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Summary. This note contains a summary of results, obtained in collaboration with
David Williams, about a simple diffusion equation which does not fit the standard
probabilistic model. In particular, the usual minimum principle does not apply, and
its absence gives rise to some phenomena which are, at least to us, both unfamiliar
and interesting.

1 Introduction

For the past two years David Williams and I have been devoting an embarrass-
ing amount of effort1 to understand solutions to the linear, constant coefficient
partial differential equation

u̇ = 1
2u
′′ + µu′ in I × [0,∞) with u̇(t, 0) = σu′(t, 0) for t ∈ I, (1)

where u̇ = ∂tu and u′ = ∂xu, I ⊆ R is an open interval, and (µ, σ) ∈ R2. It
is essential for our analysis that a solution u be continuously differentiable at
least once in t and twice in x in the whole of I × [0,∞), including the spacial
boundary I × {0}.

Our initial result (cf. Theorem 1.1 in [?]) deals with the Cauchy initial value
problem for (1). In its statement, the set F of initial values consists of bounded
f : [0,∞) −→ R which are continuous on (0,∞), but not necessarily at 0. The
set U from which solutions come consists of u ∈ C1,2

(
(0,∞) × [0,∞); R

)
which are bounded in (0, 1)× [0,∞) and have the property that u̇ and u′′ are
bounded on each vertical slice [T1, T2]× [0,∞), where 0 < T1 < T2 <∞.

Theorem 1. Suppose that u ∈ U satisfies (1) in (0,∞) × [0,∞) and that
f(x) ≡ limt↘0 u(t, x) exists for each x ∈ (0,∞). Then f(0) = limt↘0 u(t, 0)

1 As explained in [?], our original reason for looking at these equations came from
the study of certain Wiener–Hopf decompositions. However, our continued study
of them has been motivated by pure intellectual curiosity.
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exists and the convergence of u(t, · ) to f takes place uniformly on compact
subsets of (0,∞). In particular, f ∈ F . Conversely, for each f ∈ F there is
a unique solution u = uf ∈ U to (1) such that limt↘0 u(t, x) = f(x) for each
x ∈ [0,∞), and the convergence is uniform on compact subsets of (0,∞). In
particular, if Qtf ≡ uf (t, · ) for t > 0 and f ∈ F , then, for each t > 0, Qt

maps F
boundedly into Cb([0,∞); R) and {Qt : t ≥ 0} is a semigroup. Finally, if
{fn}∞1 ⊆ F is a bounded sequence which tends to f ∈ F in the sense that
fn(0) −→ f(0) and fn −→ f uniformly on compact subsets of (0,∞), then
Qtfn(x) −→ Qtf(x) uniformly for (t, x) in compact subsets of (0,∞)×[0,∞).

When σ ≥ 0, nothing in Theorem 1 is surprising, with the possible ex-
ception of the regularity of solutions at the spacial boundary. Moreover, the
solutions when σ ≥ 0 admit a familiar probabilistic interpretation. Namely,
when σ = 0, the associated Markov process is simply Brownian motion with
drift µ which is absorbed when it hits 0. When σ > 0, the associated Markov
process is again Brownian motion with drift µ, only now 0 is a “sticky” reflec-
tion point. More precisely, let {Bt : t ≥ 0} be a standard, R-valued Brownian
motion, and set

Lt(x) = max{(x+Bs+µs)− : s ∈ [0, t]} and Xt(x) = x+Bt+µt+Lt(x).
(2)

Then {Xt(x) : t ≥ 0} is Brownian motion with drift µ reflected at 0, and
{Lt(x) : t ≥ 0} is its local time at 0. Finally, for any σ ≥ 0, take

τt(x) = inf{τ : τ + σ−1Lτ (x) ≥ t}
(
≡ inf{τ : Xτ (x) = 0} when σ = 0

)
.

Then {Xτt(x)(x) : t ≥ 0} is, depending on whether σ = 0 or σ > 0, Brownian
motion with drift µ which is either absorbed at 0 or has a “sticky” reflection
at 0. In addition, an elementary application of Itô’s calculus combined with
Doob’s stopping time theorem shows that

uf (t, x) = e
[
f
(
Xτt(x)(x)

)]
.

For a complete account of one-dimensional diffusion equations which are
amenable to probabilistic interpretation, see Dynkin’s classic interpretation
in [1] of Feller’s theory.

2 Preservation of Non-negativity when σ < 0

From (2) it is clear that {Qt : t ≥ 0} is a conservative, Markov semigroup
when σ ≥ 0, a conclusion which can be drawn (with much less effort) via
a purely analytic minimum principle argument. On the other hand, when
σ < 0, the minimum principle is lost and {Qt : t ≥ 0} need not preserve
non-negativity. In fact, we have (cf. Theorem 1.2 in [4]) the following.
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Theorem 2. Assume that σ < 0. For f ∈ F , uf is non-negative if and only
if f is non-negative and

f(0) ≥ 2|σ|
∫

(0,∞)

e2σ∧µyf(y) dy.

Moreover, if F (σ, µ) is the subset of f ∈ F which satisfy

f(0) = 2|σ|
∫

(0,∞)

e2σ∧µyf(y) dy,

then {Qt : t ≥ 0} leaves F (σ, µ) invariant and its restriction to F (σ, µ) is
Markov. Finally, Qtfrm[o]−− ≤ frm[o]−− for all t > 0, and equality holds
if and only if σ ≥ µ.

Even without going into the details, it is reasonably easy to understand
why the function J(y) ≡ 2|σ|e2σ∧µy enters in the preceding. Namely, given a
solution u, one can use integration by parts to see that

d

dt

(
u(t, 0)− 〈J, u(t, · )〉

)
= −2σ(µ− σ)+

(
u(t, 0)− 〈J, u(t, · )〉

)
,

where 〈ϕ,ψ〉 ≡
∫
(0,∞)

ϕ(y)ψ(y) dy. Hence,

uf (t, 0)− 〈J, uf (t, · ) = e−2σ(µ−σ)+t
(
f(0)− 〈J, f〉

)
, (3)

which makes it clear why F (σ, µ) is {Qt : t ≥ 0} invariant. More generally,
(3) shows that

f(0) ≥ 〈J, f〉 =⇒ uf (t, 0) ≥ 〈J, uf (t, · )〉 for all t ≥ 0.

Hence, if f ≥ 0 and f(0) ≥ 〈J, f〉, then an easy minimum principle argument
shows that uf ≥ 0. Namely, choose η ∈ C∞([0,∞); (0, 1)) so that η(0) >
〈J, η〉, 1

2η
′′ + µη′ > −1, and limx→∞ η(x) = ∞. For ε > 0, set vε(t, x) =

uf (t, x) + ε(t + η(x)), and note that v̇ε > 1
2v
′′
ε + µv′e, vε(t, 0) > 〈vε(t, · )〉,

limt→0 vε(t, · ) > 0, and, for each t > 0, infτ∈(0,t] vε(τ, x) −→ ∞ as x → ∞.
From these it is easy to conclude that vε ≥ 0 everywhere for each ε > 0.

The proof that uf ≥ 0 =⇒ f(0) ≥ 〈J, f〉 is more challenging. One way
to proceed is via probability theory. Namely, take (cf. (2)) Xt = Xt(0) and
Lt = Lt(0), and define Ψt = |σ|−1Lt − t and ζ = inf{t : Ψt = 0}. By Itô’s
calculus, one knows that t uf

(
Ψt, Xt

)
is a local martingale on [0, ζ). Thus,

if uf ≥ 0, then t  uf
(
Ψt, Xt

)
is a non-negative supermartingale on [0, ζ),

and so

f(0) = uf (0, 0) ≥ lim
t→∞

e
[
uf

(
Ψt wedgeζ , Xt∧ζ

)]
= e

[
f
(
Xζ

)
, ζ <∞

]
+ lim
t→∞

e
[
uf

(
Ψt, Xt

)
, ζ = ∞

]
.
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Similarly, if uf is bounded, then the inequality in the preceding can be replaced
by equality. Hence

uf ≥ 0 =⇒ f(0) ≥ e
[
f(Xζ), ζ <∞

]
uf bounded =⇒ f(0) = e

[
f(Xζ), ζ <∞

]
+ lim
t→∞

e
[
f(Xt), ζ = ∞

] (4)

At this point, one has to check that, with probability one,

µ > σ =⇒ lim
t→∞

Ψt = −∞

µ = σ =⇒ lim
t→∞

Ψt = ∞ = − lim
t→∞

Ψt

µ < σ =⇒ lim
t→∞

Ψt = ∞.

(5)

In particular, if µ ≥ σ, then P(ζ < ∞) = 1, and so the second line of (4)
applied to f ∈ F (σ, µ) says that

〈J, f〉 = e
[
f(Xζ), ζ <∞

]
when µ ≥ σ.

That is, when µ ≥ σ, then 2|σ|e2σy is the distribution of Xζ , and so the first
line of (4) completes the proof that uf ≥ 0 =⇒ f(0) ≥ 〈J, f〉 when µ ≥ σ.
The case when σ < µ is a little trickier. To handle it, one must first observe
that, by the last line of (5), the second term on the right in the second line
of (4) can be replaced by

e
[

lim
t→∞

uf
(
t,Xt

)
, ζ = ∞

]
when µ < σ. Secondly, one has to show that

µ < σ & f ∈ F (σ, µ) =⇒ lim
t→∞

uf (t, x) = 0 for all x ∈ [0,∞).

Once this has been done, one can proceed as before to check that, when
µ < σ, 2|σ|e2µy is the distribution of Xζ on {ζ < ∞} and therefore uf ≥
0 =⇒ f(0) ≥ 〈J, f〉.

3 Bounded Solutions & Long Time Behavior

A closer examination of the probabilistic argument given in §1 reveals that,
when σ < 0,

µ ≥ σ =⇒ uf is bounded ⇐⇒ f ∈ F (σ, µ)
µ < σ =⇒ uf is bounded for all f ∈ F
and lim

t→∞
uf (t, · ) = 0 ⇐⇒ f ∈ F (σ, µ).

(6)

One gets more precise information from the following (cf. Theorem 3.2 in [3]).
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Theorem 3. Assume that σ < 0. Given f ∈ F , set (cf. the notation intro-
duced following Theorem 2) δf = f(0)− 〈J, f〉. Then, as t↗∞,

µ < σ =⇒ uf (t, x) −→
µ

µ− σ
δf

µ = σ =⇒ uf (t, x)
t

−→ 2σ2δf

µ > σ =⇒ e2σ(µ−σ)tuf (t, x) −→
µ− 2σ
µ− σ

e−2(µ−σ)xδf

uniformly on compacts. In particular,

δf ≥ 0 ⇐⇒ lim
t→∞

uf (t, x) ≥ 0 for some x ∈ [0,∞)

⇐⇒ lim
t→∞

uf (t, x) ≥ 0 for all x ∈ [0,∞).

The proof of Theorem 3 involves no probability theory. The idea is to write
uf = (δf)v + uf̃ , where v is the solution with initial condition frm[o]−−{0}
and f̃ = f − (δf)frm[o]−−{0}. Because f̃ ∈ F (σ, µ), we know that uf̃ is
always bounded and, as t↗∞, tends to 0 if µ < σ. Thus, everything comes
down to the analysis of v(t, · ) as t ↗ ∞, and this analysis is carried out in
Lemma 3.1 of [3].

4 Bounded, Ancient Solutions

Here we consider solutions to (1) which are ancient in the sense that they are
solutions on (−∞, 0)× [0,∞), and our goal is to classify all ancient solutions
which are bounded. Our first result about such a solution is contained in the
following regularity result (cf. Lemma 4.2 in [3]).

Lemma 4. Assume that u ∈ C1,2
(
(a, b)× [0,∞); R

)
is a bounded solution to

(1) for some −∞ < a < b <∞. Then, u ∈ C∞
(
(a, b)× [0,∞); R

)
and there is

a K, which depends only of σ and µ, such that, for each n ≥ 1 and t ∈ (a, b),

‖∂nxu(t, · )‖u ≤
(
Kn

t− a

)n
2

eK(t−a)‖u‖u.

In particular, if u is a bounded, ancient solution, then u ∈ C∞b
(
(−∞, 0) ×

[0,∞); R
)

and there exists a K ′ ∈ [1,∞), depending only on σ and µ, such
that

‖u‖Cn,2n
b ((−∞,0)×[0,∞);R) ≤ (K ′)n‖u‖u

for all n ≥ 0. Hence, each bounded ancient solution admits a unique continu-
ation as an entire, holomorphic function on C2.



6 Daniel W. Stroock

Theorem 5. If u is a bounded, ancient solution to (1), then

u(t, x) = A+Be−2(µ−σ)+(σt+x)

for some (A,B) ∈ R2, where B = 0 if either σ ≥ µ or 0 < σ < µ. Moreover,
if u is a bounded solution to (1) in the whole of R× [0,∞), then u is constant.

Given the preceding lemma, the final assertion is an easy corollary of
the initial statement. In order to prove the initial statement, one considers
the function w = σu′ − u, which, by the lemma, is a bounded solution to
ẇ = 1

2w
′′ + µw′ in (−∞, 0) × [0,∞) which vanishes on the spacial boundary

(−∞, 0) × {0}. The desired result will follow once we show that such a w
is constant in t ∈ (0,∞). To this end, let Q(t, x, y) be the heat kernel for
1
2∂

2 + µ∂ in (0,∞) with boundary condition 0 at 0. Then

w(t2, x)− w(t1, x) =
∫

(0,∞)

Q(T, x, y)
(
w(t2 − T, y)− w(t1 − T, y)

)
dy.

Since
lim
T→∞

∫
(0,∞)

Q(T, x, y)e−2µ+y dy = 0,

it suffices to show that

|w(t2, y)− w(t1, y)| ≤ 2‖w‖ue−2µ+y for all t1 < t2 < 0 and y ≥ 0. (*)

A proof of (*) can be based on a coupling argument. Namely, set h = t2 − t1,
and let {Bt : t ≥ 0} and {B′t : t ≥ 0} be a pair of mutually independent,
R-valued Brownian motions starting at 0. Next, define τ to be the first time
at which the path t y +Bt+h + µ(t+ h) crosses the path t y +B′t + µt.
Equivalently, τ = inf{t ≥ 0 : B′t −Bt+h = µh}. Then P(τ <∞) = 1, and

t Ut ≡ B′t∧τ +
(
Bt+h −Bt∧τ+h

)
is again a Brownian motion starting at 0. Because y + Bt+h + µ(t + h) =
y + Ut + µt when τ ≤ t, |w(t2, y)− w(t1, y)| is equal to

lim
t→∞

∣∣∣e[w(t1 − t, y +Bt+h + µ(t+ h)
)
, ζBy > t+ h

]
− e

[
w(t1 − t, y + Ut + µt

)
, ζUy > t

]∣∣∣
= lim
t→∞

∣∣∣e[w(t1 − t, y + Ut + µt
)
, ζBy > t+ h

]
− e

[
w(t1 − t, y + Ut + µt

)
, ζUy > t

]∣∣∣
≤ ‖w‖u lim

t→∞

(
P
(
ζBy > t+ h & ζUy ≤ t

)
+ P

(
ζBy ≤ t+ h & ζUy > t

))
≤ ‖w‖u

(
P
(
ζUy <∞

)
+ P

(
ζBy <∞

))
= 2‖w‖uP

(
ζBy <∞

)
,

where ζBy and ζUy are, respectively, the first time that t  y + Bt + µt and
t y + Ut + µt hit 0. Because P(ζBy <∞) = e−2µ+y, (*) follows.
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5 A Harnack Principle

At first sight, (1) appears to be a parabolic equation. As such, one should
expect that, if it satisfies a Harnack principle at all, that principle will be
“one-sided.” For example, when σ = 0,

wλ(t, x) = eλx+
µ2+λ2

2 t sinh(λx)

is a non-negative solution in R× [0,∞) for each λ > 0, and although

sup
λ>0

wλ(s, x)
wλ(t, y)

is bounded for each 0 < s < t and all (x, y) in compact subsets of (0,∞), it
is infinite whenever s > t or s = t but x 6= y; and the same sort of one-sided
Harnack principle holds whenever σ ≥ 0. Thus, it is somewhat intriguing that
a more robust Harnack principle holds as soon as σ < 0. To wit, one can prove
(cf. the subsection following Theorem 5.6 in [3]) the following statement.

Theorem 6. Assume that σ < 0. For each 0 < ` < L and 0 < r < R, there
exists a K <∞, depending only on σ, µ, `, L, r, and R, such that u(s, x) ≤
Ku(t, y) whenever (s, t) ∈ [0, `]2, (x, y) ∈ [0, r]2, and u is a non-negative
solution to (1) in (−L,L)× [0, R). Moreover, if U(L,R) is the set of all non-
negative solutions to (1) in (−L,L)× [0, R), then, for each (s, x) ∈ (−L,L)×
[0, R), {u ∈ U(L,R) : u(s, x) ≤ 1} is compact in C∞

(
(−L,L)× [0, R); [0, 1]

)
.

In broad outline, the proof of this Harnack principle follows a line of rea-
soning which is familiar to experts in such matters. Namely, one shows that,
for (s, x) ∈ [−`, `]× [0, r], u(s, x) is bounded above and below by positive mul-
tiples of u(`′, 0) plus the integral of u over [−`′, `′]× [0, r′], where ` < `′ < L
and r < r′ < R. The most interesting part comes when one checks the lower
bound, which comes from thinking about the behavior of Ψt. Namely, although
Ψt does nothing but decrease while Xt > 0, it increases very rapidly whenever
Xt visits 0, and it this increase which accounts for the “backdoor elliptic”
nature of the resulting Harnack principle. In this connection, it should be
observed that one cannot localize Harnack principle here to regions which do
not include a healthy component of the spacial boundary.

6 Non-Negative, Ancient Solutions

When µ 6= σ and σ 6= 0,

e−µx+
λ2−µ2

2 t

(
cosh(λx)

)
+
λ2 + σ2 − (µ− σ)2

2λσ
sinh(λx)

)
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is a non-constant, non-negative global (i.e., on R× [0,∞)) solution to (1) for
every λ > 0 with the property that λ2+µ2−(µ−σ)2

2λσ > −1. When σ = 0,

e−µx+
λ2−µ2

2 t sinh(λx)

is a non-constant, non-negative, global solution to (1) for each λ > 0. Finally,
in the balanced case (i.e., σ = µ), if σ ≥ 0, then

e−µx+
λ2−µ2

2 t

(
sinh(λx) +

2λµ
λ2 + µ2

cosh(λx)
)

is a non-constant, non-negative, global to (1) for each λ > 0. On the other
hand, in the balanced case, if σ < 0, all non-negative, global solutions to
(1) are constant. An understanding of this last result can be found in (5).
Namely, the middle line of (5) makes it reasonably easy to show that the
process {(Ψt, Xt) : t ≥ 0} is recurrent. Thus, since each non-negative, global
solution is a non-negative supermartingale along this process, the constancy of
such solutions follows from a standard argument based on Doob’s martingale
convergence theorem.

Of course, the situation is completely different when one considers non-
negative ancient solutions. Indeed, even in the balanced case with σ < 0, there
are lots of non-constant, non-negative ancient solutions. The reason why such
ancient solutions can exist even though global ones cannot is that the recur-
rence, alluded to above, disappears if the process is stopped when Ψt first visits
0, and it is the stopped process along which non-negative, ancient solutions
will be non-negative supermartingales. In an attempt to understand what is
the structure of the set of non-negative, ancient solutions in the balanced case,
we proved the following.

Theorem 7. When σ = −1 = µ, there is a one-to-one correspondence be-
tween non-negative solutions u to (1) and triples (a, b, ν), (a, b) ∈ [0,∞)2 and
ν a measure on [0,∞) with

∫
eλc ν(dc) <∞ for all λ > 0, given by

u(ψ, x) = a+ b(x− ψ) +
∫ ∞

0

h1+c(ψ, x) ν(dc)

where

h1+c(ψ, x) ≡ 4(c+ 1)
[
1− e(

1
2 c

2+c)ψ−cx]
+ c2e(

1
2 c

2+c)ψ
[
e(2+c)x − e−cx

]
.

Given the requisite computations of the Green’s function involved, our
proof of this result is a straight-forward application of Martin’s boundary
theory. In order to interpret its conclusion as a statement about the associated
Martin compactification, let Q denote the second quadrant (−∞, 0)×[0,∞) in
the Euclidean plane. Next, compactify Q by adjoining the line {0}×[0,∞) and
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the quarter circle
[
1
2π, π

]
at infinity. Now identify all points on {0} × [0,∞)

with a single point α and all points at infinity having “angle” in
[
3
4π, π

]
with a

(different) single point γ. That is, if {(ψn, xn)}∞1 ⊆ Q converges to a point on
{0}×[0,∞), we say that (ψn, xn) −→ α; and if it converges to infinity in such a
way that arctan ψn

xn
converges to a point in

[
3
4π, π

]
, we say that (ψn, xn) tends

to γ. Finally, if {(ψn, xn)}∞1 tends to infinity so that arctan ψn

xn
converges to

β ∈
[
1
2π,

3
4π

]
, we will say that (ψn, xn) −→ β. With these conventions,

{α} ∪
[
1
2π,

3
4π

]
∪ {γ}

can be identified with the Martin boundary of Q in such a way that the
associated Martin kernel with reference point (ψ0, x0) ∈ Q is given on the
boundary by

κ
(
(ψ, x);α

)
=

x− ψ

x0 − ψ0
, κ

(
(ψ, x); γ

)
= 1,

κ
(
(ψ, x);β

)
=

h− tan β(ψ, x)
h− tan β(ψ0, x0)

.
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