas-Taylor in
[2].

Let M be a compact C∞-manifold. Then a neighbourhood of M in T ∗M
has a complex structure and, considering the ball bundle with sufficiently
small radius, B∗M can be considered as a strongly pseudoconvex domain
with boundary S∗M . We obtain an extension of C∗-algebras

EB∗M : 0 → C0(T ∗M) → C(B∗M) → C(S∗M) → 0

On B∗M , there is an operator D =: V → V , where V denotes the space of
differential forms in Λ0,∗ on B∗M , satisfying a natural boundary condition on
S∗M , such that the restriction of D to T ∗M defines the Dolbeault operator
∂̄ + ∂̄∗. Denote by H the L2-completion of V .

Let D̄ denote the maximal extension of D defined on the completion of V
with respect to the norm ‖f‖ = ‖f +Df‖2. Then 0 is an isolated point in the
spectrum of D̄, the range of D̄ is closed and its cokernel is finite-dimensional.

With respect to the decomposition of Λ0,∗ into even and odd forms H
splits into H = H+ ⊕H−.

The Kasparov C0(T ∗M)-K-module (ϕ, F ), where F = D̄/
√
D̄2 and ϕ de-

notes the representation of C0(T ∗M) by multiplication operators, describes
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the Dolbeault element [∂̄T∗M ]. With respect to the Z/2-grading of H and
modulo compact operators F is of the form(

0 v
v∗ 0

)
where v∗v = 1 and P = 1− vv∗ is the projection onto the Bergman space of
0-forms, thus functions u, for which ∂̄u = 0 (i.e. holomorphic L2-functions).
Moreover, since D extends to B∗M , it satisfies the conditions required in 23
for I = C0(T ∗M), A = C(B∗M) and B = C(S∗M).

Therefore by the Baum-Douglas formula in 23 the image of the element
[∂̄T∗M ] ∈ KK0(C0(T ∗M),C) in KK0(C(S∗M),C) is represented by the ex-
tension

0 → K → D → C(S∗M) → 0 (1)

where D denotes the subalgebra of L(PH) generated by K = K(PH) together
with Pϕ(C(S∗M))P .

Boutet de Monvel [4], [3] constructs a unitary operator G mapping L2(M)
to PL2(T ∗M). It has the property that G∗TfG is a pseudodifferential operator
with symbol f |S∗M for a Toeplitz operator of the form Tf = PfP , f ∈
C(B∗M).

Therefore G conjugates the extension (1) of Toeplitz operators into the
extension

EΨ : 0 → K → Ψ → C(S∗M) → 0

where Ψ denotes the C∗-completion of the algebra of pseudodifferential oper-
ators of order ≤ 0 and K the completion of the algebra of operators of order
< 0.

In conclusion we get the theorem that

KK(EB∗M )[∂̄T∗M ] = KK(EΨ )

where [∂̄T∗M ] is the K-homology element in KK(C0(T ∗M),C) defined by
(ϕ, F ) and where EΨ , EB∗M are the two natural extensions of C(S∗M).

The proof of the theorem that we outlined above works verbatim in the
setting of locally convex algebras. The Baum-Douglas-Taylor theorem then
reads as

kk(EΨ ) = kk(EB∗M ) · [∂̄T∗M ]

where kk(EB∗M ), kk(EΨ ), [∂̄T∗M ] are the elements in kk∗ determined by the
corresponding extensions of locally convex algebras (using algebras of C∞-
functions and replacing the ideal K by a Schatten ideal).

We briefly sketch the connection of this theorem to the index theorems
of Kasparov and of Atiyah-Singer. Kasparov’s theorem determines the K-
homology class [P ] ∈ KK(CM,C) determined by an elliptic operator P by
the formula

[P ] = [[σ(P )]] · [∂̄T∗M ]
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Here [[σ(P )]] = [[Σ(P )]] ·KK(EB∗M ) and [[Σ(P )]] ∈ KK(CM, C(S∗M)) is a
naturally defined bivariant class associated with the symbol of P . Kasparov’s
formula is (in the non-equivariant case) a consequence of the Baum-Douglas-
Taylor theorem, since - basically by definition - we have [P ] = [[Σ(P )]] ·
KK(EΨ ).

The Atiyah-Singer theorem determines the index of P as an element of
KK(C,C) = Z by

indP = ind t[σ(P )]

where ind t is the “topological index” map. This formula is a consequence
of Kasparov’s formula since, by definition, indP = [1] · [P ], [σ(P )] = [1] ·
[[σ(P )]], and since one can check that ind t(x) = x · [∂̄T∗M ] for each x in
KK(C, C0(T ∗M)).

Finally, we note that, by construction, the Baum-Douglas-Taylor theorem
of course also gives a formula for the index of Toeplitz operators on strictly
pseudoconvex domains. This formula is also discussed in [12].
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