# Eigenvalues of random normal matrices





# Random normal matrix model:

# probability on $n \times n$ normal matrices

 $M^*M = MM^*$ 

Partition function:

$$Z_n = \int e^{-n \operatorname{Trace} Q(M)} dM,$$

i.e.

Prob $(M) \sim e^{-n \operatorname{Trace} Q(M)}$  (infinitesimaly). Here  $Q : \mathbb{C} \to \mathbb{R} \cup \{+\infty\}$ is a given function ("potential")

## **Eigenvalues:**

$$\{z_j\}_{j=1}^n$$

(*n* electrons in external field nQ).

As 
$$n \to \infty$$
,  
 $\frac{1}{n} \sum \delta_{\lambda_j} \to \hat{\sigma}.$ 

Equilibrium measure  $\hat{\sigma}$  minimizes Q-energy of a unit electric charge,

$$\mathcal{E}_Q[\sigma] = \int \int \log \frac{1}{|z-w|} d\sigma(z) d\sigma(w) + \int Q d\sigma.$$

(中) (四) (三) (三) (三) (四) (○)

#### Hele-Shaw time

$$t \mapsto \hat{\sigma}_t, \qquad (t > 0),$$

where  $\hat{\sigma}_t$  is equilibrium measure of mass t,

$$\hat{\sigma}_t \rightarrow \min\{\mathcal{E}_Q[\sigma] : \sigma > 0, \|\sigma\| = t\}.$$

(ロ)(目)(目)(目)(目) 目、の(の)

Existence, uniqueness if

- $Q(z) \gg \log |z|$  as  $z \to \infty$
- Q is lower semi-continuous
   (e.g., Q continuous on a closed set and +∞ elsewhere)

# Droplets

$$S_t[Q] := \operatorname{supp} \hat{\sigma}_t$$

Theorem. If Q is smooth in some nbh of  $S_t$ , then

$$d\hat{\sigma}_t = \frac{1}{2\pi} \Delta Q \cdot \mathbf{1}_{S_t} \cdot dA$$

Example:

$$Q(z) = |z|^2$$



# Algebraic (Abelian) potentials

$$Q(z) = |z|^2 - H(z)$$

 $h := \frac{\partial H}{\partial z}$  is a rational function ("quadrature function" of Q)

Example: h(z) = az + b with |a| < 1concentric ellipses

(if  $|a| \ge 1$  then no equilibria)

## Local droplets

$$h(z) = z^2$$

[Wiegmann-Zabrodin]



hypotrochoids

deltoid



Definition: K is a local droplet if  $1_K \cdot dA$  is equilibrium measure of

$$Q_{\mathcal{K}} := Q \cdot 1_{\mathcal{K}} + \infty \cdot 1_{\mathcal{K}^c}$$

# Hele-Shaw flow



If  $\{K_t\}_{0 < t < T}$  is a monotone family of local *Q*-droplets,  $t = A(K_t)$ , then it's a generalized solution of Hele-Shaw equation

normal velocity =  $2\pi \nabla G(\cdot, \infty)$ .

#### First result

Theorem. If  $h(z) = z^2$  (quadrature function of Q), then for all  $t \le T$  there is exactly one local droplet of area t; T is the area of deltoid.

# Proof: show local droplets are connected; then use classical Hele-Shaw

Related statement in inverse problem: if two domains  $\Omega_1, \Omega_2 \subset \hat{\mathbb{C}}$  satisfy

$$\Omega = \operatorname{clos} \operatorname{int} \Omega, \quad \infty \in \Omega, \quad 0 \not\in \operatorname{clos} \Omega$$

and have same moments

$$m_0 = A(\Omega^c), \quad m_j = \int_{\Omega} z^{-k} dA(z),$$

and if  $m_j = 0$  for all  $j \ge 4$ , then  $\Omega_1 = \Omega_2$ 

(日) (部) (注) (注) (三) の()

### Schwarz function

Definition. Let  $\Omega$  be a domain in  $\hat{\mathbb{C}}$ ,  $\infty \notin \partial \Omega$ . Then  $S : \operatorname{clos}(\Omega) \to \hat{\mathbb{C}}$ 

is the Schwarz function of  $\Omega$  is S is continuous, meromorphic in  $\Omega$ , and

$$S(z) = \overline{z}$$
 on  $\partial \Omega$ .

Meaning:  $\overline{S}$  is like reflection near the boundary and like (anti-)rational function away from  $\partial \Omega$ 

S-function and local droplets

If K is a local droplet, then every complementary component has S-function,

$$S(z)=h(z)-C^{K}.$$

 $C^{K} = \partial U^{K}$ ;  $U^{K}$  is logarithmic potential of  $\mathbf{1}_{K}$ , and  $C^{K}$  is Cauchy integral.

 $U^K+Q={\rm const}\quad {\rm on}\; K$ 

so if  $Q(z) = |z|^2 - H(z)$ , then  $C^K + \overline{z} - h(z) = 0$  on  $\partial K$ 

**Dynamics of S-function in case**  $h(z) = z^2$ 

$$\bar{S}: \Omega \to \hat{\mathbb{C}}, \qquad D:= \bar{S}^{-1}\Omega$$

Proper maps

$$\overline{S}: D \xrightarrow{2} \Omega, \quad \overline{S}: \operatorname{clos} \Omega \setminus D \xrightarrow{3} K$$

Two pieces of dynamics:

$$\{z: z, \overline{S}(z), \overline{S}^2(z), \ldots \in \Omega\}$$

and

$$\bigcup_{n\geq 0} \bar{S}^{-n} K$$

The two pieces meet along "Julia set" J

# Two pieces of the dynamics





# **Quasiconformal surgery**

 $\bar{S}: D \rightarrow \Omega$  extends to a 2-cover

$$\bar{R}:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$$

such that

- R
   has attracting fixedpoints in each component of K
- R is topologically (and q.c. if no singularities) conjugate to a quadratic polynomial

Conclusion: K is connected

# ?-function as conformal welding (mating)



# **Deltoid group**

Notation:

- T circular (∞, ∞, ∞)-triangle, G ⊂ Aut<sup>-</sup>(D) is its reflection group
- *K* is the deltoid,  $\bar{S}^{-1}|_{K} = \{R_1, R_2, R_3\}$

We have

- conformal map  $f : T \to K$  extends analytically to  $\mathbb{D}$
- f is univalent in  $\mathbb{D}$ , and  $U = f(\mathbb{D})$  is John
- R<sub>j</sub>'s extend to automorphisms of U
- f conjugates G and  $\langle R_1, R_2, R_2 \rangle$
- conformal map  $\hat{\mathbb{C}} \setminus \mathbb{D} \to \hat{\mathbb{C}} \setminus U$  conjugates  $z \mapsto \overline{z}^2$  and  $\overline{S}$
- conformal welding is given by the ?-function







#### centaurs





#### Quadrature domains

- QD is a domain which has a Schwarz function
- bounded Ω is a QD if ∃ rational function
   r = r<sub>Ω</sub> with poles in Ω and r(∞) = 0 such that for all f ∈ C<sub>A</sub>(Ω),

$$\int_{\Omega} f dA = \frac{1}{2i} \int_{\partial \Omega} f r_{\Omega} = \sum c_k f^{(m_k)}(z_k)$$

- similar for unbounded QDs
- Notation: d = deg r<sub>Ω</sub> = order of QD,
   n = number of nodes (=distinct poles of r<sub>Ω</sub>)



#### **Combination theorem**

$$h_Q = \sum r_{\Omega_j}, \qquad K^c = \bigsqcup \Omega_j.$$

 If K<sup>c</sup> is disjoint union of QDs, then K is a local droplet of some algebraic potential

## Example: 7 cardioids in ellipse



▶ one UQD of order 1 plus 7 BQDs of order 2, so

$$\deg h = 15$$

 Hele-Shaw flow preserves h. At time t = T - e we get a local droplet with 21 components whose complement is UQD with d = 15, n = 8. Note:

$$21 = d + n - 2$$

**Connectivity bounds** 

Theorem. If  $\Omega$  is UQD of order  $d \geq 2$ , then  $\operatorname{conn}\Omega \leq \min\{d+n-1, 2d-2\}$ If in addition  $\infty$  is a node, then  $\operatorname{conn}\Omega \leq d+n-2$ Theorem. If  $\Omega$  is BQD of order  $d \geq 3$ , then  $\operatorname{conn}\Omega \leq \min\{d+n-2, 2d-4\}$ If no nodes of multiplicity  $\geq$  3, then  $\operatorname{conn}\Omega \leq \min\{d+n-3, 2d-4\}$ 

## **Examples**

k discs inside a disc: d = n = k, so

 $\#\text{components(int } K) \leq \min\{d+n-1, 2d-2\} = 2k-2$ 

k discs inside an ellipse: d = n = k + 1, so

 $\# \leq \text{components(int } K) \min\{d+n-2, 2d-2\} = 2k$ 

k limacons inside an ellipse: d = 2k + 1, n = k + 1,

 $\#\text{components(int } K)\min\{d+n-2,2d-2\}=3k$ 





#### Gravitational lensing

 Cor: if deg r = d, then #Fix(r̄) ≤ 5d − 5 (Khavinson et al)

 $\# \operatorname{Fix}_{\operatorname{attr}} \le \# \operatorname{comp} K_{t=\epsilon} \le 2d - 2, \quad \# \operatorname{Fix}_{\operatorname{attr}} - \# \operatorname{Fix}_{\operatorname{rep}} = 1 - d$  (Lefschetz)

• Lens equation: z = r(z),

$$r(z) = \sum_{1}^{N} \frac{\sigma_j}{z - z_j} + w - \gamma z$$

 $(\sigma_j, w \in \mathbb{C}, \gamma \in \mathbb{R}$  are parameters;  $z_j$  positions of masses,  $\bar{w}$  of source,

fixedpoints of  $\overline{r}$  are images )

• Conclusion:  $\#\operatorname{Fix}_{\mathbb{C}}(\bar{r}) \leq 5N - 5$  if  $\gamma = 0$ ,  $\leq 5N - 1$  if  $\gamma \neq 0$ . Sharp!

(日) (部) (注) (注) (三) の()









[Rhie:  $\gamma = 0$ , N = 5, 20 images]

#### **Ovals of real algebraic curves**

Corollary. Given d and given some configuration of ovals O in the plane, there exists a local droplet K of an algebraic potential of degree d such that  $\partial K$  is isotopic to O iff

$$q_1 + 3q_2 + 4q_3 + 4q_4 + 5q_5 + 5q_6 + \cdots \le d+1$$

where  $q_j$  is the number of QDs of connectivity j

Example: d = 4,  $q_1 = 2$ ,  $q_2 = 1$ 



## Comments:

- $\#(\text{ovals}) \leq 2d 2$
- If h is a polynomial, then the degree of the algebraic curve is 2d, so Harnack's bound gives 2d<sup>2</sup> − 3d + 2, e.g. #(2) ≤ 4
- More general class of algebraic curves comes from Q = |R|<sup>2</sup> – H where R is rational, H harmonic

Teichmuller spaces of local droplets, an example

$$\heartsuit := \{ z/2 - z^2/4 : |z| \le 1 \}$$

- Parameter space: points  $c \in \heartsuit$
- Dynamical plane: droplet K<sub>c</sub> = B(c, ρ) \ ♡ where ρ is such that the circle is tangent to the cardioid
- $J_c$  is "Julia set" of S-function of  $K_c$
- Connectivity locus in parameter space:
   \$\mathcal{M}\$ = {c : J<sub>c</sub> connected}
- "Reflection groups" remain the same:  $\Gamma_c \equiv \Gamma(2)$















# Inside the droplet

- Convergence of fluctuations to a Gaussian field. Use of RNM model to approximate various objects related to GFF
- Universality laws at regular points in the bulk and boundary, some types of singular points in the bulk







# References

- Based on joint work with Seung Yeop Lee. I thank Seung Yeop for pictures and crucial contributions
- Use of conformal dynamics was inspired by a paper by Khavinson and Swiatek
- Interesting analogy with some work in dimer model (Kenyon, Okounkov, Sheffield)

