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and model selection parameters for data (functions, measures,
distributions, signals, images), which are based on global and local
regularity
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Purpose of multifractal analysis : Introduce and study classification
and model selection parameters for data (functions, measures,
distributions, signals, images), which are based on global and local
regularity

A key problem along the 19th century was to determine if a
continuous function on R necessarily has points of differentiability

A first negative answer
was obtained by B. Bolzano
in 1830 but was unnoticed

A second counterexample
due to K. Weierstrass
settled the issue in 1872




Weierstrass functions
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Weierstrass result was sharpened using a continuous scale of
pointwise regularity indices



Pointwise regularity

Definition :

Let f: RY — R be a locally bounded function and xo € RY;

f € C*(xo) if there exist C > 0 and a polynomial P such that, for
|x — Xo| small enough,

[f(x) — P(x — Xxp)| < C|x — Xxp|¢
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Pointwise regularity

Definition :

Let f: RY — R be a locally bounded function and xo € RY;

f € C*(xo) if there exist C > 0 and a polynomial P such that, for
|x — Xo| small enough,

[f(x) — P(x — Xxp)| < C|x — Xxp|¢
The Holder exponent of f at xg is

he(x0) = sup{a: fe C%x)}

Theorem : (Hardy, 1916)
The Holder exponent of Wy is constant and equal to H
(Wy is a mono-Hblder function)
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Pointwise regularity : Example and open problems

Riemann’s nondifferentiable function : e
L W \-h t--ff“."‘-w” A
O ai 2 g i S—
sin(n<x) Cl W,
Ra(x) = Z 2 . T sk
n=1 - LS

The cubic Riemann function : R3(x) =

Minkowski’s “question mark” function :
?(X) : [07 1] — [07 1] N /—/,1
If x=1[0;ay,---ap, -] then H

_ 4 \n+1
=2y S

C. Hermite : “Je me détourne avec effroi et horreur de cette plaie
lamentable des fonctions qui n’ont pas de dérivée”

H. Poincaré called such functions “monsters”
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Brownian motion

Economists (L. Bachelier) and physicists (A. Einstein) put into light
the central role played by Brownian motion in modeling

Definition :
Brownian motion is the
unique continuous process

with independent and

stationary increments

Theorem : (Paley, Wiener, Zygmund, 1933) With probability 1,
The Holder exponent of Brownian motion is constant and equal to 1/2

(Brownian motion has mono-Hdlder sample paths)

In 1931, S. Banach proved that a “generic” continuous function on R
is nowhere differentiable (in the sense of Baire categories)



Nowhere differentiable functions

Starting with the example of the surface of colloids, and the coast of
Brittany, J. Perrin, in his book, “Les atomes” published in 1913, insists
that such examples, far from being exceptional, supply the right
models for natural phenomena
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that such examples, far from being exceptional, supply the right
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Measure this irregularity

and use it for classification
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Fractional Brownian Motions
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Theorem : (A.N. Kolmogorov)
The Hélder exponent of By is constant and equal to H

Challenge : Find a numerically stable way to decide if a real-life signal
can be modeled by FBM
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Kolmogorov scaling function (1941)

log ( / f(x +8) - f(x)|pdx)
/|f(x+6) — f(x)[Pdx ~ |6]9P) <= ¢(p) = liminf

j—+o0 log d

Numerically : Regression on a log-log plot

What is the scaling function of FBM ?
By is the unique centered Gaussian process such that

VX020,  E(|Bu(x+3) — Bu(x)P?) = |6]*"

It follows that
|Br(x + 8) — Bu(x)| ~ [6]"

/ IByy(x + ) — Bu(x)Pdx ~ |3]"P

— Turbulence at small scale cannot be modeled by FBM (1950s)
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Functional interpretation : Lipschitz spaces
[ 150+ ) = 1601Pax ~ [5]0

Definition : Let p € [1,00); f € Lip (s, LP(RY)) if

3C >0, V5 >0, | (- 4+ 8) = F() lp< C - |6]°
3C >0, V6> 0, /|f(x+ §) — f(x)|Pdx < C - |5]P?
Vp>1, (r(p)=p-sup{s:feLip(s L)}

One can replace the spaces Lip (s, LP(R?)) by Sobolev spaces

LPS ={felP: (-A)?fe [P}

The scaling function yields a regularity index in the LP_.norm



One-variable wavelet basis

A wavelet basis on R is generated R .‘
by a smooth, well localized, oscillating I

I}
function ¢ such that the r i! d
WX —K), jker ——

form an orthogonal basis of L?(R) I

vf € L2(R),
() =33 G v(@x — k)

JEZ KEZ

where 00

Gk = 2//f(x) V(2 x — k) dx

Daubechies Wavelet
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Notations for wavelets on R

Dyadic intervals
k k+1
A= [E’ T)

DA(X) = $(@x — k)

Wavelets

Wavelet coefficients
=2 /R f(X)(2x — k)dx
Dyadic intervals at scale j
N={r: A=271}
Wavelet expansion of f

)= cax)

J AEN



Wavelets in 2 variables

In 2D, the wavelets used are tensor products :

(X, y) = Y(X)e(y)
VR, ) = p(X)(y)

3, y) = Y(X)(y)



Wavelets in 2 variables

In 2D, the wavelets used are tensor products :

(X, y) = Y(X)e(y)
VR, ) = p(X)(y)

3, y) = Y(X)(y)

Notations

. ) [k (k+1) I (I+1)
Dyadic squares : )\_[21.7 5 }x[zj, 5

Wavelet coefficients

C) :22///f(x,y) Y (2fx—k,2/y—/) dx dy
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The wavelet scaling function
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The wavelet scaling function

Let f: RY — R;its wavelet scaling function is defined Vp > 0 by

log (2“’/ Z CAp)
279 ey P~ 2P e () = liminf o

vy j—+oo log(2—/)

Besov spaces : Let p > 0; f € By (RY) if

3C,Vj - 2793 je\P<C-27¥
)\E/\j
log (2‘””' > IcAI")
ST . )\6/\,‘ . ) . S,00 d
“(p) = l@lgj log(2-7) —Pp-sup {S - TeBT (R )}

Embeddings between Lipschitz and Besov spaces imply that, when
p > 1, the wavelet scaling function coincides with Kolmogorov’s
scaling function
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The role of the wavelet scaling function

vp > 0, ¢i(p)=p-sup {s:fe By}

The wavelet scaling function is independent of the (smooth enough)
wavelet basis chosen

It is defined by regression on log-log plots

If ¢¢/(1) > 1,then f € BV

If f is a measure, then {;(1) >0
If ¢/(1) > 0, f then belongs to L'
If ¢/(2) >0, then f e L2

vV v vy

Motivations :

» Y. Gousseau, J.-M. Morel : Are natural images of bounded
variation ? (SIAM J. Math. Anal., Vol. 3, 2001)

» Jump models and finite quadratic variation assumption in finance



Wavelet scaling functions of synthetic images

Wavelet scaling function (s(p) :

02 Z lea|P ~ 27 ¢ (P

)\E/\/’
: log 4
Disk : ¢¢(p) =1 Van Koch snowflake : (¢(p) = “iog3 ~0.74
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Natural images
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Uniform Holder regularity
Holder spaces : Let a € (0,1); f € C*(RY) if

3C, vx,y: o) —fWI < C-Ix—yl*

Va € R, C*(RY) = B2 (RY)

The uniform Holder exponent of fis

H" — sup{a : f e C*(RY)}

Numerical computation
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Uniform Holder regularity
Holder spaces : Let a € (0,1); f € C*(RY) if

3C, vx,y: o) —fWI < C-Ix—yl*

Va € R, C*(RY) = B2 (RY)
The uniform Holder exponent of fis

H" — sup{a : f e C*(RY)}

Numerical computation

loa(w:
Let w;=suplc| then  H™ = liminf g(w,)
AEN; J—+o0 Iog( )

HMn >0 = fis continuous

HM <0 = fis not locally bounded



Validity of jump models in finance
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Classification based on the uniform Holder exponent
Heartbeat intervals

Healthy Heartbeat failure

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘



Classification based on the uniform Holder exponent
Heartbeat intervals

Healthy Heartbeat failure

Hmn = —0.06 Hmin = —0.55



Function space regularity :

Validity of stochastic integration tools in finance

Definition : A function f : R — R has finite quadratic variation if
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Function space regularity :

Validity of stochastic integration tools in finance

Definition : A function f : R — R has finite quadratic variation if
3C, Va,he (0,1], > If((n+1)h—a)—f(nh—a)f <C
n

Proposition : If H™" > 0 and ¢s(2) > 1, then f has bounded
quadratic variation

EUR-USD

"% 500 1000 _ 1500 2000 2500 3000
Temps (Jour)

Euro vs. USD (2001-2009) ¢s(2) = 1.0053



Limitations

Classification only based on the wavelet scaling function or on the
uniform Holder exponent proved insufficient in several occurrences
(turbulence, data mining, ... )



Limitations

Classification only based on the wavelet scaling function or on the
uniform Holder exponent proved insufficient in several occurrences
(turbulence, data mining,

)

Further developments were based on seminal ideas introduced by U.
Frisch and G. Parisi, and paved the way to the construction of a new
scaling function

'
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Giorgio Parisi Uriel Frisch
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Multifractal spectrum (Parisi and Frisch, 1985)

The isohdlder sets of f are the sets

En={x: hi(x)=H}

Let f be a locally bounded function. The multifractal spectrum
of fis
Df(H) =dim (EH)

where dim stands for the Hausdorff dimension
(by convention, dim (§)) = —o0)

Parisi and Frisch’s fundamental idea was that the nonlinearity of the
scaling function reflects the presence of a whole range of fractal sets
Ey, and that the scaling function yields information on the “sizes” of
these sets



Two results showed that multifractal analysis does not

only concern “strange examples” :

| : Probabilistic result :

Definition : A Lévy process is a
stochastic process with independent
and stationary increments, i.e. :

Xi1s — Xi is independent of the
{Xy, u<t}and
has the same law as X;

Levy motion - a=1.43
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Two results showed that multifractal analysis does not
only concern “strange examples” :

| : Probabilistic result :

Definition : A Lévy process is a 25
stochastic process with independent 2
and stationary increments, i.e. : 15

Levy motion - a=1.43

Xi1s — Xi is independent of the
{Xy, u<t}and
has the same law as X; Time (5

o 0.2 0.4 0.6 0.8 1

Theorem : (S.J.) “Most” Lévy processes
have multifractal sample paths, with a linear multifractal spectrum :

RH if H<1/R
—oo else.

oi(k) = {

In each case, the sets Ey are everywhere dense

—
The numerical determination of the Holder exponent is hopeless



Il : Generic results :

Definition : Let E be a metric Banach space. A Borel set Ac E is
Haar null if there exists a compactly supported probability measure p
on E such that

Vx € E, wA+x)=0

A setis prevalent if its complement is Haar null

If a property holds on a prevalent set, it is said to hold almost
everywhere



Il : Generic results :

Definition : Let E be a metric Banach space. A Borel set Ac E is
Haar null if there exists a compactly supported probability measure p
on E such that

Vx € E, wA+x)=0

A setis prevalent if its complement is Haar null

If a property holds on a prevalent set, it is said to hold almost
everywhere

Theorem : (A. Fraysse and S. J.) Let s > d/p; then quasi-every
and almost every function f of LPS(R?) is multifractal, and its
spectrum is given by

Dy(H) — p(H—s)+d if He{s—%,s}
' —00 else



Wavelet leaders

Let A be a dyadic cube ; 3\ denotes the cube of same center and
three times wider

Let f be a locally bounded function ; the wavelet leaders of f are

d\ = sup |[cy]
A C3X

dy = SUp 115, 16,

. X
2ol . . . ® . . . .

ol o ° . . . ° . ° . . ° ° ° ° ° .
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Computation of 2D wavelet leaders
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Wavelet leaders allow to estimate the pointwise H6lder exponent



Leader scaling function

Wavelet scaling function Leader scaling function
2—d Z |Cy|P ~ 2P 2-d Z | A\ [P ~ 27 (P

)\G/\I’ )\G/\I’



Leader scaling function

Wavelet scaling function Leader scaling function
2—d Z |Cy|P ~ 2P 2-d Z | A\ [P ~ 27 (P
)\G/\I’ )\G/\I’
Oscillation spaces : Letp > 0; f Og(Rd) if
3C.V : 279y |ahP<C-27H
)\G/\,‘

Similar to Wiener Amalgam Spaces (H. Feichtinger, K. Gréchenig)



Leader scaling function

Wavelet scaling function Leader scaling function
2—d Z |Cy|P ~ 2P 2-d Z | A\ [P ~ 27 (P
)\G/\I’ )\G/\I’
Oscillation spaces : Letp > 0; f Og(Rd) if
3C.V : 279y |ahP<C-27H
)\G/\,‘

Similar to Wiener Amalgam Spaces (H. Feichtinger, K. Gréchenig)

_log (2793 |anP)
mi(p) = EILTQJ log(2)

= p'sup{s: fe Og(Rd)}



Leader scaling function

Wavelet scaling function Leader scaling function
2—d Z |Cy|P ~ 2P 2-d Z | A\ [P ~ 27 (P
)\G/\I’ )\G/\I’
Oscillation spaces : Letp > 0; f Og(Rd) if
3C.V : 279y |ahP<C-27H
)\6/\,‘

Similar to Wiener Amalgam Spaces (H. Feichtinger, K. Gréchenig)

log (279°Y" |oh°)

— limi —n. . S(md
ni(p) = lim inf log(27) =p-sup{s: fcOjRY)]
Advantages :

> Itis “well defined” forall p € R

» For plarge enough, ¢¢(p) = ns(p)

» If ' € S(RY), then Vp € R, 1;(p) is independent of the wavelet
basis

» 7)¢ is invariant under “smooth perturbations ” of f



Multifractal formalism

Since 7y is a concave function, there is no loss of information in rather
considering its Legendre transform :

The Legendre Spectrum of f is

Li(H) = inf (d + Hp — 1(p))

pER

Theorem : Let D(H) denote the Hausdorff dimension of the set of
points where he(x) = H. If f € C*(RY) for an ¢ > 0 then

VH € R, Di(H) < igﬁ;(d + Hp — n¢(p))
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Multifractal formalism

Since 7y is a concave function, there is no loss of information in rather
considering its Legendre transform :

The Legendre Spectrum of f is

Li(H) = inf (d+ Hp —n/(p))

Theorem : Let D(H) denote the Hausdorff dimension of the set of
points where he(x) = H. If f € C*(RY) for an ¢ > 0 then

VH € R, Di(H) < pig;;(d + Hp — n¢(p))

The multifractal formalism is satisfied when equality holds

Open problem : Find “reasonably weak” general hypotheses implying
the validity of the multifractal formalism
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Model refutation : Fully developed turbulence
(joint work with Bruno Lashermes)

Jet turbulenceEulerian velocily signal (ChavdrriaBaudetCiliberto95)

Log-normal vs. Log-Poisson model

0.5
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Evidence of time-evolution : Finance

Multifractal analysis
of the USD-Euro
change rate
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Evidence of time-evolution : Finance

Multifractal analysis
of the USD-Euro
change rate
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Multifractal analysis of paintings : Van Gogh challenge
Initiated by the Van Gogh Museum (Amsterdam)

Coordinated by |. Daubechies and R. Johnson

(joint work with D. Rockmore)

1-5-RGB-1-CHO-j=[3,7]

Van Gogh : Arles and Saint-Rémy period



Van Gogh :

Paris period
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2-4-RGB-1-CHO-j=[3,7]




Challenge : Date

Paris period - Arles, Saint-Rémy period - Unknown
Canals : Red vs. Saturation
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Original and copy : Stylometry issues
Experiment initiated by |. Daubechies

Original paintings and copies by Charlotte Caspers



Original and copy : Charlotte Caspers




Original and copy : Charlotte Caspers
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Open problems / Directions of research

» Give an interpretation of the leader scaling function for p < 0
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Open problems / Directions of research
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Give an interpretation of the leader scaling function for p < 0

v

Find a notion of genericity results that would :

» take into account the whole scaling function (and not only p > 0)
» imply both Baire and prevalence generic results

v

Extend multifractality results for solutions of PDEs

v

Develop a local multifractal analysis : Pertinent in theory
(Markov processes) and applications (finance)

v

Perform the multifractal analysis of invariant measures of
dynamical systems



