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1 Introduction

In 1933 Andrei Kolmogorov published his Foundation of Probability Theory
(Grundbegriffe der Wahrscheinlichkeitsrechnung) which set out the axiomatic
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basis for modern probability theory. The whole theory is built on the Measure
Theory created by Émile Borel and Henry Lebesgue and profoundly devel-
oped by Radon and Fréchet. The triple (Ω,F ,P), i.e., a measurable space
(Ω,F) equipped with a probability measure P becomes a standard notion
which appears in most papers of probability and mathematical finance. The
second important notion, which is in fact at an equivalent place as the prob-
ability measure itself, is the notion of expectation. The expectation E[X]
of a F-measurable random variable X is defined as the integral

∫
Ω
XdP . A

very original idea of Kolmogorov’s Grundbegriffe is to use Radon–Nikodym
theorem to introduce the conditional probability and the related conditional
expectation under a given σ-algebra G ⊂ F . It is hard to imagine the present
state of arts of probability theory, especially of stochastic processes, e.g., mar-
tingale theory, without such notion of conditional expectations. A given time
information (Ft)t≥0 is so ingeniously and consistently combined with the re-
lated conditional expectations E[X|Ft]t≥0. Itô’s calculus—Itô’s integration,
Itô’s formula and Itô’s equation since 1942 [21], is, I think, the most beautiful
discovery on this ground.

A very interesting problem is to develop a nonlinear expectation E[·] under
which we still have such notion of conditional expectation. A notion of g-
expectation was introduced by Peng, 1997 (see [32] and [33]) in which the
conditional expectation Eg[X|Ft]t≥0 is the solution of the backward stochastic
differential equation (BSDE), within the classical framework of Itô’s calculus,
with X as its given terminal condition and with a given real function g as
the generator of the BSDE. driven by a Brownian motion defined on a given
probability space (Ω,F ,P). It is completely and perfectly characterized by
the function g. The above conditional expectation is characterized by the
following well-known condition

Eg[Eg[X|Ft]IA] = Eg[XIA], ∀A ∈ Ft.

Since then many results have been obtained in this subject (see, among others,
[3], [4], [5], [6], [10], [11], [7], [8], [22], [23], [34], [38], [39], [41], [43], [24]).

In [37] (see also [36]), we have constructed a kind of filtration-consistent
nonlinear expectations through the so-called nonlinear Markov chain. As com-
pared with the framework of g-expectation, the theory of G-expectation is
intrinsic, a meaning similar to the “intrinsic geometry”. in the sense that it is
not based on a classical probability space given a priori.

In this paper, we concentrate ourselves to a concrete case of the above sit-
uation and introduce a notion of G-expectation which is generated by a very
simple one dimensional fully nonlinear heat equation, called G-heat equa-
tion, whose coefficient has only one parameter more than the classical heat
equation considered since Bachelier 1900, Einstein 1905 to describe the Brow-
nian motion. But this slight generalization changes the whole things. Firstly,
a random variable X with “G-normal distribution” is defined via the heat
equation. With this single nonlinear distribution we manage to introduce our
G-expectation under which the canonical process is a G-Brownian motion.
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We then establish the related stochastic calculus, especially stochastic inte-
grals of Itô’s type with respect to our G-Brownian motion. A new type of Itô’s
formula is obtained. We have also established the existence and uniqueness of
stochastic differential equation under our G-stochastic calculus.

In this paper we concentrate ourselves to 1-dimensional G-Brownian mo-
tion. But our method of [37] can be applied to multi-dimensional G-normal
distribution, G-Brownian motion and the related stochastic calculus. This will
be given in [40].

Recently a new type of second order BSDE was proposed to give a proba-
bilistic approach for fully nonlinear 2nd order PDE, see [9]. In finance a type
of uncertain volatility model in which the PDE of Black-Scholes type was
modified to a fully nonlinear model, see [26].

As indicated in Remark 3, the nonlinear expectations discussed in this
paper are equivalent to the notion of coherent risk measures. This with the
related conditional expectations E[·|Ft]t≥0 makes a dynamic risk measure:
G-risk measure.

This paper is organized as follows: in Section 2, we recall the framework
established in [37] and adapt it to our objective. In section 3 we introduce
1-dimensional standard G-normal distribution and discuss its main proper-
ties. In Section 4 we introduce 1-dimensional G-Brownian motion, the cor-
responding G-expectation and their main properties. We then can establish
stochastic integral with respect to our G-Brownian motion of Itô type and
the corresponding Itô’s formula in Section 5 and the existence and uniqueness
theorem of SDE driven by G-Brownian motion in Section 6.

2 Nonlinear expectation: a general framework

We briefly recall the notion of nonlinear expectations introduced in [37]. Fol-
lowing Daniell (see Daniell 1918 [13]) in his famous Daniell’s integration, we
begin with a vector lattice. Let Ω be a given set and let H be a vector lattice
of real functions defined on Ω containing 1, namely, H is a linear space such
that 1 ∈ H and that X ∈ H implies |X| ∈ H. H is a space of random variables.
We assume the functions on H are all bounded. Notice that

a ∧ b = min{a, b} =
1
2
(a+ b− |a− b|), a ∨ b = −[(−a) ∧ (−b)].

Thus X, Y ∈ H implies that X ∧ Y , X ∨ Y , X+ = X ∨ 0 and X− = (−X)+

are all in H.

Definition 1. A nonlinear expectation E is a functional H 7→ R satisfy-
ing the following properties

(a) Monotonicity: If X,Y ∈ H and X ≥ Y then E[X] ≥ E[Y ].
(b) Preserving of constants: E[c] = c.
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In this paper we are interested in the expectations which satisfy

(c) Sub-additivity (or self-dominated property):

E[X]− E[Y ] ≤ E[X − Y ], ∀X,Y ∈ H.

(d) Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0, X ∈ H.
(e) Constant translatability: E[X + c] = E[X] + c.

Remark 2. The above condition (d) has an equivalent form: E[λX] = λ+E[X]+
λ−E[−X]. This form will be very convenient for the conditional expectations
studied in this paper (see (vi) of Proposition 16).

Remark 3. We recall the notion of the above expectations satisfying (c)–(e)
was systematically introduced by Artzner, Delbaen, Eber and Heath [1], [2], in
the case where Ω is a finite set, and by Delbaen [14] in general situation with
the notation of risk measure: ρ(X) = E[−X]. See also in Huber [20] for even
early study of this notion E (called upper expectation E∗ in Ch.10 of [20])
in a finite set Ω. See Rosazza Gianin [43] or Peng [35], El Karoui & Barrieu
[15], [16] for dynamic risk measures using g-expectations. Super-hedging and
super pricing (see [17] and [18]) are also closely related to this formulation.

Remark 4. We observe that H0 = {X ∈ H, E[|X|] = 0} is a linear subspace
of H. To take H0 as our null space, we introduce the quotient space H/H0.
Observe that, for every {X} ∈ H/H0 with a representation X ∈ H, we can
define an expectation E[{X}] := E[X] which still satisfies (a)–(e) of Definition
1. Following [37], we set ‖X‖ := E[|X|], X ∈ H/H0. It is easy to check that
H/H0 is a normed space under ‖·‖. We then extend H/H0 to its completion
[H] under this norm. ([H], ‖·‖) is a Banach space. The nonlinear expectation
E[·] can also be continuously extended from H/H0 to [H], which satisfies (a)–
(e).

For any X ∈ H, the mappings

X+(ω) : H 7−→ H and X−(ω) : H 7−→ H

satisfy

|X+ − Y +| ≤ |X − Y | and |X− − Y −| = |(−X)+ − (−Y )+| ≤ |X − Y |.

Thus they are both contraction mappings under ‖·‖ and can be continuously
extended to the Banach space ([H], ‖·‖).

We define the partial order “≥” in this Banach space.

Definition 5. An element X in ([H], ‖·‖) is said to be nonnegative, or X ≥ 0,
0 ≤ X, if X = X+. We also denote by X ≥ Y , or Y ≤ X, if X − Y ≥ 0.

It is easy to check that X ≥ Y and Y ≥ X implies X = Y in ([H], ‖·‖).
The nonlinear expectation E[·] can be continuously extended to ([H], ‖·‖)

on which (a)–(e) still hold.



G-Expectation and G-Browian motion 5

3 G-normal distributions

For a given positive integer n, we denote by lip(Rn) the space of all bounded
and Lipschitz real functions on Rn. In this section R is considered as Ω and
lip(R) as H.

In the classical linear situation, a random variable X(x) = x with standard
normal distribution, i.e., X ∼ N(0, 1), can be characterized by

E[φ(X)] =
1√
2π

∫ ∞

−∞
e−

x2
2 φ(x)dx, ∀φ ∈ lip(R).

It is known since Bachelier 1900 and Einstein 1950 that E[φ(X)] = u(1, 0)
where u = u(t, x) is the solution of the heat equation

∂tu =
1
2
∂2

xxu (1)

with Cauchy condition u(0, x) = φ(x).
In this paper we set G(a) = 1

2 (a+ − σ2
0a
−), a ∈ R, where σ0 ∈ [0, 1] is

fixed.

Definition 6. A real valued random variable X with the standard G-normal
distribution is characterized by its G-expectation defined by

E[φ(X)] = PG
1 (φ) := u(1, 0), φ ∈ lip(R) 7→ R

where u = u(t, x) is a bounded continuous function on [0,∞)×R which is the
(unique) viscosity solution of the following nonlinear parabolic partial differ-
ential equation (PDE)

∂tu−G(∂2
xxu) = 0, u(0, x) = φ(x). (2)

In case no confusion is caused, we often call the functional PG
1 (·) the

standard G-normal distribution. When σ0 = 1, the above PDE becomes the
standard heat equation (1) and thus this G-distribution is just the classical
normal distribution N(0, 1):

PG
1 (φ) = P1(φ) :=

1√
2π

∫ ∞

−∞
e−

x2
2 φ(x)dx.

Remark 7. The function G can be written as G(a) = 1
2 supσ0≤σ≤1 σ

2a, thus
the nonlinear heat equation (2) is a special kind of Hamilton–Jacobi–Bellman
equation. The existence and uniqueness of (2) in the sense of viscosity solution
can be found in, for example, [12], [19], [31], [44], and [25] for C1,2-solution if
σ0 > 0 (see also in [29] for elliptic cases). Readers who are unfamililar with the
notion of viscosity solution of PDE can just consider, in the whole paper, the
case σ0 > 0, under which the solution u becomes a classical smooth function.
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Remark 8. It is known that u(t, ·) ∈ lip(R) (see e.g. [44] Ch.4, Prop.3.1. or [31]
Lemma 3.1 for the Lipschitz continuity of u(t, ·), or Lemma 5.5 and Propo-
sition 5.6 in [36] for a more general conclusion). The boundedness is simply
from the comparison theorem (or maximum principle) of this PDE. It is also
easy to check that, for a given ψ ∈ lip(R2), PG

1 (ψ(x, ·)) is still a bounded and
Lipschitz function in x.

In general situations we have, from the comparison theorem of PDE,

PG
1 (φ) ≥ P1(φ), ∀φ ∈ lip(R). (3)

The corresponding normal distribution with mean at x ∈ R and variance t > 0
is PG

1 (φ(x+
√
t× ·)). Just like the classical situation, we have

Lemma 9. For each φ ∈ lip(R), the function

u(t, x) = PG
1 (φ(x+

√
t× ·)), (t, x) ∈ [0,∞)× R (4)

is the solution of the nonlinear heat equation (2) with the initial condition
u(0, ·) = φ(·).

Proof. Let u ∈ C([0,∞) × R) be the viscosity solution of (2) with u(0, ·) =
φ(·) ∈ lip(R). For a fixed (t̄, x̄) ∈ (0,∞) × R, we denote ū(t, x) = u(t ×
t̄, x

√
t̄ + x̄). Then ū is the viscosity solution of (2) with the initial condition

ū(0, x) = φ(x
√
t̄+ x̄). Indeed, let ψ be a C1,2 function on (0,∞)×R such that

ψ ≥ ū (resp. ψ ≤ ū) and ψ(τ, ξ) = ū(τ, ξ) for a fixed (τ, ξ) ∈ (0,∞) × R. We
have ψ( t

t̄ ,
x−x̄√

t̄
) ≥ u(t, x), for all (t, x) and

ψ(
t

t̄
,
x− x̄√

t̄
) = u(t, x), at (t, x) = (τ t̄, ξ

√
t̄+ x̄).

Since u is the viscosity solution of (2), at the point (t, x) = (τ t̄, ξ
√
t̄+ x̄), we

have
∂ψ( t

t̄ ,
x−x̄√

t̄
)

∂t
−G(

∂2ψ( t
t̄ ,

x−x̄√
t̄

)

∂x2
) ≤ 0 (resp. ≥ 0).

But since G is positive homogenous, i.e., G(λa) = λG(a), we thus derive

(
∂ψ(t, x)
∂t

−G(
∂2ψ(t, x)
∂x2

))|(t,x)=(τ,ξ) ≤ 0 (resp. ≥ 0).

This implies that ū is the viscosity subsolution (resp. supersolution) of (2).
According to the definition of PG(·) we obtain (4).

Definition 10. We denote

PG
t (φ)(x) = PG

1 (φ(x+
√
t× ·)) = u(t, x), (t, x) ∈ [0,∞)× R. (5)
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From the above lemma, for each φ ∈ lip(R), we have the following
Kolmogorov–Chapman chain rule:

PG
t (PG

s (φ))(x) = PG
t+s(φ)(x), s, t ∈ [0,∞), x ∈ R. (6)

Such type of nonlinear semigroup was studied in Nisio 1976 [27], [28].

Proposition 11. For each t > 0, the G-normal distribution PG
t is a nonlinear

expectation on H = lip(R), with Ω = R, satisfying (a)–(e) of Definition 1.
The corresponding completion space [H] = [lip(R)]t under the norm ‖φ‖t :=
PG

t (|φ|)(0) contains φ(x) = xn, n = 1, 2, · · · , as well as xnψ, ψ ∈ lip(R)
as its special elements. Relation (5) still holds. We also have the following
properties:
(1) Central symmetric: PG

t (φ(·)) = PG
t (φ(−·));

(2) For each convex φ ∈ [lip(R)] we have

PG
t (φ)(0) =

1√
2πt

∫ ∞

−∞
φ(x) exp(−x

2

2t
)dx;

For each concave φ, we have, for σ0 > 0,

PG
t (φ)(0) =

1√
2πtσ0

∫ ∞

−∞
φ(x) exp(− x2

2tσ2
0

)dx,

and PG
t (φ)(0) = φ(0) for σ0 = 0. In particular, we have

PG
t ((x)x∈R) = 0, PG

t ((x2n+1)x∈R) = PG
t ((−x2n+1)x∈R), n = 1, 2, · · · ,

PG
t ((x2)x∈R) = t, PG

t ((−x2)x∈R) = −σ2
0t.

Remark 12. Corresponding to the above four expressions, a random variable
X with the G-normal distribution PG

t satisfies

E[X] = 0, E[X2n+1] = E[−X2n+1],

E[X2] = t, E[−X2] = −σ2
0t.

See the next section for a detail study.

4 1-dimensional G-Brownian motion under
G-expectation

In the rest of this paper, we denote by Ω = C0(R+) the space of all R-valued
continuous paths (ωt)t∈R+ with ω0 = 0, equipped with the distance

ρ(ω1, ω2) :=
∞∑

i=1

2−i[( max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1].
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We set, for each t ∈ [0,∞),

Wt := {ω·∧t : ω ∈ Ω},
Ft := Bt(W) = B(Wt),

Ft+ := Bt+(W) =
⋂
s>t

Bs(W),

F :=
∨
s>t

Fs.

(Ω,F) is the canonical space equipped with the natural filtration and ω =
(ωt)t≥0 is the corresponding canonical process.

For each fixed T ≥ 0, we consider the following space of random variables:

L0
ip(FT ) := {X(ω) = φ(ωt1 , · · · , ωtm),∀m ≥ 1,

t1, · · · , tm ∈ [0, T ],∀φ ∈ lip(Rm)}.

It is clear that L0
ip(Ft) ⊆ L0

ip(FT ), for t ≤ T . We also denote

L0
ip(F) :=

∞⋃
n=1

L0
ip(Fn).

Remark 13. It is clear that lip(Rm) and then L0
ip(FT ) and L0

ip(F) are vector
lattices. Moreover, since φ, ψ ∈ lip(Rm) implies φ · ψ ∈ lip(Rm) thus X,
Y ∈ L0

ip(FT ) implies X · Y ∈ L0
ip(FT ).

We will consider the canonical space and set Bt(ω) = ωt, t ∈ [0,∞), for
ω ∈ Ω.

Definition 14. The canonical process B is called a G-Brownian motion
under a nonlinear expectation E defined on L0

ip(F) if for each T > 0,
m = 1, 2, · · · , and for each φ ∈ lip(Rm), 0 ≤ t1 < · · · < tm ≤ T , we have

E[φ(Bt1 , Bt2 −Bt1 , · · · , Btm
−Btm−1)] = φm,

where φm ∈ R is obtained via the following procedure:

φ1(x1, · · · , xm−1) = PG
tm−tm−1

(φ(x1, · · · , xm−1, ·));

φ2(x1, · · · , xm−2) = PG
tm−1−tm−2

(φ1(x1, · · · , xm−2, ·));
...

φm−1(x1) = PG
t2−t1(φm−2(x1, ·));

φm = PG
t1 (φm−1(·)).

The related conditional expectation of X = φ(Bt1 , Bt2−Bt1 , · · · , Btm−Btm−1)
under Ftj is defined by

E[X|Ftj
] = E[φ(Bt1 , Bt2 −Bt1 , · · · , Btm

−Btm−1)|Ftj
] (7)

= φm−j(Bt1 , · · · , Btj −Btj−1).
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It is proved in [37] that E[·] consistently defines a nonlinear expectation
on the vector lattice L0

ip(FT ) as well as on L0
ip(F) satisfying (a)–(e) in Def-

inition 1. It follows that E[|X|], X ∈ L0
ip(FT ) (resp. L0

ip(F)) forms a norm
and that L0

ip(FT ) (resp. L0
ip(F)) can be continuously extended to a Banach

space, denoted by L1
G(FT ) (resp. L1

G(F)). For each 0 ≤ t ≤ T < ∞, we
have L1

G(Ft) ⊆ L1
G(FT ) ⊂ L1

G(F). It is easy to check that, in L1
G(FT ) (resp.

L1
G(F)), E[·] still satisfies (a)–(e) in Definition 1.

Definition 15. The expectation E[·] : L1
G(F) 7→ R introduced through above

procedure is called G-expectation. The corresponding canonical process B is
called a G-Brownian motion under E[·].

For a given p > 1, we also denote Lp
G(F) = {X ∈ L1

G(F)|X|p ∈ L1
G(F)}.

Lp
G(F) is also a Banach space under the norm ‖X‖p := (E[|X|p])1/p. We have

(see Appendix)
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p

and, for each X ∈ Lp
G, Y ∈ Lq

G(Q) with 1
p + 1

q = 1,

‖XY ‖ = E[|XY |] ≤ ‖X‖p ‖X‖q .

With this we have ‖X‖p ≤ ‖X‖p′ if p ≤ p′.
We now consider the conditional expectation introduced in (7). For each

fixed t = tj ≤ T , the conditional expectation E[·|Ft] : L0
ip(FT ) 7→ L0

ip(Ft) is a
continuous mapping under ‖·‖ since E[E[X|Ft]] = E[X], X ∈ L0

ip(FT ) and

E[E[X|Ft]− E[Y |Ft]] ≤ E[X − Y ],
‖E[X|Ft]− E[Y |Ft]‖ ≤ ‖X − Y ‖ .

It follows that E[·|Ft] can be also extended as a continuous mapping L1
G(FT ) 7→

L1
G(Ft). If the above T is not fixed, then we can obtain E[·|Ft] : L1

G(F) 7→
L1

G(Ft).

Proposition 16. We list the properties of E[·|Ft] that hold in L0
ip(FT ) and

still hold for X, Y ∈ L1
G(F):

(i) E[X|Ft] = X, for X ∈ L1
G(Ft), t ≤ T .

(ii) If X ≥ Y , then E[X|Ft] ≥ E[Y |Ft].
(iii) E[X|Ft]− E[Y |Ft] ≤ E[X − Y |Ft].
(iv) E[E[X|Ft]|Fs] = E[X|Ft∧s], E[E[X|Ft]] = E[X].
(v) E[X + η|Ft] = E[X|Ft] + η, η ∈ L1

G(Ft).
(vi) E[ηX|Ft] = η+E[X|Ft] + η−E[−X|Ft], for each bounded η ∈ L1

G(Ft).
(vii) For each X ∈ L1

G(F t
T ), E[X|Ft] = E[X],

where L1
G(F t

T ) is the extension, under ‖·‖, of L0
ip(F t

T ) which consists of
random variables of the form φ(Bt1 − Bt1 , Bt2 − Bt1 , · · · , Btm − Btm−1),
m = 1, 2, · · · , φ ∈ lip(Rm), t1, · · · , tm ∈ [t, T ]. Condition (vi) is the posi-
tive homogeneity, see Remark 2.
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Definition 17. An X ∈ L1
G(F) is said to be independent of Ft under the

G-expectation E for some given t ∈ [0,∞), if for each real function Φ suitably
defined on R such that Φ(X) ∈ L1

G(F) we have

E[Φ(X)|Ft] = E[Φ(X)].

Remark 18. It is clear that all elements in L1
G(F) are independent of F0. Just

like the classical situation, the increments of G-Brownian motion (Bt+s −
Bs)t≥0 is independent of Fs. In fact it is a new G-Brownian motion since, just
like the classical situation, the increments of B are identically distributed.

Example 19. For each n = 0, 1, 2, · · · , 0 ≤ s − t, we have E[Bt − Bs|Fs] = 0
and, for n = 1, 2, · · · ,

E[|Bt −Bs|n|Fs] = E[|Bt−s|2n] =
1√

2π(t− s)

∫ ∞

−∞
|x|n exp(− x2

2(t− s)
)dx.

But we have

E[−|Bt −Bs|n|Fs] = E[−|Bt−s|n] = −σn
0 E[|Bt−s|n].

Exactly as in classical cases, we have

E[(Bt −Bs)2|Fs] = t− s, E[(Bt −Bs)4|Fs] = 3(t− s)2,

E[(Bt −Bs)6|Fs] = 15(t− s)3, E[(Bt −Bs)8|Fs] = 105(t− s)4,

E[|Bt −Bs||Fs] =

√
2(t− s)√
π

, E[|Bt −Bs|3|Fs] =
2
√

2(t− s)3/2

√
π

,

E[|Bt −Bs|5|Fs] = 8
√

2(t− s)5/2

√
π

.

Example 20. For each n = 1, 2, · · · , 0 ≤ s ≤ t < T and X ∈ L1
G(Fs), since

E[B2n−1
T−t ] = E[−B2n−1

T−t ], we have, by (vi) of Proposition 16,

E[X(BT −Bt)2n−1] = E[X+E[(BT −Bt)2n−1|Ft]

+X−E[−(BT −Bt)2n−1|Ft]]

= E[|X|] · E[B2n−1
T−t ],

E[X(BT −Bt)|Fs] = E[−X(BT −Bt)|Fs] = 0.

We also have

E[X(BT −Bt)2|Ft] = X+(T − t)− σ2
0X

−(T − t).

Remark 21. It is clear that we can define an expectation E[·] on L0
ip(F) in the

same way as in Definition 14 with the standard normal distribution P1(·) in the
place of PG

1 (·). Since P1(·) is dominated by PG
1 (·) in the sense P1(φ)−P1(ψ) ≤
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PG
1 (φ−ψ), then E[·] can be continuously extended to L1

G(F). E[·] is a linear
expectation under which (Bt)t≥0 behaves as a Brownian motion. We have

E[X] ≤ E[X], ∀X ∈ L1
G(F). (8)

In particular, E[B2n−1
T−t ] = E[−B2n−1

T−t ] ≥ E[−B2n−1
T−t ] = 0. Such kind of exten-

sion under a domination relation was discussed in details in [37].

The following property is very useful

Proposition 22. Let X,Y ∈ L1
G(F) be such that E[Y ] = −E[−Y ] (thus

E[Y ] = E[Y ]), then we have

E[X + Y ] = E[X] + E[Y ].

In particular, if E[Y ] = E[−Y ] = 0, then E[X + Y ] = E[X].

Proof. It is simply because we have E[X + Y ] ≤ E[X] + E[Y ] and

E[X + Y ] ≥ E[X]− E[−Y ] = E[X] + E[Y ].

Example 23. We have

E[B2
t −B2

s |Fs] = E[(Bt −Bs +Bs)2 −B2
s |Fs]

= E[(Bt −Bs)2 + 2(Bt −Bs)Bs|Fs]
= t− s,

since 2(Bt −Bs)Bs satisfies the condition for Y in Proposition 22, and

E[(B2
t −B2

s )2|Fs] = E[{(Bt −Bs +Bs)2 −B2
s}2|Fs]

= E[{(Bt −Bs)2 + 2(Bt −Bs)Bs}2|Fs]

= E[(Bt −Bs)4 + 4(Bt −Bs)3Bs + 4(Bt −Bs)2B2
s |Fs]

≤ E[(Bt −Bs)4] + 4E[|Bt −Bs|3]|Bs|+ 4(t− s)B2
s

= 3(t− s)2 + 8(t− s)3/2|Bs|+ 4(t− s)B2
s .

5 Itô’s integral of G-Brownian motion

5.1 Bochner’s integral

Definition 24. For T ∈ R+, a partition πT of [0, T ] is a finite ordered subset
π = {t1, · · · , tN} such that 0 = t0 < t1 < · · · < tN = T . We denote

µ(πT ) = max{|ti+1 − ti|, i = 0, 1, · · · , N − 1}.

We use πN
T = {tN0 < tN1 < · · · < tNN} to denote a sequence of partitions of

[0, T ] such that limN→∞ µ(πN
T ) = 0.
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Let p ≥ 1 be fixed. We consider the following type of simple processes: for
a given partition {t0, · · · , tN} = πT of [0, T ], we set

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t),

where ξi ∈ Lp
G(Fti), i = 0, 1, 2, · · · , N − 1, are given. The collection of these

type of processes is denoted by Mp,0
G (0, T ).

Definition 25. For an η ∈ M1,0
G (0, T ) with ηt =

∑N−1
j=0 ξj(ω)I[tj ,tj+1)(t), the

related Bochner integral is∫ T

0

ηt(ω)dt =
N−1∑
j=0

ξj(ω)(tj+1 − tj).

Remark 26. We set, for each η ∈M1,0
G (0, T ),

ẼT [η] :=
1
T

∫ T

0

E[ηt]dt =
1
T

N−1∑
j=0

E[ξj(ω)](tj+1 − tj).

It is easy to check that ẼT : M1,0
G (0, T ) 7−→ R forms a nonlinear expectation

satisfying (a)–(e) of Definition 1. By Remark 4, we can introduce a natural
norm ‖η‖1T = ẼT [|η|] = 1

T

∫ T

0
E[|ηt|]dt. Under this norm M1,0

G (0, T ) can be
continuously extended to M1

G(0, T ) which is a Banach space.

Definition 27. For each p ≥ 1, we will denote by Mp
G(0, T ) the completion

of Mp,0
G (0, T ) under the norm

(
1
T

∫ T

0

‖ηp
t ‖ dt)1/p =

 1
T

N−1∑
j=0

E[|ξj(ω)|p](tj+1 − tj)

1/p

.

We observe that,

E[|
∫ T

0

ηt(ω)dt|] ≤
N−1∑
j=0

‖ξj(ω)‖ (tj+1 − tj) =
∫ T

0

E[|ηt|]dt.

We then have

Proposition 28. The linear mapping
∫ T

0
ηt(ω)dt : M1,0

G (0, T ) 7→ L1
G(FT ) is

continuous. and thus can be continuously extended to M1
G(0, T ) 7→ L1

G(FT ).
We still denote this extended mapping by

∫ T

0
ηt(ω)dt, η ∈M1

G(0, T ). We have

E[|
∫ T

0

ηt(ω)dt|] ≤
∫ T

0

E[|ηt|]dt, ∀η ∈M1
G(0, T ). (9)

Since M1
G(0, T ) ⊃ Mp

G(0, T ), for p ≥ 1, this definition holds for η ∈
Mp

G(0, T ).
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5.2 Itô’s integral of G-Brownian motion

Definition 29. For each η ∈M2,0
G (0, T ) with the form

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t),

we define

I(η) =
∫ T

0

η(s)dBs :=
N−1∑
j=0

ξj(Btj+1 −Btj ).

Lemma 30. The mapping I : M2,0
G (0, T ) 7−→ L2

G(FT ) is a linear continuous
mapping and thus can be continuously extended to I : M2

G(0, T ) 7−→ L2
G(FT ).

In fact we have

E[
∫ T

0

η(s)dBs] = 0, (10)

E[(
∫ T

0

η(s)dBs)2] ≤
∫ T

0

E[(η(t))2]dt. (11)

Definition 31. We define, for a fixed η ∈M2
G(0, T ), the stochastic integral∫ T

0

η(s)dBs := I(η).

It is clear that (10), (11) still hold for η ∈M2
G(0, T ).

Proof of Lemma 30. From Example 20, for each j,

E[ξj(Btj+1 −Btj )|Ftj ] = 0.

We have

E[
∫ T

0

η(s)dBs] = E[
∫ tN−1

0

η(s)dBs + ξN−1(BtN
−BtN−1)]

= E[
∫ tN−1

0

η(s)dBs + E[ξN−1(BtN
−BtN−1)|FtN−1 ]]

= E[
∫ tN−1

0

η(s)dBs].

We then can repeat this procedure to obtain (10). We now prove (11):
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E[(
∫ T

0

η(s)dBs)2] = E[
(∫ tN−1

0

η(s)dBs + ξN−1(BtN
−BtN−1)

)2

]

= E[
(∫ tN−1

0

η(s)dBs

)2

+ E[2
(∫ tN−1

0

η(s)dBs

)
ξN−1(BtN

−BtN−1)

+ ξ2N−1(BtN
−BtN−1)

2|FtN−1 ]]

= E[
(∫ tN−1

0

η(s)dBs

)2

+ ξ2N−1(tN − tN−1)].

Thus E[(
∫ tN

0
η(s)dBs)2] ≤ E[

(∫ tN−1

0
η(s)dBs

)2

] + E[ξ2N−1](tN − tN−1)]. We
then repeat this procedure to deduce

E[(
∫ T

0

η(s)dBs)2] ≤
N−1∑
j=0

E[(ξj)2](tj+1 − tj) =
∫ T

0

E[(η(t))2]dt.

We list some main properties of the Itô’s integral of G-Brownian motion.
We denote for some 0 ≤ s ≤ t ≤ T ,∫ t

s

ηudBu :=
∫ T

0

I[s,t](u)ηudBu.

We have

Proposition 32. Let η, θ ∈ M2
G(0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then in

L1
G(FT ) we have

(i)
∫ t

s
ηudBu =

∫ r

s
ηudBu +

∫ t

r
ηudBu,

(ii)
∫ t

s
(αηu+θu)dBu = α

∫ t

s
ηudBu+

∫ t

s
θudBu, if α is bounded and in L1

G(Fs),
(iii) E[X +

∫ T

r
ηudBu|Fs] = E[X], ∀X ∈ L1

G(F).

5.3 Quadratic variation process of G-Brownian motion

We now study a very interesting process of the G-Brownian motion. Let πN
t ,

N = 1, 2, · · · , be a sequence of partitions of [0, t]. We consider

B2
t =

N−1∑
j=0

[B2
tN
j+1

−B2
tN
j

]

=
N−1∑
j=0

2BtN
j

(BtN
j+1

−BtN
j

) +
N−1∑
j=0

(BtN
j+1

−BtN
j

)2.
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As µ(πN
t ) → 0, the first term of the right side tends to

∫ t

0
BsdBs. The second

term must converge. We denote its limit by 〈B〉t, i.e.,

〈B〉t = lim
µ(πN

t )→0

N−1∑
j=0

(BtN
j+1

−BtN
j

)2 = B2
t − 2

∫ t

0

BsdBs. (12)

By the above construction, 〈B〉t, t ≥ 0, is an increasing process with 〈B〉0 = 0.
We call it the quadratic variation process of the G-Brownian motion B.
Clearly 〈B〉 is an increasing process. It perfectly characterizes the part of
uncertainty, or ambiguity, of G-Brownian motion. It is important to keep in
mind that 〈B〉t is not a deterministic process unless the case σ = 1, i.e., when
B is a classical Brownian motion. In fact we have

Lemma 33. We have, for each 0 ≤ s ≤ t <∞

E[〈B〉t − 〈B〉s |Fs] = t− s, (13)

E[−(〈B〉t − 〈B〉s)|Fs] = −σ2
0(t− s). (14)

Proof. By the definition of 〈B〉 and Proposition 32-(iii),

E[〈B〉t − 〈B〉s |Fs] = E[B2
t −B2

s − 2
∫ t

s

BudBu|Fs]

= E[B2
t −B2

s |Fs] = t− s.

The last step can be check as in Example 23. We then have (13). (14) can be
proved analogously with the consideration of E[−(B2

t −B2
s )|Fs] = −σ2(t− s).

To define the integration of a process η ∈M1
G(0, T ) with respect to d 〈B〉,

we first define a mapping:

Q0,T (η) =
∫ T

0

η(s)d 〈B〉s :=
N−1∑
j=0

ξj(〈B〉tj+1
− 〈B〉tj

) : M1,0
G (0, T ) 7→ L1(FT ).

Lemma 34. For each η ∈M1,0
G (0, T ),

E[|Q0,T (η)|] ≤
∫ T

0

E[|ηs|]ds. (15)

Thus Q0,T : M1,0
G (0, T ) 7→ L1(FT ) is a continuous linear mapping. Con-

sequently, Q0,T can be uniquely extended to L1
F (0, T ). We still denote this

mapping by ∫ T

0

η(s)d 〈B〉s = Q0,T (η), η ∈M1
G(0, T ).

We still have

E[|
∫ T

0

η(s)d 〈B〉s |] ≤
∫ T

0

E[|ηs|]ds, ∀η ∈M1
G(0, T ). (16)
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Proof. By applying Lemma 33, (15) can be checked as follows:

E[|
N−1∑
j=0

ξj(〈B〉tj+1
− 〈B〉tj

)|] ≤
N−1∑
j=0

E[|ξj | · E[〈B〉tj+1
− 〈B〉tj

|Ftj
]]

=
N−1∑
j=0

E[|ξj |](tj+1 − tj)

=
∫ T

0

E[|ηs|]ds.

A very interesting point of the quadratic variation process 〈B〉 is, just like
the G-Brownian motion B it’s self, the increment 〈B〉t+s−〈B〉s is independent
of Fs and identically distributed like 〈B〉t. In fact we have

Lemma 35. For each fixed s ≥ 0, (〈B〉s+t − 〈B〉s)t≥0 is independent of Fs.
It is the quadratic variation process of the Brownian motion Bs

t = Bs+t−Bs,
t ≥ 0, i.e., 〈B〉s+t − 〈B〉s = 〈Bs〉t. We have

E[〈Bs〉2t |Fs] = E[〈B〉2t ] = t2 (17)

as well as

E[〈Bs〉3t |Fs] = E[〈B〉2t ] = t3, E[〈Bs〉4t |Fs] = E[〈B〉4t ] = t4.

Proof. The independence is simply from

〈B〉s+t − 〈B〉s = B2
t+s − 2

∫ s+t

0

BrdBr − [B2
s − 2

∫ s

0

BrdBr]

= (Bt+s −Bs)2 − 2
∫ s+t

s

(Br −Bs)d(Br −Bs)

= 〈Bs〉t .

We set φ(t) := E[〈B〉2t ].

φ(t) = E[{(Bt)2 − 2
∫ t

0

BudBu}2]

≤ 2E[(Bt)4] + 8E[(
∫ t

0

BudBu)2]

≤ 6t2 + 8
∫ t

0

E[(Bu)2]du

= 10t2.

This also implies E[(〈B〉t+s − 〈B〉s)2] = φ(t) ≤ 14t. Thus
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φ(t) = E[{〈B〉s + 〈B〉s+t − 〈B〉s}
2]

≤ E[(〈B〉s)
2] + E[(〈Bs〉t)

2] + 2E[〈B〉s 〈B
s〉t]

= φ(s) + φ(t) + 2E[〈B〉s E[〈Bs〉t]]
= φ(s) + φ(t) + 2st.

We set δN = t/N , tNk = kt/N = kδN for a positive integer N . By the above
inequalities

φ(tNN ) ≤ φ(tNN−1) + φ(δN ) + 2tNN−1δN

≤ φ(tNN−2) + 2φ(δN ) + 2(tNN−1 + tNN−2)δN
...

We then have

φ(t) ≤ Nφ(δN ) + 2
N−1∑
k=0

tNk δN ≤ 10
t2

N
+ 2

N−1∑
k=0

tNk δN .

Let N → ∞ we have φ(t) ≤ 2
∫ t

0
sds = t2. Thus E[〈Bt〉2] ≤ t2. This with

E[〈Bt〉2] ≥ E[〈Bt〉2] = t2 implies (17).

Proposition 36. Let 0 ≤ s ≤ t, ξ ∈ L1
G(Fs). Then

E[X + ξ(B2
t −B2

s )] = E[X + ξ(Bt −Bs)2]
= E[X + ξ(〈B〉t − 〈B〉s)].

Proof. By (12) and Proposition 22, we have

E[X + ξ(B2
t −B2

s )] = E[X + ξ(〈B〉t − 〈B〉s + 2
∫ t

s

BudBu)]

= E[X + ξ(〈B〉t − 〈B〉s)].

We also have

E[X + ξ(B2
t −B2

s )] = E[X + ξ{(Bt −Bs)2 + 2(Bt −Bs)Bs}]
= E[X + ξ(Bt −Bs)2].

We have the following isometry:

Proposition 37. Let η ∈M2
G(0, T ). We have

E[(
∫ T

0

η(s)dBs)2] = E[
∫ T

0

η2(s)d 〈B〉s]. (18)



18 Shige Peng

Proof. We first consider η ∈M2,0
G (0, T ) with the form

ηt(ω) =
N−1∑
j=0

ξj(ω)I[tj ,tj+1)(t)

and thus
∫ T

0
η(s)dBs :=

∑N−1
j=0 ξj(Btj+1 −Btj

). By Proposition 22 we have

E[X + 2ξj(Btj+1 −Btj )ξi(Bti+1 −Bti)] = E[X], for X ∈ L1
G(F), i 6= j.

Thus

E[(
∫ T

0

η(s)dBs)2] = E[

N−1∑
j=0

ξj(Btj+1 −Btj )

2

] = E[
N−1∑
j=0

ξ2j (Btj+1 −Btj )
2].

This with Proposition 36, it follows that

E[(
∫ T

0

η(s)dBs)2] = E[
N−1∑
j=0

ξ2j (〈B〉tj+1
− 〈B〉tj

)] = E[
∫ T

0

η2(s)d 〈B〉s].

Thus (18) holds for η ∈ M2,0
G (0, T ). We thus can continuously extend the

above equality to the case η ∈M2
G(0, T ) and prove (18).

5.4 Itô’s formula for G-Brownian motion

We have the corresponding Itô’s formula of Φ(Xt) for a “G-Itô process” X.
For simplification, we only treat the case where the function Φ is sufficiently
regular. We first consider a simple situation.

Lemma 38. Let Φ ∈ C2(Rn) be bounded with bounded derivatives and
{∂2

xµxνΦ}n
µ,ν=1 are uniformly Lipschitz. Let s ∈ [0, T ] be fixed and let X =

(X1, · · · , Xn)T be an n-dimensional process on [s, T ] of the form

Xν
t = Xν

s + αν(t− s) + ην(〈B〉t − 〈B〉s) + βν(Bt −Bs),

where, for ν = 1, · · · , n, αν , ην and βν , are bounded elements of L2
G(Fs) and

Xs = (X1
s , · · · , Xn

s )T is a given Rn-vector in L2
G(Fs). Then we have

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xνΦ(Xu)βνdBu +
∫ t

s

∂xνΦ(Xu)ανdu (19)

+
∫ t

s

[DxνΦ(Xu)ην +
1
2
∂2

xµxνΦ(Xu)βµβν ]d 〈B〉u .

Here we use the Einstein convention, i.e., each single term with repeated in-
dices µ and/or ν implies the summation.
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Proof. For each positive integer N we set δ = (t−s)/N and take the partition

πN
[s,t] = {tN0 , tN1 , · · · , tNN} = {s, s+ δ, · · · , s+Nδ = t}.

We have

Φ(Xt) = Φ(Xs) +
N−1∑
k=0

[Φ(XtN
k+1

)− Φ(XtN
k

)]

= Φ(Xs) +
N−1∑
k=0

[∂xµΦ(XtN
k

)(Xµ

tN
k+1

−Xµ

tN
k

)

+
1
2
[∂2

xµxνΦ(XtN
k

)(Xµ

tN
k+1

−Xµ

tN
k

)(Xν
tN
k+1

−Xν
tN
k

) + ηN
k ]] (20)

where

ηN
k = [∂2

xµxνΦ(XtN
k

+ θk(XtN
k+1

−XtN
k

))− ∂2
xµxνΦ(XtN

k
)]

(Xµ

tN
k+1

−Xµ

tN
k

)(Xν
tN
k+1

−Xν
tN
k

)

with θk ∈ [0, 1]. We have

E[|ηN
k |] = E[|[∂2

xµxνΦ(XtN
k

+ θk(XtN
k+1

−XtN
k

))

− ∂2
xµxνΦ(XtN

k
)](Xµ

tN
k+1

−Xµ

tN
k

)(Xν
tN
k+1

−Xν
tN
k

)|]

≤ cE[|XtN
k+1

−XtN
k
|3] ≤ C[δ3 + δ3/2],

where c is the Lipschitz constant of {∂2
xµxνΦ}n

µ,ν=1. Thus
∑

k E[|ηN
k |] → 0.

The rest terms in the summation of the right side of (20) are ξN
t + ζN

t , with

ξN
t =

N−1∑
k=0

{∂xµΦ(XtN
k

)[αµ(tNk+1 − tNk ) + ηµ(〈B〉tN
k+1

− 〈B〉tN
k

)+

βµ(BtN
k+1

−BtN
k

)] +
1
2
∂2

xµxνΦ(XtN
k

)βµβν(BtN
k+1

−BtN
k

)(BtN
k+1

−BtN
k

)}

and

ζN
t =

1
2

N−1∑
k=0

∂2
xµxνΦ(XtN

k
)[αµ(tNk+1 − tNk ) + ηµ(〈B〉tN

k+1
− 〈B〉tN

k
)]

× [αν(tNk+1 − tNk ) + ην(〈B〉tN
k+1

− 〈B〉tN
k

)]

+ βν [αµ(tNk+1 − tNk ) + ηµ(〈B〉tN
k+1

− 〈B〉tN
k

)](BtN
k+1

−BtN
k

).

We observe that, for each u ∈ [tNk , t
N
k+1),
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E[|∂xµΦ(Xu)−
N−1∑
k=0

∂xµΦ(XtN
k

)I[tN
k ,tN

k+1)
(u)|2]

= E[|∂xµΦ(Xu)− ∂xµΦ(XtN
k

)|2]

≤ c2E[|Xu −XtN
k
|2] ≤ C[δ + δ2].

Thus
∑N−1

k=0 ∂xµΦ(XtN
k

)I[tN
k ,tN

k+1)
(·) tends to ∂xµΦ(X·) in M2

G(0, T ). Similarly,

N−1∑
k=0

∂2
xµxνΦ(XtN

k
)I[tN

k ,tN
k+1)

(·) → ∂2
xµxνΦ(X·), in M2

G(0, T ).

Let N → ∞, by the definitions of the integrations with respect to dt, dBt

and d 〈B〉t the limit of ξN
t in L2

G(Ft) is just the right hand of (19). By the
estimates of the next remark, we also have ζN

t → 0 in L1
G(Ft). We then have

proved (19).

Remark 39. We have the following estimates: for ψN ∈ M1,0
G (0, T ) such

that ψN
t =

∑N−1
k=0 ξN

tk
I[tN

k ,tN
k+1)

(t), and πN
T = {0 ≤ t0, · · · , tN = T} with

limN→∞ µ(πN
T ) = 0 and

∑N−1
k=0 E[|ξN

tk
|](tNk+1 − tNk ) ≤ C, for all N = 1, 2, . . . ,

we have

E[|
N−1∑
k=0

ξN
k (tNk+1 − tNk )2|] → 0,

and, thanks to Lemma 35,

E[|
N−1∑
k=0

ξN
k (〈B〉tN

k+1
− 〈B〉tN

k
)2|] ≤

N−1∑
k=0

E[|ξN
k | · E[(〈B〉tN

k+1
− 〈B〉tN

k
)2|FtN

k
]]

=
N−1∑
k=0

E[|ξN
k |](tNk+1 − tNk )2 → 0,

as well as

E[|
N−1∑
k=0

ξN
k (〈B〉tN

k+1
− 〈B〉tN

k
)(BtN

k+1
−BtN

k
)|]

≤
N−1∑
k=0

E[|ξN
k |]E[(〈B〉tN

k+1
− 〈B〉tN

k
)|BtN

k+1
−BtN

k
|]

≤
N−1∑
k=0

E[|ξN
k |]E[(〈B〉tN

k+1
− 〈B〉tN

k
)2]1/2E[|BtN

k+1
−BtN

k
|2]1/2

=
N−1∑
k=0

E[|ξN
k |](tNk+1 − tNk )3/2 → 0.
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We also have

E[|
N−1∑
k=0

ξN
k (〈B〉tN

k+1
− 〈B〉tN

k
)(tNk+1 − tNk )|]

≤
N−1∑
k=0

E[|ξN
k |(tNk+1 − tNk ) · E[(〈B〉tN

k+1
− 〈B〉tN

k
)|FtN

k
]]

=
N−1∑
k=0

E[|ξN
k |](tNk+1 − tNk )2 → 0

and

E[|
N−1∑
k=0

ξN
k (tNk+1 − tNk )(BtN

k+1
−BtN

k
)|]

≤
N−1∑
k=0

E[|ξN
k |](tNk+1 − tNk )E[|BtN

k+1
−BtN

k
|]

=

√
2
π

N−1∑
k=0

E[|ξN
k |](tNk+1 − tNk )3/2 → 0.

We now consider a more general form of Itô’s formula. Consider

Xν
t = Xν

0 +
∫ t

0

αν
sds+

∫ t

0

ην
s d 〈B〉s +

∫ t

0

βν
s dBs.

Proposition 40. Let αν , βν and ην , ν = 1, · · · , n, are bounded processes of
M2

G(0, T ). Then for each t ≥ 0 and in L2
G(Ft) we have

Φ(Xt)− Φ(Xs) =
∫ t

s

∂xνΦ(Xu)βν
udBu +

∫ t

s

∂xνΦ(Xu)αν
udu (21)

+
∫ t

s

[∂xνΦ(Xu)ην
u +

1
2
∂2

xµxνΦ(Xu)βµ
uβ

ν
u]d 〈B〉u

Proof. We first consider the case where α, η and β are step processes of the
form

ηt(ω) =
N−1∑
k=0

ξk(ω)I[tk,tk+1)(t).

From the above Lemma, it is clear that (21) holds true. Now let

Xν,N
t = Xν

0 +
∫ t

0

αν,N
s ds+

∫ t

0

ην,N
s d 〈B〉s +

∫ t

0

βν,N
s dBs

where αN , ηN and βN are uniformly bounded step processes that converge to
α, η and β in M2

G(0, T ) as N →∞. From Lemma 38
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Φ(Xν,N
t )− Φ(X0) =

∫ t

s

∂xνΦ(XN
u )βν,N

u dBu +
∫ t

s

∂xν
Φ(XN

u )αν,N
u du (22)

+
∫ t

s

[∂xνΦ(XN
u )ην,N

u +
1
2
∂2

xµxνΦ(XN
u )βµ,N

u βν,N
u ]d 〈B〉u

Since

E[|Xν,N
t −Xν

t |2] ≤ 3E[|
∫ t

0

(αN
s − αs)ds|2] + 3E[|

∫ t

0

(ην,N
s − ην

s )d 〈B〉s |
2]

+3E[|
∫ t

0

(βν,N
s −βν

s )dBs|2] ≤ 3
∫ T

0

E[(αν,N
s −αν

s )2]ds+3
∫ T

0

E[|ην,N
s −ην

s |2]ds

+ 3
∫ T

0

E[(βν,N
s − βν

s )2]ds,

we then can prove that, in M2
G(0, T ), we have (21). Furthermore

∂xνΦ(XN
· )ην,N

· + ∂2
xµxνΦ(XN

· )βµ,N
· βν,N

· → ∂xνΦ(X·)ην
· + ∂2

xµxνΦ(X·)βµ
· β

ν
·

∂xνΦ(XN
· )αν,N

· → ∂xνΦ(X·)αν
·

∂xνΦ(XN
· )βν,N

· → ∂xνΦ(X·)βν
·

We then can pass limit in both sides of (22) and get (21).

6 Stochastic differential equations

We consider the following SDE defined on M2
G(0, T ; Rn):

Xt = X0 +
∫ t

0

b(Xs)ds+
∫ t

0

h(Xs)d 〈B〉s +
∫ t

0

σ(Xs)dBs, t ∈ [0, T ]. (23)

where the initial condition X0 ∈ Rn is given and b, h, σ : Rn 7→ Rn are given
Lipschitz functions, i.e., |φ(x)−φ(x′)| ≤ K|x−x′|, for each x, x′ ∈ Rn, φ = b,
h and σ. Here the horizon [0, T ] can be arbitrarily large. The solution is a
process X ∈ M2

G(0, T ; Rn) satisfying the above SDE. We first introduce the
following mapping on a fixed interval [0, T ]:

Λ·(Y ) := Y ∈M2
G(0, T ; Rn) 7−→M2

G(0, T ; Rn)

by setting Λt with

Λt(Y ) = X0 +
∫ t

0

b(Ys)ds+
∫ t

0

h(Ys)d 〈B〉s +
∫ t

0

σ(Ys)dBs, t ∈ [0, T ].

We immediately have
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Lemma 41. For each Y, Y ′ ∈M2
G(0, T ; Rn), we have the following estimate:

E[|Λt(Y )− Λt(Y ′)|2] ≤ C

∫ t

0

E[|Ys − Y ′s |2]ds, t ∈ [0, T ],

where C = 3K2.

Proof. This is a direct consequence of the inequalities (9), (11) and (16).

We now prove that SDE (23) has a unique solution. By multiplying e−2Ct

on both sides of the above inequality and then integrate them on [0, T ]. It
follows that∫ T

0

E[|Λt(Y )− Λt(Y ′)|2]e−2Ctdt

≤ C

∫ T

0

e−2Ct

∫ t

0

E[|Ys − Y ′s |2]dsdt

= C

∫ T

0

∫ T

s

e−2CtdtE[|Ys − Y ′s |2]ds

= (2C)−1C

∫ T

0

(e−2Cs − e−2CT )E[|Ys − Y ′s |2]ds.

We then have∫ T

0

E[|Λt(Y )− Λt(Y ′)|2]e−2Ctdt ≤ 1
2

∫ T

0

E[|Yt − Y ′t |2]e−2Ctdt.

We observe that the following two norms are equivalent in M2
G(0, T ; Rn):∫ T

0

E[|Yt|2]dt ∼
∫ T

0

E[|Yt|2]e−2Ctdt.

From this estimate we can obtain that Λ(Y ) is a contract mapping. Conse-
quently, we have

Theorem 42. There exists a unique solution X ∈ M2
G(0, T ; Rn) of the

stochastic differential equation (23).

7 Appendix

For r > 0, 1 < p, q <∞ with 1
p + 1

q = 1, we have

|a+ b|r ≤ max{1, 2r−1}(|a|r + |b|r), ∀a, b ∈ R (24)

|ab| ≤ |a|p

p
+
|b|q

q
. (25)
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Proposition 43.

E[|X + Y |r] ≤ Cr(E[|X|r] + E[|Y |r]), (26)

E[|XY |] ≤ E[|X|p]1/p · E[|Y |q]1/q, (27)

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p. (28)

In particular, for 1 ≤ p < p′, we have E[|X|p]1/p ≤ E[|X|p′ ]1/p′ .

Proof. (26) follows from (24). We set

ξ =
X

E[|X|p]1/p
, η =

Y

E[|Y |q]1/q
.

By (25) we have

E[|ξη|] ≤ E[
|ξ|p

p
+
|η|q

q
] ≤ E[

|ξ|p

p
] + E[

|η|q

q
]

=
1
p

+
1
q

= 1.

Thus (27) follows. We now prove (28):

E[|X + Y |p] = E[|X + Y | · |X + Y |p−1]

≤ E[|X| · |X + Y |p−1] + E[|Y | · |X + Y |p−1]

≤ E[|X|p]1/p · E[|X + Y |(p−1)q]1/q

+ E[|Y |p]1/p · E[|X + Y |(p−1)q]1/q

This with (p− 1)q = p implies (28).
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