CENTRAL SEQUENCES IN C*~ALGEBRAS AND STRONGLY
PURELY INFINITE ALGEBRAS

EBERHARD KIRCHBERG

ABSTRACT. If A is a separable unital C*—algebra and if the relative commutant
A¢:= A'N A, is simple, then either A =C-14 and A = M, or A and A° are both
simple and purely infinite. In particular, A 2 A® Oy if A€ is simple and A€ £ C-14.
A version of this result for non-unital A is given if A°/Ann(A, A,) is simple.

The converse holds in the nuclear case: If A is simple, purely infinite, separable,
nuclear and unital, then A€ is simple (and purely infinite).

We show that Q¢ = C - 1 for the Calkin algebra @ := L£/K, in contrast to the
separable case.

We introduce an invariant cov(B) € N U {oo} of unital C*—algebras B with
cov(B) < cov(C) if there is a unital *~homomorphism from C into B.

If B is nuclear and has no finite-dimensional quotient then cov(B) < dr(B) + 1
for the decomposition rank dr(B) of B. In particular, cov(Z) = 2 for the Jian-Su
algebra Z, because dr(Z) = 1.

It is shown for (non-simple) separable C*—algebras A that A is strongly purely
infinite in the sense of [12] if A does not admit a non-trivial lower semi-continuous
2-quasi-trace, cov(A°/Ann(A,,A)) < oo and if there is an image of C*((0,1], Ms)
that generates a full hereditary C*-subalgebra of A°/Ann(A,, A)).

It follows that A is strongly purely infinite if A°/Ann(A) contains a simple C*—
algebra B unitally such that cov(B) < co. In particular, A ® Z is strongly purely

infinite if A, admits no non-trivial lower semi-continuous 2-quasi-trace.

1. THE CASE OF SIMPLE A¢/Ann(A)

We suppose that A is a separable C*—algebra. Let w a free ultra-filter on N. We
also denote by w the related character on ((N) with w(cy(N)) = {0}. Recall that
lim,, v, means the complex number w(ay, as,...) for (ai,as,...) € €y(N). Then
Ay = l(A)/co(A) with ¢,(A) = {(a1,a2,...) € lx(A);, lim, [Ja,|| = 0}. The
natural epimorphism from (. (A) onto A, is denoted by m,. Sometimes we say that
(a1, as,...) € l(A) is a representing sequence for b € A, if m,(as,as,...) = b. We

consider A as a C*—subalgebra of A, by the diagonal embedding

a— my(a,a,...)=(a,a,...)+ c,(A),
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and let A° := A’ N A, the algebra of (w—) central sequences in A. The (two-sided)
annihilator

Ann(A) := Ann(A, A,) :={be A,; bA= {0} = Ab}
of Ain A, is contained in A, but Ann(A) does not carry much information about A.

The below mentioned (or later needed) basic facts on A° are proved in Section 3
(Appendix). Ann(A) is a closed ideal of A° and A°/Ann(A) is a unital C*-algebra.
Ann(A) = {0} if and only if A is unital. There is a natural *-homomorphism

p: (A°/Ann(A)) @ A — A,

given by p((d + Ann(A)) ® b) := db for d € A° and b € A. It holds p(1 ® b) = b for
be A (cf (A1)).

Let K denote the compact operators on /5(N). K¢ is huge, but £°/Ann(K) = C =
C... More generally, if p is a full projection of A then A°/Ann(A) is naturally isomorphic
to (pAp)° C (pAp)w = p(A,)p (¢f. (A1) of the Appendix.).

A is simple if A°/Ann(A) is simple. A is simple and unital if A° is simple, cf. (A.2).
To get the main result Theorem 1.8 of this section, we have to improve here (in the case
where A is simple) some of the general results on A° and A°/Ann(A) in the Appendix.

Remark 1.1. Let A a o-unital C*—algebra. The closed ideal J4 of A, generated by
A is simple, if and only if, either A is simple and purely infinite or A is isomorphic
to the compact operators K(H) on some Hilbert space H. If A 2% IC(H), then A,
and is simple and purely infinite. If A = K(H), then J4 = K(H,) (and Ja # A, if
Dim(H) = o0).

Proof. It is easy to see (with help of representing sequences) that for b,c € (A,)+
there is a contraction d € (A,)+ with ||c[|d*bd = ||b||c if A is simple and purely infinite.

Conversely, suppose that J, is simple. Clearly, A is simple. Suppose that A 2 IC(H)
for any Hilbert space H, i.e. that A is antiliminary. Let b,c € (J4), with ||b]| = [|¢|.
Since A is antiliminary, by (A.10) there exists a *-monomorphism ¢ : Cy((0, 1], ) —
A, with b(f) = f for every f € Cy((0,1],K). Let D denote the hereditary C*—
subalgebra of A, generated by the image of ). D is non-zero, stable and satisfies
bg = g = gb for all g € D. In particular, D C Jy4. Since J4 is simple and D is stable,
there is d € J4 with d*d = ¢ and dd* € D. Thus d*bd = d*d = c. It follows that
A is purely infinite, because we can take b,c € A and find a representing sequence
(dy,ds,...) € l(A) for d with d*bd = ¢ in A,,. O

Lemma 1.2. Suppose that A is a separable unital C*—algebra, such that 14 is properly
infinite. Then A, contains a non-zero C*-subalgebra D such that AD + DA C D and

AN D ={0}.
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In particular, A # C-14.

Proof. We find a faithful unital *-representation ¢: A — L(H) over a separable
Hilbert space H and a faithful normal state p on L(H).

By assumption, there are isometries s, € A with sjss = 0. Let ay,aq,... a
sequence that is dense in the positive contractions of A and ¢; := )" ., (52)"s1a,57(53)"™.

Then A is generated (as a C*—algebra) by the five self-adjoint elements
c1, Co = (8] 4+ 81)/2, c3 := (8] — 81) /20, ¢4 := (85 + $2)/2, c5 := (85 — $2)/2i

of norm < 1, and there is a unital *-epimorphism h: C*(F5) — A given by h(g;) := €.
Here Fy denotes the free group on 5 generators gy, . . ., g5, and C*(F5) the full C*—group
algebra.

Let I(w) € N denote the reduced word-length of an element w € Fj. Then (obviously)
[(wywy) < I(wq)+1(we) and one can easily see that R(n) := f{w € Fs; [(w) = n} tends
to oo for n — oo and R(n) < 10™. Thus

0<y:=>» 207" =3 "20"R(n) < 00
weF5 n=0

and v(a) ==y cp 207 o p(h(w™t)ah(w)) is a faithful state on A. v satisfies

v(h(v)*ah(v)) < 201y (a) for all @ € A, and all v € F.

We define a state v, on A, by v,(b) := w — lim,, v(b,) for b € A, and (by,bs,...) €
lo(A) with 7, (by,ba,...) = b. Let L C A, the closed left ideal of elements b € A,
with 1, (b*b) = 0. Since v, (h(v)*b*bh(v)) < (20)y,,(b*b), we get Lh(v) C L for
all v € Fs5. It follows that LA C A. Thus D := L* N L satisfies AD + DA C D.
AND cC An L = {0}, because 0 = v, (a*a) = v(a*a) implies a = 0.

By (A.6) and (A.5), there exists a non-scalar positive element in A°. O
Lemma 1.3. If A is separable (and non-zero) and A°/Ann(A) = C then A® K = K.
Proof. A is simple by (A.2) and the closed ideal J4 of A, generated by A must be
simple by (A.6). By Remark 1.1, either A ® K = K or A is purely infinite.

Suppose that A is purely infinite, then A contains a non-zero projection p € A and
p is properly infinite, i.e. the unital algebra pAp has a properly infinite unit element.
By (A.1), (pAp)® = A°/Ann(A) = C, which contradicts that (pAp)° is not isomorphic
to C by Lemma 1.2. O

Lemma 1.4. Suppose that A is simple.

(i) Then for every non-zero positive contraction b € A°/Ann(A) there is a positive
contraction d € A°/Ann(A) with ||d|| = 1 and db = bd = ||b||d.
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(i) If e € (A°/Ann(A)), is not invertible, then there exists non-zero d €
(A°/Ann(A)); with de = 0.

(i) Every mazimal family of orthogonal positive contractions in A°/Ann(A) is ei-
ther un-countable, or is finite and has a invertible sum.

Proof. Ad(i): We can suppose that ||b]| = 1. Then there is a contraction ¢ € AS with
b=c+ Ann(A). Let a € A a strictly positive contraction with [ja|| = 1.

By (A1), p: (A°/Ann(A))®@™>* A — A, induces an isomorphism from C*(1,b)@™" A
onto C*(A,cA) C A, with p(b® a) = ca, because A is simple, C*(1,b) C A°/Ann(A)
is nuclear and p(u ® v) = 0 implies u = 0 or v = 0. In particular, ||cal = ||b ® a|| = 1.

Thus, there is a character g on C*(a,ca™; n=1,2,...) with u(ca) = 1.

By (A.3) there exists g € (A, )+ with ||g|| = 1 and cag = g. It follows cg = g and
ag = g = ga, because ca < ¢ < 1 and ca < a < 1. In particular, Ann(A)g = {0}.
By (A.8) there is a positive contraction d; € A® with dic = d; and dig = ¢g. Thus
d := dy + Ann(A) € A°/Ann(A) satisfies db = d, p(d ® a)g = dyag = g and 1 > ||d|| >
lp(d®a)|| = 1.

Ad(ii): Then b := 1 — |le]["e has norm ||b|| = 1. By (i), there is positive d €
A°/Ann(A) with ||d|] =1 and db = d. d is orthogonal to e.

Ad(iii): If ey, eg,... € A°/Ann(A) is a sequence of pairwise orthogonal positive
contractions, and e := > 27 "e,. If e is invertible, then e, = 0 for n < ny. If e is not
invertible, then there exists non-zero d € (A°/Ann(A)), with ed = 0 by (ii). Thus
e,d =0 for all n € N. O

Lemma 1.5. If A°/Ann(A) is simple and stably finite, then A°/Ann(A) = C-1 and
A K =K.

Proof. A is simple by (A.2) and the unital simple C*-algebra A°/Ann(A) has a non-

zero finite 2-quasi-trace that is necessarily faithful.

If A is simple and A°/Ann(A) admits a faithful bounded quasi-trace, then every
maximal family of non-zero mutually orthogonal positive contractions in A°/Ann(A) is
finite by Lemma 1.4(iii). It follows that every (maximal) commutative C*-subalgebra

of A°/Ann(A) must be of finite dimension. Thus A°/Ann(A) is of finite dimension (<
square of the dimension of any maximal commutative C*-subalgebra).

Hence A°/Ann(A) = M,, for some n € N. By (A.9) holds M, ® M,, C A°. Thus,
n=1.

A® K = K follows from A°/Ann(A) = C by Lemma 1.3. O
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Lemma 1.6. If A°/Ann(A) is simple and is not stably finite, then A is simple and
purely infinite.

Proof. Then thereis n € N such that M, (A°/Ann(A)) contains a copy of O unitally,
because A°/Ann(A) is unital and simple. It implies that the ultrapower D, C A,
contains a properly infinite projection p € p(O @™ E) C D, for every “n-stable”
hereditary C*-subalgebra D = M, ® E of A. Here we naturally embed O, @™ EF
into (A°/Ann(A)) @™ (M, ® E), and use that (A°/Ann(A)) ®™** D is a subalgebra
of (A°/Ann(A)) @™ A.

By the semi-projectivity of the relations for infinite projections, D contains a copy

of O (non-unitally). Since every non-zero hereditary C*-subalgebra of A contains a

non-zero n-homogenous element, A is purely infinite. U

Lemma 1.7. If A°/Ann(A) is simple and is not stably finite, then A°/Ann(A) is purely
infinite and A =2 A ® Oy.

Proof. We split the proof into steps (a)—(e):

(o) If A°/Ann(A) is simple, # C - 14 and B is a separable C*-subalgebra of
A°/Ann(A), then the commutant B’ N A°/Ann(A) is not sub-homogenous, because it
contains a copy of every separable simple unital C*-subalgebra of A°/Ann(A) unitally
by (A.9).

(B) If A°/Ann(A) is simple and is not stably finite, then there is n € N such that
M,,(A°/Ann(A)) contains a copy of O, unitally, and, for every a € (A°/Ann(A));\{0}
there exists m(a) € N such that M,,)(a(A¢/Ann(A))a) contains a copy of Oy (non-
unitally).

(7) Let a € (A°/Ann(A)), \ {0}. We find a unital simple separable C*—subalgebra B
of A°/Ann(A) such that B contains a and the matrix-entries of the generators of O in

M0y (a(A¢/Ann(A))a). It follows, that the image of every non-zero *-homomorphism
from Cy((0, 1], Myn(a)) ® aBa into A°/Ann(A) contains a non-zero stable C*-subalgebra
of A°/Ann(A).

(6) Since B’ N A°/Ann(A) is not sub-homogenous, by the Glimm halving lemma
[15, lem. 6.7.1] there is a non-zero *-homomorphism hy from Cy((0,1], M,y,) into
B'Nn A°/Ann(A).

Then the natural *-homomorphism h: Cy((0,1], My@) ® B — A°/Ann(A) with
h(f @ b) = ho(f)b is non-zero, because 1 € B. Since B is simple, the restriction of h
to Co((0, 1], Myp(a)) @ aBa is also non-zero. The image is contained in the hereditary
C*-subalgebra of A°/Ann(A) generated a. Thus, A°/Ann(A) is locally purely infinite

by (7).
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Hence A°/Ann(A) is purely infinite. In particular, its unit element is properly infi-

nite, i.e. there is a copy of O unitally contained in A°/Ann(A).

(e) A is simple and purely infinite by Lemma 1.6. So A is unital or it contains a
non-zero projection p such that A = (pAp) @K by Zhang dichotomy for simple o-unital
purely infinite C*—algebras.

Let p € A a non-zero projection (it should be the unit element of A in the case where
A is unital). Then

be A°/Ann(A) — p(b® p) € p(A,)p = (pAp).,

is a unital *~homomorphism from A°/Ann(A) into (pAp)¢. Thus (pAp)¢ contains a
unital copy of Ou. It implies pAp = pAp ® Oy by [12], because pAp is separable.
Thus A ® Oy = A. O

Theorem 1.8. Suppose that A is a separable C*—algebra. Then A°/Ann(A) is unital
and A is unital if Ann(A) = {0}.

If A°/Ann(A) is simple, then, either A°/Ann(A) = C and A is stably isomorphic
to K(£5(N)), or A°/Ann(A) is purely infinite. If A°/Ann(A) is purely infinite, then
A2 AR Oy and A, is stimple and purely infinite.

Note that A is simple and purely infinite if A, is simple by Remark 1.1.
Proof. A°/Ann(A) is unital by (A.1). If Ann(A) = {0}, then A is unital by (A.1).

If A°/Ann(A) is simple and stably finite, then A°/Ann(A) = C-1 by Lemma 1.5. It
is the case if and only if A ® K = K by Lemma 1.3.

Thus, if A°/Ann(A) is simple and A is not stably isomorphic to K(f2), then A is not
stably finite. It follows that A°/Ann(A) is purely infinite and A =2 O, ® A by Lemma
1.7.

A is simple (and purely infinite) by Lemma 1.6. A, is simple and purely infinite by
Remark 1.1, if A is purely infinite. U

Now we consider the nuclear case. It suffices to consider the unital case because

a simple and purely infinite C*—algebra A contains a non-zero projection p € A and

A¢/Ann(A) = (pAp)° by (A.1).

Proposition 1.9. A€ is simple and purely infinite if A is simple, purely infinite, sep-

arable, unital and nuclear.

Proof. If separable unital A is purely infinite, simple and nuclear, then, for b € A°

with 0 < b <1, ||b]| = 1, there is an isometry S € A, with S*bS =1 and S*aS = a for
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all a € A. To get S, recall that the nuclear c.p. map f — f(1) from Cy(Spec(b), A) =
C*(b,1) ® A = C*(b, A) into A C A, is approximately one-step inner (in A,). Then
use (A.4).

It follows SS* € A° and S € A°.

A° 2 C by Lemma 1.2.

g

Question 1.10. Let A a simple, purely infinite, unital, exact and separable C*—algebra.
Is A¢ simple if AZ A® Oy7

Let A denote the reduced free product C*-algebra considered in [6]. A is unital,
simple and purely infinite, but A¢ does not contain O,,. Thus A° can not be simple.

There are unital non-separable purely infinite C*—algebras (e.g. the Calkin algebra)
A with A° 2 C by Corollary 1.13. This comes from the following Lemma and from
Voiculescu’s description of the neutral element of Ext(B) for separable B (cf. proof of

Proposition 1.12).

Lemma 1.11. Let B a separable unital C*-algebra. There exist a unital C*-algebra D,
a unital *-monomorphism n: B — D and a projection p € D such that

(1 =p)n@)pll = llpn(b) — n(b)p|| = dist(b,C - 1)

for every b € B.

Proof. Let D := B x E the unital full free C*-algebra product of B and of F :=
C*(l,p=p> =p*) *C®C. Then n: b — bx1 and #: ¢ — 1% e are unital *-
monomorphisms from B (respectively from E) into D. We identify e € E with 6(e).
Note that, for all b € B,

max([|(1 —p)n®)pll, [lpn(d)(1 = p)[) = [lpn(b) — n(b)p|| < dist(b,C - 1).

Let be B\ C- 1, ie. dist(b,C-1) > 0. Since |z| < ||b— z1|| + ||b]|, there exists zp € C
with |zo| < 2||b]| such that ||b— zo1|| = dist(b, C-1). dist(b,C-1) is the norm of b4+C- 1
in B/C - 1. Thus, there exists a linear functional ¢ on B with ¢(1) = 0, ||¢|| = 1
and p(b — zp1) = ||b — z1||. With help of the polar-decomposition ¢ = |p|(u-) of ¢ in
B* = (B™),, cf. [15, prop. 3.6.7], we can see that there are a unital *-representation
A: B — L(H) and vectors x,y € H with ||z|| = |ly|]| = 1 such that ¢(c) = (A(c)z,y)
for all ¢ € B. It follows z 1 y and A(b— 291)x = ||b — 201]||y. Let ¢ € L(H) denote the
orthogonal projection onto Cx. Then (1 — ¢)A(b)qx = ||b — 201]|y. Thus

dist(b,C - 1) < ||(1 — q);\(b)q“ < [[(1 = p)n(b)p|



because there is a unital *-homomorphism x: D — L(H) with x(p) = ¢ and x(n(b)) =
A(D). 0

Proposition 1.12. For every separable unital C*—subalgebra B of the Calkin algebra
Q = L(H)/K(H) (on H = (5(N)) there is a projection P € @Q with ||Pb — bP| =
dist(b,C - 1) for all b € B.

Proof. Let D, n: B — D and p € D as Lemma 1.11. D can be unitally and faithfully
represented on H := ¢»(N) such that D N K = {0}. Let s1,s2 € L(H) two isometries
with sy51 % +s985 =1, m: t € L(H) — t+ K € @ denotes the quotient map. There is
a unitary U € @ with U*bU = 7(s1)bm(s1)* + 7(san(b)s;) for b € B, by the general-
ized Weyl-von-Neumann theorem of Voiculescu, cf. [1]. Thus P := Un(sepss)U* is a
projection in @) that satisfies ||Pb — bP|| = dist(b,C - 1) for all b € B. O

Proposition 1.12 implies:

Corollary 1.13. Q=C- 1.

Proof. Let b = 7w, (b1,bs,...) € Q, for (by,by,...) € (o(Q), B the unital C*—
subalgebra generated by by, by, ... and P € @ as in Proposition 1.12. Then Pb—bP =
Tw(Pby — by P, Pby — byP,...) and ||Pb — bP|| = w — lim, dist(b,,C - 1). It follows
beC-1=(C-1), if Pb=>bP. O

2. OTHER PROPERTIES OF A° AND ITS IMPLICATIONS

We consider separable C*—algebras A (not necessarily simple or unital). The really
interesting case seems to be where A°/Ann(A) contains a full simple C*—algebra B of
dimension Dim(B) > 1. We show below that in this case A is strongly purely infinite if
A is weakly purely infinite, and we study a condition on A°/Ann(A) that implies weak

pure infiniteness if A has no non-trivial lower semi-continuous 2-quasi-trace.

The next considerations are concerned with a sufficient condition on A°/Ann(A)
that allows to derive that A is weakly purely infinite if every lower semi-continuous
2-quasi-trace on A, takes only the values 0 and oo (cf. 2.5).

Definition 2.1. X C By is full if the ideal of B generated by X is dense in B. We
say: a € By is full if X := {a} is full. A *-homomorphism h: C' — B is full if A(C})
is full in B.

An element a € B, is k-homogenous if there is a *-homomorphism h: Cy((0,1]) ®
M), — B such that h(fy ® 1;) = a. Here fo(t) :==t for t € (0,1]. (0 is k-homogenous

for every k € N by definition.)
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We define for a unital C*-algebra B a number cov(B,m) as the minimum in N U
{+o0} of the numbers n € N such that there are a4,...,a, € By and dy,...,d, € B
such that Zj diajd; =1 and a; is the sum a; = i]:1 a;; of mutually orthogonal k; ;-
homogenous elements a;; € By with k;; > m for j = 1,...,n and i = 1,...,[;.
(The minimum of an empty subset of N is considered as +o00.) In other words:
cov(B,m) < n < oo, if and only if, there are finite-dimensional C*~algebras F3, ..., F,,
*-homomorphisms h;: Cy((0,1]) ® F; — B and dy,...,d; such that every irreducible
representation of Fj is of dimension > m and 1 =} djh;(fo ® 1)d; for j=1,... n.

We define cov(B) := sup,, cov(B,m).
Remark 2.2. It follows easily from the definitions that for unital B holds:

(i) cov(B,m) < cov(B,m+ 1),

(ii) cov(C,m) < cov(B,m) if there exist a unital *~homomorphism from B into C,
in particular cov(Oy, m) =1 for all m € N.

(iii) cov(B,m) = inf, cov(B,,m) if B is an inductive limit of unital C*-algebras
By, Bs, ..., because Cy((0, 1], F') is projective for C*~algebras F' of finite dimen-
sion.

(iv) It follows cov(B) = sup,, inf,, cov(B,, m).

(v) If 1p is finite, then cov(B) = 1 if and only if there are for every m € N a C*-
algebra A,, of finite dimension and a unital *-homomorphism h,,: A,, — B,
such that every irreducible representation of A,, has dimension > m.

(vi) cov(Ou) = 1 because cov(Osy) = 1. Thus cov(B) = 1 if 15 is properly infinite.

Proposition 2.3. If a unital nuclear separable C*—algebra B has decomposition rank
dr(B) < oo (cf. [13, def. 3.1]) and if B has no irreducible representation of finite
dimension, then cov(B) < dr(B) + 1.

Proof. This follows easily from the definition of the decomposition rank [13, def. 3.1]
by [13, prop. 5.1], which implies that the c.p. contractions ¢, : M,, — B of strict order
zero arising in n-decomposable c.p. approximations ¢: @;_, M,, — B and ¢: B —
@D;_, M,, of [13, def. 3.1] can be chosen such that (eventually) minry,...,r, > ¢ if
1o — idp (in point-norm) and B has no irreducible representation of dimension < g.

Indeed, suppose that ¢,: C,, & D, — B and ¢,,: B — C,, & D,, are completely
positive contractions with suitable C*-algebras C,, and D, such that ¢, o ¢, tends
to idp in point-norm, the curvatures |1, (6*b) — 1, (b*)1,(b)|| tend to zero for every
b € B, 1, is unital and every irreducible representation of C,, has dimension < ¢. Then
the ultrapower C' := [ _{Ci,C5, ...} has only irreducible representations of dimension

< ¢ and the restriction to B of the ultrapower U: B, — C of the completely positive
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contractions p; o ¢, : B — C,, is a unital *~homomorphism from B into C. The latter

contradicts that B has no irreducible representation of dimension < gq. ]

Remark 2.4. A quasi-trace 7: Ay — [0, 00] is called trivial if it takes only the values
0 and 4o00. Suppose that every lower semi-continuous 2-quasi-trace on A, is trivial.
Then, for every n € N, a € A, \ {0} and ¢ > 0 there exists kg € N such that for every
k > ko there are dy, ...,d, in M) ® A such that d}(1; ® a)d; = 9, j(1x ® (@ — €)4).

(The latter is a reformulation of [11, prop. 5.7].)

Proposition 2.5. If cov(A°/Ann(A)) < oo and if every lower semi-continuous 2-
quasi-trace on A, s trivial, then A is weakly purely infinite.

Proof. Let m := cov(A°/Ann(A)) and n := 2n. Below we show that, for a € A,
and € > 0, there exists a matrix V' = [v; 4|mn € My n(Ay,) such that V*(a ® 1,,)V =
(@ —€); ®1,. It follows that A is pi-m in the sense of [12, def. 4.3] (use representing
sequences and M, ,(Ay,) = (Myn(A)),). Thus A is weakly purely infinite.

Let kg € N as in Remark 2.4 for a € A, and € > 0. We find finite-dimensional C*-
algebras Fi, ..., F,,, *-homomorphisms h;: Cy((0,1])®F;) — A°/Ann(A) and elements
g; € A°/Ann(A) such that 3, g7bjg; = 1 for b; := h;(fo ® 1p;), and that F} has only
irreducible representations of dimension > ko for j = 1,...,m. (We allow b; = 0 for
cov(A°/Ann(A), ko) < j < m, to simplify notation.)

For every j = 1,...,m we find by Remark 2.4 d;,...,d;, € F; ® A such that, for

I1<j<mand1<pqg<n
d;,p(le ® a)djq = Opq(lr, ® (@ —€)4).
We define, for j =1,....mand ¢g=1,...,n = 2m,
Vg = ph; @1da(fo © d;q)(g; ® 1))

(Note here that g; ® 1 is a multiplier of (A°/Ann(A)) ® A.)

A straight calculation shows that V' := [v; ¢]m.» is as desired, because

O

Now we study situations where we can deduce strong pure infiniteness from weak

pure infiniteness.

Lemma 2.6. If A is purely infinite and A°/Ann(A,, A)) contains two orthogonal full

hereditary C*-subalgebras, then A is strongly purely infinite.
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Proof. Let a,b € Ay and e > 0, 6 := ¢/2. If By, E; C A°/Ann(A) are orthogonal
full hereditary C*-subalgebras, there are e; € (E;); and g;, hy € A°/Ann(A) (i = 1,2,
j=1,...,m, k=1,...,n) such that 1 = 3~ g(e1)’g; and 1 = >_; hj(es)*hy. Thus,
a’ = p(1®a?) (respectively b?) is in the ideal of A, generated by p(e; ®a) (respectively
plea ® b)), because, e.g. 1 ® a? is in the ideal of (A°/Ann(A)) @™ A generated by
e1 ®a. Let u; € (A% C A, with e; = u; + Ann(A). Then ujabuy = p(erea ® ab) =0
and a? (respectively b?) is in the closed ideal of A, generated by uja?u; = p((e1)* ® a?)
(respectively usb?us).

Since A is purely infinite, A, is again purely infinite, cf. [11].

It follows that there are fi,fo € A, such that fiua®uif; = (a*> — §)y and
fouabPus fo = (b2 —0)+.

With v; := fiu; holds ||via?v; — a?|| < €, |[vib*vy — b?|| < € and viabvy, = 0 in A,.
With help of representing sequences for v; and vy in (o (A) we find di,dy € A with
|diady — a?|| < e, ||d5b*dy — b?|| < € and ||djabds|| < e. This means that A is strongly
purely infinite, cf. [3], [12]. O

Lemma 2.7. If A°/Ann(A) contains a full 2-homogenous element, then A has the
global Glimm halving property of [2] (cf. also [3]).

If, in addition, A is weakly purely infinite, then A is strongly purely infinite.

Proof. Leta e A, e € (0,1),:=¢%/2 and D := aAa. By assumption, there exists
b€ A°/Ann(A) and dy, . .., d, € A°/Ann(A) with v* = 0 and ). d;b*bd; = 1.

Let e; := p(d; ® a/?), ¢ € A° with b = ¢+ Ann(A) and f := ca = p(b ® a'/?). Then
f2 =0 and a® = Zj ejf*fe;. f and eq,...,e, are in the hereditary C*-subalgebra
of A, generated by a, in particular they are in D,. Let h = (hy,ha,...) € ls(D)
self-adjoint with 7, (h) = f*f — ff*, g = (91,92, --.) € ls(D) with 7,(g) = f, and let
up = (hk)l_/kgk(hk)i/k for k:=1,2,....

Then uy, € D, uj = 0 and 7, (uy,us,...) = f.

With help of representing sequences in ¢ (D) for eq,...,e, € D, one can see that
there exists k € N and vi,...,v, € D such that |[a® — 3 viupupugv;| < 0.

By [12, lem. 2.2] there is a contraction z € A such that > wiuzurw; = (a —€)4 for
w; = v;zh(a) with h(t) := max(0,t — £)/2/ max(0, #* — §)'/2 on [0, oc].

It follows that (a —e€), is in the ideal generated by uy. Thus A has the global Glimm
halving property of [2].

By [3] (and [2]) A is purely infinite if and only if A is weakly purely infinite and has

the global Glimm halving property.
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Thus, A is strongly purely infinite, because Lemma 2.6 applies. U

Theorem 2.8. If A has no non-trivial lower semi-continuous 2-quasi-trace and if
A°/Ann(A) contains a simple C*-subalgebra B with 1 € B and

cov(B @M B @™ ...) < oo,

then A is strongly purely infinite.

Proof. Since cov(BR™™ BR™**...) < o, it follows B # C and, by (A.9) and Remark
2.2(ii), that and cov(A°/Ann(A)) < oo. Thus Proposition 2.5 applies and A is weakly
purely infinite. By the Glimm halving lemma (cf. [15, lem. 6.7.1]), Lemma 2.7 applies
and A is strongly purely infinite. O

Lemma 2.9. cov(Z(m,n),min(n,m)) < 2, and cov(Z) = 2 for the Jian—-Su algebra
Z.

Here Z(m,n) C C([0, 1], M,,,) denotes the dimension-drop algebra given by the sub-
algebra of continuous functions f: [0,1] — M, ® M,, with f(0) € M,, ® 1,, and f(1) €
1, ® M,,. One can use Proposition 2.3 for a proof because dr(Z(m,n), min(n,m)) < 2,
but we give an independent proof.

Proof. Let a € C([0,1], Myn,)+ the contraction given by a(t) = tl,,,. Then a €
Z(m,n), a'/? is n-homogenous and (1 — a)'/? is m-homogenous in Z(m,n). 1 =
dia'3dy + d3(1 — a)dy for dy = a'/? and dy = (1 — a)'/3.

If ¥ < n,m € N and n,m are relative prime, then Z(m,n) C Z (unitally) and
cov(Z(m,n), k) < 2. Thus cov(Z,k) < 2 for all k € N. cov(Z,2) > 1, because 1z is
finite and is not 2-homogenous. Hence cov(Z, k) =2 for k =2,3,.. .. O

Corollary 2.10. A ® Z is strongly purely infinite if A has no non-trivial lower semi-
continuous 2-quasi-trace.

Proof. Since Z2 = ZRZ®---, (A®Z)°/Ann(A® Z) contains a copy of Z unitally. [

Corollary 2.11. If A is simple, and is neither stably finite nor purely infinite, then
A° can not contain a sequence of unital copies of I(my,ny) for min(my, ng) — oo.

Proof. Follows from cov(Z(myg,nk),n) < 2 for n < min(my, ng). O

Remarks 2.12. Let D 22 C a unital separable C*-algebra such that 7,: d € D +—
d®le D™ Dandn:d € Dw— 1®de D™ D are approximately unitarily
equivalent in D @™ D. (We use here only the minimal C*-tensor product. It would
be enough that 7, and 7, are equivalent in D := D®® := D ® D @™ ... for our

considerations. Even that is not trivial for the algebras listed in (iv).)
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(i) D is simple, nuclear and has at most one tracial state (by an observation of E. Effros

and J. Rosenberg).

(ii) D := D®* is a unital simple nuclear C*~algebra such that 7: a € D—a® 1 €
D ® D is approximately unitarily equivalent to a *-isomorphism from D onto D ® D.

(iii) Conversely, if D is a separable unital C*-algebra such that 9;: a € D—a® 1 €
D ® D is approximately unitarily equivalent to a *-isomorphism from D onto D ® D,
then (using an observation of G. Elliott) even 71 : @ € D — a®1® --- € D¥® is
approximately unitarily equivalent to a *-isomorphism from D onto D%,

It follows immediately that every unital *-endomorphism of D is approximately inner.

In particular, the flip automorphism of D ® D is approximately inner.

(iv) Examples of D in (iii) are Oy, O, My, Z and (infinite) tensor products D; @
Dy®. ... Up to tensoring with O this list exhausts all D in the UCT class (see below).

An example of D with D 22 D is D = P,, the unique p.i.s.u.n. algebra in the UCT
class with Ky(Ps) = 0 and K;(Py) = Z. Tt holds D = D®* = O,. More generally,
let D any separable simple C*—algebra that contains a copy of Os unitally, then n; and
1y are approximately unitarily equivalent in D ® D (M. Rgrdam gave an example of
a simple nuclear C*—algebra D that contains a copy of Oy unitally and is not purely
infinite.)

(v) With the methods of [9] one can show that A = D ® A if and only if M(A)
and A°/Ann(A) contain copies of D unitally. It follows (essentially by applications of
(A.1),(A.3) and (A.9)) that the property AQ™" K = DR™" A®K has nice permanence
properties as e.g. invariance under extensions, inductive limits, passage to hereditary

subalgebras, quotients, and tensor products.

(vi) If, in addition, u* ® u € Uy(D ® D) for every unitary u € U(D) (equivalently:
wu*v* € Uy(D) for all u,v € U(D))), then the technics of [§] applies, and one can
show that A =2 A ® D, if and only if, the quotient of A" N Cy(Ry, A)/Co(Ry, A) by
the annihilator of A in Cy(Ry, A)/Co(Ry, A) contains D unitally. (The point is to
construct a continuous path in End(D) from 7, to 75.)

It follows, e.g. (if one let A = D) that every unital endomorphism of D is unitarily
homotopic to the identity map on D, and that, for general separable A, A @™" | =
D @™ A® K implies A = D @™ A. (The latter result and the permanences of (v)
have been also obtained recently by W. Winter and A. Toms under the assumption
that U (D) = Uy(D) and with different methods.)

(vii) Let D purely infinite (=not stably finite here). Since U(D)/Uy(D) — K;(D) is
an isomorphism (cf. [5]), we get that uvu*v* € Uy(D) for all u,v € U(D). Thus every
unital *-endomorphism of D is unitarily homotopic to the identity of D. It allows

13



to define a natural isomorphism from Ky(D) into K K(D,D) such that the class of a
*-morphism ¢: D ® K — D ® K corresponds to [¢(1 @ p11)] € Ko(D).

If D is in the UCT class, then this implies that L € Endyz (K, (D)) must be the identity
of K.(D) if L([1p]) = [1p]. This implies that K;(D) must be zero, and Endz(Ky(D))
is a commutative ring with additive group isomorphic to Ky(D).

From K,(D) = K1(D® D) = 0 we get by Kiinneth theorem on tensor products that
that Tor(Ko(D), Ko(D)) = 0. Thus Ky(D) is torsion-free. The natural isomorphism
Ko(D) @z Ko(D) = Ko(D®D) = Ko(D) defines a unital ring with unit [1p] that is the
same as the ring induced by the additive isomorphism from Ky(D) onto KK (D, D).
In particular, every group endomorphism (i.e. Z-module endomorphism) is also a ring
endomorphism of the commutative ring. Moreover Ko(D@ M@ M3®---) = Ko(D)®Q
has the same properties, because D ® My ® M3 ® - - - satisfies also the condition in (iii).
Thus the Q-vector space Ko(D) ® Q is one-dimensional (over QQ), i.e. there is a natural
monomorphism from Ky(D) into Q. All this together happens if and only if Ky(D) is
a subring of Q or is zero. It follows that the (infinite) tensor products of the examples
in (iv) exhaust all purely infinite D of (iii) in the UCT class by the classification theory
for simple p.i.s.u.n. algebras.

(viii) Suppose now that D has a tracial state. Then D has the Dixmier property. D
and D ® Z have the same K K-class and same ordered K. The tracial state gives an
order and ring isomorphism from K into Q if D is in the UCT class. One does not
know whether D = D ® Z or not, even if D is in the UCT class. From recent results
of M. Rgrdam [14] it follows that D ® Z has stable rank one and D ® Z has real rank
zero if Ko(D) # Z.

(ix) Since E := (My & M3) ® (M2 @ M3) ® ... contains a simple unital AF-algebra
of infinite dimension (by an observation of M. Rgrdam), E contains also a copy of Z
(in fact £ ® Z = E). Thus, by (v), (vi) and (A.9) A = Z ® A if there is a unital
*-homomorphism from My & M3 into A°/Ann(A).

The Remarks 2.12 lead to the following questions.

Questions 2.13. Let D as in part (iii) of 2.12.

(i) Is cov(D) < 0o ? (The answer is positive if 1p is infinite.)

(ii) Is Z unitally contained in D? (Then D = D ® Z and cov(D) < 2. This is the case
if D has no tracial state.)

(iii) Is always K;(D) = 0?7 Is U(D)/Uy(D) — K1(D) an isomorphism? (K(D) =0
holds if D is in the UCT—class. U(D)/Uy(D) — K;(D) is an isomorphism if D has no

(
tracial state, or if D has stable rank one.)
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(iv) Is u* ® u € Uy(D ® D) for every unitary u € U(D)? (Is the case if D is purely
infinite by an old result of J. Cuntz, or if D has stable rank one.)

(v) Is (non-unital !) A approximately divisible if there is a unital *-homomorphism
from My @ Mj into A°/Ann(A)? (We believe that the answer is negative, and that the
conclusion A ® Z = A is the best possible.)

(vi) Does there exist a C*-algebra A such that A is stably projection-less and that the
flip automorphism of A ®™" A is approximately inner (by unitaries in M(A @™ A)).
(vii) Let D be as at the beginning of Remarks 2.12. Is D stably finite if 1p is finite? Is

the flip automorphism of D ® D then approximately inner? (The answers are positive

for D.)

Remark 2.14. The families of relations for the definition of cov(B,m) are semi-
projective, because we can suppose that the dy,...,d, and h;: Co((0,1]) ® F; — B
of Definition 2.1 satisfy in addition djdy + ...+ d}d,, = 1 and h;(fo ® 1)d; = d; for
j=1,...,n:=cov(B).

Indeed, let h;: Co((0,1]) ® F; — B and dy, ..., d, such that 1 =" d;h;(fo ® 1)d;
(where F}; is finite-dimensional and every irreducible representation of F} is of dimension
>mforj=1,...,n). Wed € (0,1) such that 1/2 > g := 3", dih;((fo—6)+®1)d; < 1.
Let d; == h;j((fo — 0)4 ® 1)Y/2d;g7"/2 then didy + ... + d:d, = 1. There is a unique
*-monomorphism t: Cy(0,1] — Cy(0, 1] with ¥(fo) = g5 where gs(t) := min(¢/4,1).
Let h; == hjo (Y ® idf,), then hi(fo® 1)d; = d;.

3. APPENDIX: ELEMENTARY PROPERTIES OF A€

The following list of properties of A are of elementary nature. Sometimes we only
sketch the proofs. We suppose in general that A is separable, but in (A.1) we need only
that A and D C A are o-unital. More details on the given arguments can be found in
the preliminaries (or in the technical chapters) of [9], [12]. Recall that 7, : (o(A) — A,

denotes the natural quotient map.

(A.1) The (two-sided) annihilator Ann(A) := Ann(A, A,) of A in A, is a closed ideal
of A¢, and A°/Ann(A) is a unital C*-algebra. Ann(A) = {0} if and only if A is unital.

If d € A, is a positive contraction that is full in A then ||b+Ann(A)| = sup,, ||bd*/™||
for all b € A°. There is a natural *-homomorphism

p: (A°/Ann(A)) @™ A — A,

given by p((b+Ann(A))®c) :=bcfor b € A°and ¢ € A. (Thus p(1®¢) =cforc e A.)
15



Let D C A a full hereditary C*-subalgebra of A. There is a natural *-isomorphism ¢
from A°/Ann(A) onto D¢/Ann(D, D,,) with pa(b®d) = pp(t(b)®d) for b € A°/Ann(A)
and d € D. (¢ is determined by the values pp(¢(b) ® d) for a fixed full element d € D.)

In particular, A°/Ann(A) = (pAp)° C pA,p = (pAp)., if p is a full projection in A.

Proof. If Ab = {0} = bA then Acb = {0} = cbA and Abc = {0} = bcA for ¢ € A°.
Clearly, Ann(A) = {0} if A is unital. Conversely, if A is not unital and if a € A, is a
strictly positive contraction with [|a|| = 1, then there exists a sequence a; > ag > ...
in Spec(a) \ {0} with lim, a,, = 0. Let f,(¢) := min(a;},¢,1) — min(e;,'¢,1). Then
fala) >0, | fu(a)|| = 1 and || fu(a)al| < ayn. ¢ = mu(fi(a), f2(a),...) satisfies ¢ > 0,
llc]| =1 and ca = ac = 0 for a € A. Thus Ann(A) # {0}.

If a € A is a strictly positive contraction in A, then the positive contraction e :=
mo(a,a'’? a'/?,...) satisfies ea = ae = a. Thus e — e?> € Ann(A) and b — be,b — eb €
Ann(A) for all b € A°. Thus e + Ann(A) is a unit element of A°/Ann(A).

Let d € A, a positive contraction that is full in A. N(b) := sup ||bd*/™|| is a semi-
norm on A with N(b) < ||b]|, N(b*) = N(b) and N(b) = 0 if and only if bd = db = 0.
bd = 0 holds if and only if bg = gb = 0 for every g € A because d is full in A, i.e. every
g € A can be approximated by finite sums Zj e;df; with e;, f; € A. Thus N(b) =0
if and only if b € Ann(A). N(be) < N(b)N(c) because ||bed™™|| < [|bd @ ||||cd"/ @™]|.
|od*/™||> = ||b*bd?/"|| < ||b*bd"/"|| because b*b and d commute. Thus N (b)? < N(b*b),
and N is a C*-norm on A° with N(b) = 0 if and only if b € Ann(A), i.e. N(b) :=
|b+ Ann(A)]|.

It follows that the natural C*-algebra homomorphism from A¢ ®™** A into Dy :=
aA,a C A, given by b ® x +— bx factorizes over

(A°/Ann(A)) @™ A = (4° @™ A)/(Ann(A) @™ A)

and defines a *-epimorphism p from (A°/Ann(A))®™** A onto the C*—-algebra generated
by A°¢- A. We get that p is well-defined, satisfies p((b + Ann(A)) ® x) = bx for
be A%z € A, and ¢ =0 if p(c ® d) = 0 and span(AdA) is dense in A.

Let D C A a full hereditary C*—subalgebra of A. Since D is separable, D contains
a strictly positive contraction d € D,. Let f := m,(d'/?,d"/3,...) € D, C A, and
let T(b) := fbf for T is a completely positive contraction from A€ into D¢ such that
bg =T(b)g = gT'(b) for all g € D, T(Ann(A)) C Ann(D) := Ann(D, D,,) and T'(b*b) —
T(b)*T(b) € Ann(D). Thus ¢(b+ Ann(A)) := T(b) + Ann(D) (for b € A°) is a well-
defined *-homomorphism from A°/Ann(A) into D¢/Ann(D) with

pa((b+ Ann(A)) ® g) = bg = Tl(Gb)g = pp((T'(b) + Ann(D)) ® g)



for g € D ¢ is a unital *-monomorphism, because fefd = d and 0 = T'(b)d = bd implies
b € Ann(A) for b € A°. ¢ is uniquely determined by the values pp(t(b+Ann(A))®d) =
bd, because pp((t(b+Ann(A))—z)®d) = 0 implies z = 1(b+Ann(A)) if z € D°/Ann(D).
(Here d can be any full element of D.)

Now suppose that D is a full corner of A, P € M(A) is the projection with PAP =
D, and that d € D, a strictly positive contraction of D.

There exists a partial isometry V in M(A ® K) with V*V =1 — (P ® e;1) and
VV*=(P®1)— (P®eyy), because P ® (1 —ey1) and 1 = 1 ® 1 are Murray—von-
Neumann equivalent in M(A ® K) by [4, lem. 2.5],

121—(P®6171) 2 1®(1—6171) 2P®(1—61,1)
are properly infinite projections and Ko(M(A® K)) =0 (cf. [5]).

Let ¢ € DS and (c1,¢0,...) € {(D)4 a representing sequence for ¢, ie. ¢ =
Tw(c1, e, .. .). We define h,, € A® K by

hn = Cp X 6171 -+ V*(Cn & (62,2 +oee €n7n))v

and b, € Ay by b, ®e11 = (1®e11)h,(1 ®e1). (Here e, denote the matrix units of
K.) P®(1—eyq) It is easy to check that b := 7, (b1, ba, .. .) isin A° and V(b)d = bd = cd.
Thus pp((¢(b+ Ann(A)) — (¢ + Ann(D))) ® d) =0, i.e. t(b+ Ann(A)) = ¢+ Ann(D),

and ¢ is surjective.

The general case of a full hereditary C*—subalgebra D C A reduces to the case of a
full corner of A:
We may identify A with A®e;n C A® My and D with D®e;; C E = D®
My, C A® M,. Let B denote the hereditary C*—subalgebra of A ® M, generated
by (A®ei1)+ (D ® eys). Then A and F' := D ® ey are full corners of B, and
of E C B. Consider the unital *-monomorphisms ¢;: B°/Ann(B) — A¢/Ann(A),
to: B¢/Ann(B) — D¢/Ann(D), t3: B°/Ann(B) — E°/Ann(FE), v4: B°/Ann(B) —
Fe/Ann(F), 15: E°/Ann(E) — D°/Ann(D), and ts: E°/Ann(E) — F°/Ann(F).

Then 1y = 1011, 13 = 15013 and 14 = 15 0 t3 (by uniqueness with respect to p). 1,
Ly, t5 and tg are isomorphisms, because A C B, FF C B, D C F and F C E are full
corners. It follows that ¢3, 1o and ¢ must be isomorphisms (i.e. must be surjective). O

(A.2) If J is a non-trivial closed ideal of A, then J, is a closed ideal of A,,. The ideal
A°N J, is not contained in Ann(A) and Ann(A) + (A°NJ,) does not contain A°. (Le.
(A°N J,)/(Ann(A) N J,) is a non-trivial closed ideal of A°/Ann(A).)

In particular, A is simple if A°/Ann(A) is simple. A is simple and unital if A° is

simple.
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Proof. It is clear that J, is a closed ideal of A, that J, N A = J and that A°N J,
is a closed ideal of A¢. If a is a strictly positive contraction in A, and b € C, a
strictly positive contraction for C, then there are by, by, ... € C*(b)4 with ||b,|| = 1,
bpbpi1 = by, ||bn — bo0|| < 1/n and lim, . ||b,d — db,|| = 0 for all d € A. Thus
¢ :=my(b1,bg,...)isin A°NJ, and ¢b = b # 0. Thus ¢ ¢ Ann(A). A° is not contained
in Ann(A) + (4°N J,), because otherwise p(1 ® a) = a is in J,, i.e. a € J, which
contradicts the non-triviality of J. O

(A.3) If B is a separable C*-subalgebra of A, and p a pure state on B, then
there exists a sequence of pure states pi, po,... on A such that p is the restriction
of p,: A, — C = C, to B. Further there are positive contractions g, € A, with
tn(gn) = 1 and gbg = pu(b)g?* for b € B, where g := 7,(g1, g2, ..). g commutes with B
if (and only if) p is a character of B.

Proof. By an old observation of J. Glimm there exists b € By with u(b) = ||b]| =1
such that v(b) = 1 and ||v|| = 1 implies v = p. It follows lim,, ., ||0"ab™ — pu(a)b*"|| = 0
for every a € B.

Further there exist a sequence by, by, ... € By with ||b,|| = 1 and 7, (b, ba,...) =b.
Let fu1, pia, . .. pure states on B with p,(b,) = 1. Then p,(b) = 1. Thus u,|B = p.

If fo(t) = max(0,1 —n(1 —¢)) and g, := fu(b,), then g = m,(g1,92,...) is as
desired. g

(A.4) Suppose that Py, Ps, ... is a sequence of (non-commutative) polynomials in in
non-commuting variables xz, z* with coefficients in A, .

If, for every n € N and ¢ > 0, there is a contraction a € A¢ with || Py(a,a")|| < € for
k =1,...,n, then there is a contraction zy € A with P, (zo,z{) = 0 for all n € N.

Proof. The result is true for A, in place of A¢ by [12, lem. 2.5, ¢f. also [9, sec.
2]. One gets the corresponding result for A° if one adds to the sequence Py, Ps, ...
the sequence of polynomials @1, Qs, ... given by Q,(z,z*) := d,x — xd, for a dense

sequence dq, ds, ... in the selfadjoint contractions in A. O

(A.5) Suppose that there exists a positive element b € A, with ||b]] = 1,such that
bA # {0}, Ab+ bA is contained in the hereditary C*—subalgebra E := bA,b of A, and
ANE # A. Then there are a € A} and d € A with ||d|| =1, da # a and da # 0.

In particular, d + Ann(A) is a non-scalar element of A°/Ann(A).

Proof. Let B := C*(b, A), then J := bBb is a closed ideal of B such that A+ J = B,
A ¢ Jand J ¢ Ann(A). There is a strictly positive contraction a € A, of A with

|la+J|| = 1. (Indeed, there is a strictly positive contraction f € A/(ANJ) with || f|| =1
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and a positive and contractive lift f; € A of f. Then C*(f;,JNA)/(J N A) = C*(f).
Let x the (unique) character on C*(f;,J N A) with x(JNA) =0 and x(f1) =1. A
strictly positive contraction a € C*(f;,J N A). with x(a) = 1 = ||a|| exists by the
argument in the beginning of the proof of (A.3).)

It holds ba # 0, because bA # {0}. We find pure states p,v on B with u(a) = 1,
wu(J) =0, v(b) = 1. By (A.3) there are positive contractions g, h € A, with ||g]| =1 =
R, gdg = u(d)g* and hdh = v(d)h?* for d € B. This implies bg = 0, bh = h, and
ag=g.

We find in C*(b) C J a sequence of positive contractions by, by, ... with b,b,41 = by,
|b — b,b|| < 1/n and lim,,_. ||byc — cby|| = 0 for all ¢ € A, ¢f. [15, thm. 3.12.14]. Note
that b,g = 0 and b,h = h for all n € N.

If aq,as, ... is a dense sequence in the positive part of the unit ball of A, then the
sequence of polynomials P (x,z*) := b—x*xb, Py(x,x*) := x*xg, P3(z,x*) :== h—x*zh,

Py.s(z, x*) := x*va,—a,z*z have approximate zeros given by contractions z := (b, )"/2.

Thus there is a contraction xy € A, with P,(x,zf) = 0 for all n € N, ¢f. [12, lem.
2.5].

It follows that d := x{z( is a contraction in A° with db = b, dg = 0 and dh = h.
da # 0 because bda = ba # 0. da # a because dag =dg =0and ag=gand g #0. 0O

(A.6) If the closed hereditary C*-subalgebra D, := AA,A of A, contains a non-zero
hereditary C*-subalgebra D with AD + DA C D and D # Dy, then A°/Ann(A)

contains a non-scalar element.

In particular, A°/Ann(A) contains a non-scalar element if the closed ideal J4 of A,
generated by A is not simple.

Proof. Let ¢ € D, anon-zero positive element. Since ¢ € D C Dy, we have Ac # {0}.
Consider the separable C*—subalgebra C' of D generated by Ac U cA U {c}. Then
AC+CA C C C J. A strictly positive element b € C, C A, with ||b|| = 1 satisfies the
assumptions of (A.5), because b € D C D 4. Thus, there exist a non-scalar element in
A¢/Ann(A) by (A.5).

The closed hereditary C*-subalgebra Dy := AA A is full in J4. Thus, if J4 is not
simple and J is a non-trivial closed ideal of J4, then D := D, N .J is a non-trivial ideal
of Dy with A ¢ D. O

(A.7) For positive contractions a € A° and b € A, with ab = 0 there exist positive

contractions ¢,d € A€ with ¢d =0 and ca = a, db = b.
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In particular, A° is “sub-Stonean”. This property passes to quotients. Thus

A°/Ann(A) is also “sub-Stonean”.

Proof. It suffices to find d > 0 in A° with ||d|| <1, da = 0 and db = b (because then
one can repeat with (b, d) in place of (a,b)).

Let (b, bs,...) a sequence of positive contractions in A with b = 7, (b1, b, ...) and
let f € A, astrictly positive contraction. There are k, € N with || f/*=b, —b,| < 1/n.
Consider Pj(x,z*) := z*zb and Pa(x,z*) := a — x*za and apply (A.4). d := zjzg
for a contractive solution x of P, = P, = 0. The approximate solutions are given by
r=(1—a’")f € A°, where e € A° is given by e := m (f/F, fl/kz ) O

(A.8) For every non-zero positive contraction ¢ € A® and positive contraction g € A,
with cg = g there is a positive contraction d € A¢ with ||d|| = 1 and dc = cd = ||c||d
and dg = g.

In particular, for every non-zero positive contraction ¢ € A° there is a positive
contraction d € A° with ||d|| = 1 and dc = ¢d = ||c||d.

Proof. It follows that ||c|| = 1. By (A.4) one gets d := z{x( as contractive solution of
P =0= P for P(xz,2*) = g — x*xg and Py(z,2*) = z*xc — z*x. The approximate
solutions are given by x := ¢".

If only ¢ € A€ is given, we can suppose ||c|| = 1. By (A.3) there is g € (A, )4 with
gc = cg = ¢g. Thus there is a positive contraction d € A° with dg = g and ¢d =d. 0O

(A.9) If A is separable and B is a separable C*—subalgebra of A¢ such that the image
of Bin A°/Ann(A) contains 1, then for every separable C*—subalgebra C' of A, there is
a *-homomorphism A from B into (A+B+C)'NA, such that h(BNAnn(A)) C Ann(A)
and the image of h(B) in A°/Ann(A) contains 1.

Proof. Let H.,, denote the free involutive semi-group on countably many genera-
tors, and let C*(Hy) = C*({1(H)). Since C*(Hs) is projective, there are *-
homomorphisms h,,: C*(H,,) — A such that

hy = (h1,ha, .. )o: [ € C*(Ho) = mu(ha(f), ha(f),...) € A,

is an epimorphism from C*(H.) onto B. Let e; a strictly positive contraction of the
kernel of h, ey a strictly positive contraction in h'(B N Ann(A)) and ez a positive
contraction in C*(Hy,) with h,(e3) + Ann(A) = 1 in A°/Ann(A), and let a« € A, a
strictly positive contraction in A. A suitable subsequence (hy,, )nen induces the desired
homomorphism from C*(H,) into (A+B+C)' NA, with (hg,, hi,, .. .)w(e1) = 0. More
precisely, given a separable C*—algebra D of (,,(A) with 7,(D) D A+ B+ C, one can

find the subsequence k1, ko, ..., such that lim,, . ||, (e1)| = 0, lim,, o || I, (€2)al| +
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lla — hy, (e3)a|l = 0 and (hg, (f)dy — dihi, (f), hiy (f)do — dahg, (f),...) is in ¢o(A) for
every f € C*(Hy) and d € D. O

(A.10) If A is antiliminary (=NGCR) then for every positive b € A, with ||b]] = 1
there exists a *-monomorphism ¢ from Cy((0,1],K) into A, with bip(c) = ¥(c) for
every ¢ € Cp((0,1], ).

Proof. Let (by,bs,...) € lo(A); a representing sequence for b with ||b,| = 1, and
let D, := (b, — (n—1)/n)yA(b, — (n—1)/n);. Then bc = ¢ for all elements ¢ in
[[{Dn;neN}CA,.

Since Cy((0,1],K) < T {Co((0,1],M,); n € N}, is suffices to find faithful *-
homomorphisms ,,: Co((0,1], M,,) — D,. By the Glimm halving lemma (cf. [15,
lem. 6.7.1]) there is a non-zero *-homomorphism h,,: Cy((0, 1], M,,) — D,,. Let E,, the
hereditary C*-subalgebra of D,, C A generated by h,(fo ® e11). If M is a maximal
Abelian C*-subalgebra of E,, with h,(fy ® e;1) € M, then M can not contain a min-
imal idempotent, because A is antiliminary. It follows that h, can be replaced by a
*-monomorphism ¢ : Cy((0, 1], M,)) — D,,. O

Remarks 3.1. The below listed additional properties of A° and Ann(A) are not needed
for the proofs of our main results. A is not necessarily separable.

(i) Suppose that A is a o-unital C*~algebra. The double annihilator Ann(Ann(A)) of
Ann(A) in A, is nothing else the hereditary C*—subalgebra D4 of A, generated by A.

(ii) If A is a simple C*-algebra, then for every g, h € (A,)+ with ||g|| = ||h]| = 1 there
is z € A, with ||z]] = 1 and z2*¢g = zz*, 2*zh = z*z. In particular, Ann(A) does not
contain a non-zero closed ideal of A, if A is simple.

(iii) Suppose that A is o-unital. A° contains an approximate unit of A,. More pre-
cisely: For every countable subset X C M(A,) there is b € (A°), with ba = a = ab
forae A, ||b|| =1, ¢b = be, A(c — cb) = {0} = (¢ — cb)A and ||be|| = ||b|| for all c € X
(¢f. 19]).

Thus, the inclusion map A° — A, is non-degenerate and the induced natural *-
monomorphism from M(A°) into M(A,) is a *-isomorphism from M (A°) onto A’ N
M(A,). The isomorphism maps M(A°, Ann(A)) := {t € M(A°);tA° C Ann(A)}
onto Ann(A, M(A,)). It follows

(AN M(A),)/Amn(A, M(A),) = M(A)/M(A°, Ann(A)) = A°/Ann(A),

because A° C A'N M(A), C A N M(A,).
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(iv) Suppose that A is a o-unital C*-algebra. Dy := AA,A. The non-degenerate
*-homomorphism p from (A°/Ann(A)) @™ A into D, defines a natural unital *-

monomorphism from
A°/Ann(A) = (A°/Ann(A)) ® Ly C M((A°/Ann(A4)) @™ A)

into A’ N M(Dy) = M(A) N M(D,). It is an isomorphism from A°/Ann(A) onto
AN M(Dy), because A is o-unital.
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