
Central sequences in C ∗–algebras and strongly
purely infinite algebras

Eberhard Kirchberg

Institut für Mathematik, Humboldt Universität zu Berlin,
Unter den Linden 6, D–10099 Berlin, Germany,
kirchbrg@mathematik.hu-berlin.de

Summary. It is shown that F (A) := (A′ ∩Aω)/Ann(A, Aω) is a unital C ∗-algebra
and that A 7→ F (A) is a stable invariant of separable C ∗–algebras A with certain
local continuity and permanence properties. Here Aω means the ultrapower of A.

If A is separable, then F (A) is simple, if and only if, either A ⊗ K ∼= K or A is
a simple purely infinite nuclear C ∗–algebra. In the first case F (A) ∼= C, and in the
second case F (A) is purely infinite and A absorbs O∞ tensorially, i.e. A ∼= A⊗O∞.

We show that F (Q) = C · 1 for the Calkin algebra Q := L/K, in contrast to the
separable case.

We introduce a “locally semi-projective” invariant cov(B) ∈ N ∪ {∞} of unital
C ∗–algebras B with cov(B) ≤ cov(C) if there is a unital *-homomorphism from C
into B. If B is nuclear and has no finite-dimensional quotient then cov(B) ≤ dr(B)+1
for the decomposition rank dr(B) of B. (Thus, cov(Z) = 2 for the Jian–Su algebra
Z.) Separable (not necessarily simple) C ∗–algebras A are strongly purely infinite
in the sense of [25] if A does not admit a non-trivial lower semi-continuous 2-quasi-
trace and F (A) contains a simple C ∗–subalgebra B with cov(B) < ∞ and 1 ∈ B.
In particular, A ⊗ Z is strongly purely infinite if A+ admits no non-trivial lower
semi-continuous 2-quasi-trace.

Properties of F (A) will be used to show that A is tensorially D–absorbing, (i.e.
that A⊗D ∼= A by an isomorphism that is approximately unitarily equivalent to a 7→
a⊗1), if A is stable and separable,D is a unital tensorially self-absorbing algebra, and
D is unitally contained in F (A). It follows that the class of tensorially D–absorbing
separable stable C ∗–algebras A, is closed under inductive limits and passage to ideals
and quotients. The local permanence properties of the functor A 7→ F (A) imply that
this class is also closed under extensions, if and only if, every commutator uvu∗v∗ of
unitaries u, v ∈ U(D) is contained in the connected component U0(D) of 1 in U(D).
If this is the case, then the class of (not necessarily stable) D–absorbing separable
C ∗–algebras is also closed under passage to hereditary C ∗–algebras.

1 Introduction: The stable invariant F (A).

The different results of this paper (stated in the summary) will be derived
from properties of the relative commutant Ac of a C ∗–algebra A in its ultra-
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power. Our considerations suggest that a study of the ideals and simple C ∗–
subalgebras of the below defined quotient algebra F (A) of Ac could be use-
ful. There are related open problems: the UCT problem, the classification of
(strongly tensorially) self-absorbing C ∗–algebras D, permanence properties
for all D-absorbing algebras, the question which additional properties imply
that purely infinite algebras are strongly purely infinite, and to the existence
of certain asymptotic algebras suitable for a KK-theoretic formulation of the
classification of D-absorbing algebras.

Note that our technics is not a sort of non-standard analysis: All appearing
algebras are honest C ∗–algebras over C and all considered maps between them
are at least completely positive maps. We consider here only A 7→ F (A) for a
fixed free ultra-filter ω on N, because we hope that it is helpful for the reader to
get an impression of what we consider as asymptotic analysis of C ∗–algebras
if N is replaced e.g. by R+. There are surprising relations between algebraic
properties of F (A) and analytic properties of separable A. See e.g. Lemmas
2.8, 2.11(3), Propositions 1.17, 4.11, Corollary 1.13 (in view of applications),
and Theorems 2.12, 3.10, 4.5.

Let ω a free ultra-filter on N. We also denote by ω the related character
on `∞ := `∞(N) with ω(c0(N)) = {0}. Recall that limω αn means the complex
number ω(α1, α2, . . .) for (α1, α2, . . .) ∈ `∞. For a C ∗–algebra A, we let

cω(A) := {(a1, a2, . . .) ∈ `∞(A) ; lim
ω
‖an‖ = 0} ,

Aω := `∞(A)/cω(A)

Aω will be called the ultrapower of A. The natural epimorphism from `∞(A)
onto Aω will be denoted by πω. (a1, a2, . . .) ∈ `∞(A) is a representing sequence
for b ∈ Aω if πω(a1, a2, . . .) = b. We consider A as a C ∗–subalgebra of Aω by
the diagonal embedding

a 7→ πω(a, a, . . .) = (a, a, . . .) + cω(A).

Then Ac := A′ ∩ Aω is the algebra of (ω-) central sequences in A (modulo
ω-zero sequences). It is easy to see that the (two-sided) annihilator

Ann(A) := Ann(A,Aω) := {b ∈ Aω ; bA = {0} = Ab}

of A in Aω is an ideal of Ac. We let

F (A) := Ac/Ann(A) = (A′ ∩Aω)/Ann(A,Aω)

It turns out that F (A) is unital for σ-unital A, and that A 7→ F (A) is an
invariant of Morita equivalence classes of σ-unital C ∗–algebras. We generalize
Ac and F (A) for C ∗–subalgebras A ⊂ M(B)ω to get more flexible tools for
the proofs of permanence properties:

Definitions 1.1 Suppose that B is a C ∗–algebra, M(B) its multiplier alge-
bra, and that A is a C ∗–subalgebra of M(B)ω. We let, for A ⊂M(B)ω,
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(A,B)c := A′ ∩Bω ⊂ A′ ∩M(B)ω ,

Ann(A,Bω) := {b ∈ Bω ; Ab+ bA = {0}}
F (A,B) := (A,B)c/Ann(A,Bω) ,
DA,B := span(ABωA) ⊂ Bω and

N (DA,B) = N (DA,B , Bω) := {b ∈ Bω ; bDA,B +DA,Bb ⊂ DA,B} .

We denote by ρA,B the natural *-morphism

ρA,B : F (A,B)⊗max A→ DA,B ⊂ Bω

given by ρA,B((b+ Ann(A,Bω))⊗ a) := ba for b ∈ (A,B)c and a ∈ A.

The Definitions of F (A,B) and of ρA,B make sense, because (obviously)
Ann(A,Bω) is a closed ideal of (A,B)c, (A,B)c and A commute element-wise
and A ·Ann(A,Bω) = {0} .

Then F (A) = F (A,A), (A,B)c = (A,M(B))c ∩ Bω is a closed ideal of
(A,M(B))c and Ann(A,Bω) = Ann(DA,B , Bω) = Ann(A,M(B)ω)∩Bω. We
write N (DA,B) for N (DA,B , Bω), DA, for DA,A, N (DA) for N (DA,A), ρA or
ρ for ρA,A, ... and so on.

Let K denote the compact operators on `2(N). Kc = Ann(K)+C·1 is huge,
but F (K) ∼= C = Cω (cf. Corollary 1.10). Permanence properties of F (A) have
to be considered with some care, because e.g. F (K + C · 1) ∼= (K + C · 1)c =
Ann(K) + C · 1.

The below given basic facts on (A,B)c, Ann(A,Bω) and F (A,B) will be
proved in Appendix B or are taken from [22, sec. 2.2].

Definition 1.2 A convex subcone V ⊂ CP (B,C) of the cone of completely
positive (=:c.p.) maps from B in C is (matricially) operator-convex if the
c.p. map b 7→ c∗V (r∗br)c is in V for every V ∈ V and every row r ∈M1,n(B)
and column c ∈Mn,1(C).

Examples of operator-convex cones are the cone CPnuc(B,C) of nuclear c.p.
maps from B into C and the cone CPfin(B,C) of the c.p. maps of finite rank.
If B ⊂M(C) then the cone of approximately inner c.p. maps V → B → C is
operator-convex.

Proposition 1.3 Suppose that A ⊂ Bω is separable, that V ⊂ CP (B,B) is
an operator-convex cone of completely positive maps from B into B, that J ⊂
B is a closed ideal, and that a ∈ A′ ∩ Bω, b, c ∈ Bω are positive contractions
with ab = ac = bc = 0 and bAc = {0}.
If c ∈ Jω ⊂ Bω, and if there is a bounded sequence S1, S2, . . . ∈ V such that
Sω(x) = b∗xb for x ∈ A, then there are positive contractions e, f, g ∈ A′ ∩Bω

and a sequence of contractions T1, T2, . . . ∈ V with

(1) ea = a, fb = b, gc = c and ef = eg = fg = 0
(2) Tω(x) = xf for all x ∈ A.
(3) g ∈ Jω
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We use only particular aspects of this Proposition, e.g., where at least one
of the a, b, c is zero. Note that the assumption on (V, b) is trivially satisfied
for V = CP (B,B) or for the operator-convex cone V of all inner c.p. maps
(and the conclusion (2) is then trivial, too). The same happens with the
assumptions on (J, c) if we let J = B.

Part (2) shows that (ultapowers of) operator convex cones V ⊂ CP (B,B)
define in a natural way closed ideals of F (A,B) (compare the proof of Lemma
2.11 ).

Definition 1.4 We call a C ∗–algebra C σ-sub-Stonean if for every separable
C ∗–subalgebra A ⊂ C and every b, c ∈ C+ with bc = 0 and bAc = {0} there
are positive contractions f, g ∈ A′ ∩ C with fg = 0, fb = b and gc = c.

Obviously, if C is σ-sub-Stonean, then C is sub-Stonean (which is the case
A = {0}), and B′ ∩ C is σ-sub-Stonean for every separable C ∗–subalgebra
B of C (consider C∗(B,A) in place of A in the definition). It is easy to see,
that if D is a hereditary C ∗–subalgebra of C, then D is σ-sub-Stonean if and
only if for every a ∈ D+ there is a positive contraction e ∈ D with ea = e. In
particular, Ann(d,C) is σ-sub-Stonean for every d ∈ C+ if C is σ-sub-Stonean.
Further, if C is σ-sub-Stonean and I /C is a σ-sub-Stonean closed ideal of C,
then C/I is σ-sub-Stonean. (An exercise.)

Definitions 1.5 We call a closed ideal I of a C ∗–algebra C a σ-ideal of C if
for every separable C ∗–subalgebra A ⊂ C and every d ∈ I+ there is a positive
contraction e ∈ A′ ∩ I with ed = d.

We say that a short exact sequence of C ∗–algebras 0 → B → C → D →
0 (with epimorphism π : C → D) is strongly locally semi-split if for every
separable C ∗–subalgebra A ⊂ D there is a *-morphism ψ from C0((0, 1], A) ∼=
C0(0, 1]⊗A into C such that π ◦ψ(f0 ⊗ a) = a, where f0(t) = t for t ∈ (0, 1].

Note that A′∩ I is σ-sub-Stonean if C is σ-sub-Stonean, I /C is a σ-ideal and
A is a separable.

One can see, that A′ ∩ I is a σ-ideal of A′ ∩ C and is a non-degenerate
C ∗-subalgebra of I.

It is easy to see, that the image ϕ(I) is σ-ideal of ϕ(C) for every morphism
ϕ : C → E. Furthermore, if I ⊂ C ⊂ E and I is a closed σ-ideal of E, then
I is also a σ-ideal of C. Clearly, the intersection and sum of two σ-ideals is a
σ-ideal.

An elementary consequence of the definitions is given by:

Proposition 1.6 If I is a σ-ideal of a C ∗–algebra C, then, for every sepa-
rable C ∗–subalgebra A ⊂ C, A′ ∩ I is a non-degenerate C ∗–subalgebra of I,
πI(Ann(A, I)) = Ann(πI(A), C/I) and the sequence

0 → A′ ∩ I → A′ ∩ C → πI(A)′ ∩ (C/I) → 0

is exact and strongly locally semi-split.
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The epimorphism A′ ∩ C → πI(A)′ ∩ (C/I) is the restriction of the natural
epimorphism πI from C onto C/I.

Proposition 1.3 and the above discussed permanence properties for σ-sub-
Stonean algebras and σ-ideals imply:

Corollary 1.7 Suppose that J is a closed ideal of B and that A is a separable
C ∗–subalgebra of Bω.

Then Bω, (A,B)c, Ann(A,Bω), and F (A,B) are σ-sub-Stonean.
Jω, Jω∩(A,B)c and Ann(A,Bω) are σ-ideals of Bω respectively of (A,B).

In particular, Bω, Ann(A,Bω), Ann(A), (A,B)c, Ac, F (A,B), F (A), Jω ∩
(A,B)c and Jω ∩Ann(A,Bω) are sub–Stonean.

The permanence properties for σ-ideals imply e.g. that Jω ∩ Ann(A,Bω)
is a σ-ideal in (A,B)c and Ann(A,Bω).

By Proposition 1.6 the statement that Ann(A,Bω) is a σ-ideal of (A,B)c

implies:

Corollary 1.8 Suppose that A is a separable C ∗–subalgebra of Bω, and that
C is a separable C ∗–subalgebra of F (A,B). There is a *-morphism

λ : C0((0, 1], C) → (A,B)c = A′ ∩Bω

with λ(f) + Ann(A,Bω) = f(1) ∈ C ⊂ F (A,B) for f ∈ C0((0, 1], C).

The following proposition gives some elementary properties of (A,B)c,
Ann(A,B) and F (A,B).

Proposition 1.9 Suppose that A is a σ-unital C ∗-subalgebra of Bω, and let
DA,B, N (DA,B), Ann(A,Bω), (A,B)c, F (A,B) and ρA,B be as in Definitions
1.1. Then

(1) Ann(A,Bω) is an ideal of N (DA,B), and

Ann(A,Bω) ⊂ (A,B)c ⊂ N (DA,B) .

(2) For every countable subset Y ⊂ Bω there exists a positive contraction
e ∈ (A,B)c with ey = ye = y for all y ∈ Y .

(3) F (A,B) is unital. Moreover, if a0 ∈ A+ a strictly positive element of A
and e ∈ Bω is a positive contraction, then e satisfies ea0 = a0 = a0e, if
and only if, e ∈ (A,B)c and e+ Ann(A,Bω) = 1 in F (A,B).

(4) The natural *-morphism N (DA,B) →M(DA,B) is an epimorphism onto
M(DA,B) with kernel = Ann(A,Bω).

(5) The epimorphism from N (DA,B) onto M(DA,B) defines a *-isomorphism
η from F (A,B) onto A′ ∩M(DA,B) with ρA,B(g ⊗ a) = η(g)a for g ∈
F (A,B) and a ∈ A, i.e.

F (A,B) := (A,B)c/Ann(A,Bω) ∼= A′ ∩M(DA,B) .

(6) (A,B)c is unital, if and only if, Bω is unital, if and only if, B is unital.
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(7) Ann(A,Bω) = {0}, if and only if, B is unital and 1B ∈ A.
(8) Suppose that d ∈ A+ is a full positive contraction, and let E := dAd. Then

the natural *-morphism

c ∈ A′ ∩M(DA,B) 7→ c ∈ E′ ∩M(DE,B)

is bijective and defines an isomorphism ψ from F (A,B) onto F (E,B)
with

ρA,B(c⊗ a) = ρE,B(ψ(c)⊗ a)

for c ∈ F (A,B) and all a ∈ E.
(9) If C ⊂ B is a hereditary C ∗–subalgebra with A ⊂ Cω ⊂ Bω, then

(A,B)c = (A,C)c + Ann(A,Bω) and F (A,B) ∼= F (A,C).

The proof is given in Appendix B. The only non-trivial parts are (4) and (8).
Part (9) and the proof of part (8) show that

F (A1, B1) ∼= F (A2, B2)

if the pairs (A1, DA1,B1) and (A2, DA2,B2) are Morita equivalent, and A1, A2

are both σ-unital.
The proofs of parts (5) and (8) use part (4) and a lemma on Morita

equivalence of non-degenerate pairs Aj ⊂ Dj (cf. Lemma B.1). Part (7) follows
from part (6) and Remark 2.7.

Corollary 1.10 Suppose that A is σ-unital. Then

(1) Ann(A) is an ideal of Ac and F (A) is unital.
(2) A is unital, if and only if, Ann(A) = {0}, if and only if, Ac is unital.
(3) F (E) ∼= F (A) if E is σ-unital and Morita equivalent to A.
(4) If b ∈ A+ is a full positive element of A and E := bAb, DE := bAωb ⊂ Bω

then ρA : F (A)⊗maxA→ Aω induces an isomorphism ψ from F (A) onto
E′∩M(DE) with ψ(d)c = ρA(d⊗c) = fb for n ∈ N, c ∈ E and d ∈ F (A),
where f ∈ Ac is any element with f + Ann(A) = c.

(5) Let f ∈ Ac and b ∈ A+ a full element of A, then ‖d‖ = limn→∞ ‖b1/nf‖
for every d ∈ F (A) and f ∈ Ac with d = f + Ann(A).

(6) F (A) = F (A,A+ C · 1) = F (A,M(A)) and

F (A+ C · 1) = (A+ C · 1)c = Ac + C · 1 ⊂ (A+ C · 1)ω
∼= Aω + C · 1 .

Part (6) follows from part (9) of 1.9.

Remark 1.11 If A ⊂ Bω and A is σ–unital, then

F (A,B) ∼= A′ ∩M(DA,B) = M(A)′ ∩M(DA,B) .

and
Z(M(A)) ∪ Z(M(DA,B) ⊂ Z(F (A,B)) ⊂ F (A,B) .

ut
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Proposition 1.12 Suppose that B is separable, A is a separable C ∗–
subalgebra of Bω, and D is a separable C ∗–subalgebra of F (B) with 1F (B) ∈ D,

(1) There is a *-morphism ψ : C0((0, 1], D) → (A,B)c with ψ(f0 ⊗ 1)b = b
for all b ∈ A, i.e. ψ(C0((0, 1), D)) ⊂ Ann(A,Bω) and

[ψ] : d ∈ D → ψ(f0 ⊗ d) + Ann(A,Bω) ∈ F (A,B)

is a unital *-monomorphism from D into F (A,B).
(2) If in addition, B ⊂ A, then ψ : C0((0, 1], D) → (A,B)c in (2) can be

found such that, moreover, ψ(C0((0, 1), D)) = ψ(C0((0, 1], D)) ∩Ann(B),
i.e. that [ψ](D) has trivial intersection with the image of (A,B)c∩Ann(B)
in F (A,B).

By induction, part (2) of Proposition 1.12 implies:

Corollary 1.13 If A is separable and C,B1, B2, . . . are separable unital C ∗-
subalgebras of F (A), then there is a unital a *-morphism

ψ : C ⊗max B1 ⊗max B2 ⊗max . . .→ F (A)

with ψ(c⊗ 1⊗ 1⊗ · · · ) = c for c ∈ C, such that the *-morphisms

b ∈ Bn 7→ ψ(1⊗ · · · 1⊗ b⊗ 1⊗ · · · ) ∈ F (A)

are faithful.

The stable invariant F (A) has the following local continuity property:

Proposition 1.14 Let A1 ⊂ A2 ⊂ . . . A C ∗–subalgebras such that
⋃

nAn is
dense in A and A is separable. Then for every separable unital C ∗-subalgebra
B of the ultrapower∏

ω

{F (A1), F (A2), . . .} := `∞{F (A1), F (A2), . . .}/cω{F (A1), F (A2), . . .}

there is a unital *-morphism from B into F (A).
In particular, for every simple separable unital *-subalgebra D of F (A)ω,

there is a copy of D unitally contained in F (A).

See cf. Appendix B for the proof.

If J is a closed ideal of B, let ηJ : B → M(J) and πJ : B → B/J the
natural *-morphisms. We denote by η := (ηJ)ω : Bω → M(J)ω and π :=
(πJ)ω : Bω → (B/J)ω the ultrapowers of ηJ and πJ .

Recall that (X, J)c := X ′ ∩ Jω = (X,M(J))c ∩ Jω for C ∗–subalgebras
X ⊂M(J)ω.

Remark 1.15 Suppose that J is a closed ideal of B and that A ⊂ Bω is a
separable C ∗–subalgebra. Let η := (ηJ)ω and π := (πJ)ω as above.
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(1)

Ann(A, Jω) := Ann(A,Bω) ∩ Jω = Ann(η(A), Jω) ,
(A, J)c := A′ ∩ Jω = (A,B)c ∩ Jω = η(A)′ ∩ Jω = (η(A), J)c

(πJ)ω(Ann(A,Bω)) = Ann(π(A), (B/J)ω) .
and

(πJ)ω((A,B)c) = (π(A), B/J)c .

In particular, F (A, J) := (η(A), J)c/Ann(η(A), Jω) , is isomorphic to
the ideal (((A,B)c ∩ Jω) + Ann(A,Bω))/Ann(A,Bω) of F (A,B) =
(A,B)c/Ann(A,Bω).

(2) The sequences

0 → (A, J)c → (A,B)c → (π(A), B/J)c → 0
0 → Ann(A, Jω) → (A, J)c → F (A, J) → 0

0 → F (A, J) → F (A,B) → F (π(A), B/J) → 0.

are short-exact and strongly locally semisplit in the sense of Definition
1.5.

(3) If J is a closed ideal of A = B, then the natural *-morphism F (A) →
F (A/J) is an epimorphism with kernel F (A, J), if J is a closed ideal of
A, and there is a unital *-morphism F (A) → F (J) ∼= (J,A)c/Ann(J,Aω)
with kernel (Ann(J,Aω) ∩Ac)/Ann(A).

One gets the first two lines of part (1) by straight calculations. Then parts
(1)-(3) follow from Proposition 1.6, Corollary 1.7 and Proposition 1.9(9).

Corollary 1.16 Suppose that J /B is an essential ideal of B and that A is a
separable C ∗–subalgebra of Bω. Then F (A, J) is an essential ideal of F (A,B).

Proposition 1.17 Suppose that B is a separable unital C ∗-algebra, J a
closed ideal of B, and 1B ∈ A ⊂ Bω is a separable C ∗–subalgebra. If D1

is a unital separable C ∗–subalgebra of F ((πJ)ω(A), B/J) = ((πJ)ω(A), B/J)c

and D0 is a unital separable C ∗–subalgebra of F (J) then there is a unital
*-morphism h : E(D0, D1) → F (A,B) = (A,B)c.

Here

E(D0, D1) := {f ∈ C([0, 1], D0 ⊗max D1) ; f(0) ∈ D0 ⊗ 1, f(1) ∈ 1⊗D1 }.

The proof in Appendix B gives h with the additional property π(h(f)) =
f(1) for f ∈ E(D0, D1) and the natural *-morphisms π : F (A,B) →
F ((πJ)ω(A), B/J).

Note that E(D0, D2) is unitally contained in E(D0, D1) if D2 ⊂ D1. There
is a unital *-morphism D1 → E(D1,O2) if D1 is simple and nuclear, because
then D1 ⊗ O2

∼= O2 and all unital *-monomorphisms of separable unital
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exact C ∗–algebras into O2
∼= O2 ⊗ O2 ⊗ . . . are homotopic (by basics of

classification). We apply Proposition 1.17 to the extensions

0 → J ⊗K → (A⊗K) +O2 → ((A/J)⊗K) +O2 → 0

and
0 → (A/J)⊗K → ((A/J)⊗K) +O2 → O2 → 0 ,

where O2 ⊂ M(K) unitally, and we use the unital *-morphism from F ((A⊗
K) +O2) into F (A⊗K) ∼= F (A). We obtain finally:

Corollary 1.18 Let A a separable C ∗-algebra and J a closed ideal of A.
If D1 is a unital separable C ∗–subalgebra of F (A/J) and D0 is a uni-
tal separable C ∗–subalgebra of F (J) then there exists a unital *-morphism
h : E(D0, E(D1,O2)) → F (A).

If, moreover, D1 is simple and nuclear, then there exists a unital *-
morphism from E(D0, D1) into F (A).

2 The case of simple F (A).

We study here some particular ideals of F (A) for separable A. The less trivial
basic facts are given in Lemmas 2.8, 2.9 and 2.11(3,4). We apply them in
the particular case where A is simple, to get the main result of this section:
Theorem 2.12. Then we have a look to non-separable A, and we pose some
related problems.

The following Lemma seems to be wrong for non-separable A, because it
might be that F (L(`2)) = L(`2)c ∼= C, cf. Question 2.22.

Lemma 2.1 Suppose that A is separable. If F (A) is simple, then A is simple.
More precisely, if J is a non-trivial closed ideal of A, then

(1) Jω is a closed ideal of Aω with A ∩ Jω = J , and
(2) F (A, J) = (Ac ∩ Jω)/(Ann(A)∩ Jω) is a non-trivial closed ideal of F (A).

F (A, J) is an essential ideal of F (A) if J is essential, cf. Corollary 1.16.
If even Ac is simple, then A is simple and unital, because then

F (A) = Ac/{0} is simple, and Ann(A) = {0} implies that A is unital
(for σ-unital A, cf. Corollary 1.10).

Proof. (1): It is clear that Jω is a closed ideal of Aω. If a ∈ A∩Jω then there
is a bounded sequence b1, b2, . . . ∈ J with limω ‖a− bn‖ = 0. Thus, there is a
sub-sequence ck := bnk

∈ J with limk→∞ ck = a, i.e. a ∈ J .
(2): Ac ∩ Jω is a closed ideal of Ac by (1).
Since A is separable, J is separable and contains a strictly positive con-

traction b ∈ J+ for J , moreover, there are b1, b2, . . . ∈ C∗(b)+ with ‖bn‖ = 1,
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bnbn+1 = bn, ‖b− bnb‖ < 1/n and limn→∞ ‖bna− abn‖ = 0 for all a ∈ A (cf.
the proof of [29, thm. 3.12.14]).

Thus c := πω(b1, b2, . . .) is in Ac ∩ Jω and cb = b 6= 0. Thus c 6∈ Ann(A),
i.e. Ac ∩ Jω 6⊂ Ann(A) and F (A, J) = Ac ∩ Jω/(Ann(A) ∩ Jω) is a non-zero
closed ideal of F (A).

Let a0 is a strictly positive contraction in A+. F (A, J) 6= F (A), because
otherwise there is a positive contraction e ∈ Ac ∩ Jω with e+ Ann(A) = 1 ∈
F (A) and a0 = ρ(1 ⊗ a0) = ea0 ∈ Jω, i.e. a0 ∈ J by (1), which contradicts
the non-triviality of J . ut

A modification of the proof of Lemma 2.1(2) shows:

Remark 2.2 If {0} 6= J 6= A, then I := Ac ∩ Ann(J, Jω) is a closed ideal of
Ac that is not contained in Ann(A).
Note that b ∈ I/(I ∩Ann(A)) ⊂ F (A) if and only if ρA(b⊗ J) = 0.

Lemma 2.3 If A is antiliminal then for every positive b ∈ Aω with ‖b‖ = 1
there exists a *-monomorphism ψ from C0((0, 1],K) into Aω with bψ(c) = ψ(c)
for every c ∈ C0((0, 1],K).

Recall that “antiliminal” means that {0} is the only Abelian hereditary C ∗–
subalgebra of A.
Proof. Let (b1, b2, . . .) ∈ `∞(A)+ a representing sequence for b with ‖bn‖ = 1,
let dn := (bn− (n−1)/n)+ 6= 0 and let Dn denote the closure of dnAdn. Then
bc = c for all elements c in

∏
ω{Dn ; n ∈ N} ⊂ Aω.

Since C0((0, 1],K) ⊂
∏

ω{C0((0, 1],Mn) ; n ∈ N}, is suffices to find faithful
*-morphisms ψn : C0((0, 1],Mn) → Dn. By the Glimm halving lemma (cf. [29,
lem. 6.7.1]) there is a non-zero *-morphism hn : C0((0, 1],Mn) → Dn because
Dn is antiliminal as well (because it is a non-zero hereditary C ∗–subalgebra
of A). Let En the hereditary C ∗-subalgebra of Dn ⊂ A generated by hn(f0⊗
e1,1). If M is a maximal Abelian C ∗-subalgebra of En with hn(f0⊗e1,1) ∈M ,
then M can not contain a minimal idempotent p, because otherwise pAp = Cp
which contradicts that A is antiliminal. It follows that hn can be replaced by
a *-monomorphism ψn : C0((0, 1],Mn) → Dn. ut

Remark 2.4 Let A a σ-unital C ∗–algebra.
The closed ideal JA of Aω generated by A is simple, if and only if, either A is
simple and purely infinite or A is isomorphic to the compact operators K(H)
on some Hilbert space H.
If A 6∼= K(H) and JA is simple, then Aω and A are simple and purely infinite.
If A ∼= K(H), then JA

∼= K(Hω).
(If A ∼= K(H) and is σ−unital, then H is separable, and Dim(H) = ∞ if and
only if JA 6= Aω.)
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Proof. If A ∼= K(H) then JA
∼= K(Hω), because there is a natural *-

monomorphism λ from K(H)ω into L(Hω) that satisfies

λ ((〈., xn〉yn)ω) = 〈., xω〉yω .

λ(K(H)) = PK(Hω)P is the hereditary C ∗–subalgebra of K(Hω) that is
defined by the orthogonal projection P from Hω onto H ⊂ Hω. Since
λ(K(`2)ω) 6⊂ K((`2)ω), it holds Aω = K(H)ω ⊂ K(Hω) if and only if Hω = H
if and only if and Dim(H) = n <∞.

It is easy to see (with help of representing sequences in case ‖b‖ = ‖c‖ = 1)
that for every b, c ∈ (Aω)+ there is a contraction d ∈ (Aω)+ with ‖c‖d∗bd =
‖b‖c if A is simple and purely infinite. Thus Aω is simple and purely infinite,
and JA = Aω.

Conversely, suppose that JA is simple. This implies that A must be simple,
because otherwise JA ∩ Iω ⊃ I is a non-trivial closed ideal of JA if I is a non-
trivial closed ideal of A. Suppose that A 6∼= K(H) (for any Hilbert spaceH), i.e.
that A is antiliminal. Let b, c ∈ (JA)+ with ‖b‖ = ‖c‖. Since A is antiliminal,
by Lemma 2.3 there exists a *-monomorphism ψ : C0((0, 1],K) ↪→ Aω with
bψ(f) = ψ(f) for every f ∈ C0((0, 1],K). Let D denote the hereditary C ∗–
subalgebra of Aω generated by the image of ψ. D is non-zero, stable and
satisfies bg = g = gb for all g ∈ D. In particular, D ⊂ JA. Since JA is
simple and D is stable, there is d ∈ JA with d∗d = c and dd∗ ∈ D. Thus
d∗bd = d∗d = c. It follows that A is purely infinite, because we can take
b, c ∈ A and find a representing sequence (d1, d2, . . .) ∈ `∞(A) for d with
d∗bd = c in Aω. ut

Lemma 2.5 Suppose that B is a separable C ∗–subalgebra of Aω.
If λ is a pure state on B, then there exists a sequence of pure states

µ1, µ2, . . . on A such that λ is the restriction of the state µω : Aω → C ∼= Cω

to B.
If (µ1, µ2, . . .) is any sequence of pure states on A, then there are positive

contractions gn ∈ A+ such that µn(gn) = 1, and gbg = µω(b)g2 for all b ∈ B,
where g := πω(g1, g2, . . .).

Note that ‖g‖ = 1.
Proof. If C is a C ∗-algebra and λ is a pure state on C, then for every
separable C ∗-subalgebra B ⊂ C there is c ∈ C+ with λ(c) = ‖c‖ = 1 and
limn→∞ ‖cnbcn − λ(b)c2n‖ = 0 for every b ∈ B (cf. [6, lem. 2.14]).

Clearly, in the case B = C , the limes property of c ∈ B implies that
ν = λ for all ν ∈ B∗ with ν(c) = ‖ν‖ = 1. (In fact, the latter property of c
equivalent to the limes property of c.)
We find a sequence c1, c2, . . . ∈ A+ with ‖cn‖ = 1 and πω(c1, c2, . . .) = c. Let
µ1, µ2, . . . pure states on A with µn(cn) = 1. Then µω(c) = 1 = ‖µω‖. Thus
µω|B = µ.

Suppose that (µ1, µ2, . . .) is any sequence of pure states on A. Let
b(1), b(2), . . . ∈ B a dense sequence in the unit ball of B. There are representing
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sequences sk = (b(k)
1 , b

(k)
2 , . . .) ∈ `∞(A) with ‖b(k)

n ‖ ≤ 1 and πω(sk) = b(k).
By the above mentioned result of [6, lem. 2.14], there are cn ∈ A+ and
pn ∈ N with ‖cn‖ = 1 = µn(cn) and ‖cpn

n b
(k)
n cpn

n − µn(b(k)
n )c2pn

n ‖ < 2−n for
k ≤ n = 1, 2, . . .. Let gn := cpn

n for n ∈ N. Then g := πω(g1, g2, . . .) ∈ Aω

satisfies 0 ≤ g, ‖g‖ = 1 = µω(g) and gb(k)g = µω(b(k))g2. ut

Remark 2.6 Let g ∈ Aω with 0 ≤ g, ‖g‖ = 1 and gbg = µ(b)g2 for b ∈ B ⊂
Aω, then g ∈ (B,A)c if and only if µ is a character on B.(Left to the reader.)

Remark 2.7 . Lemma 2.5 implies that

Ann(Ann(B,Aω), Aω) = DB,A := b0Aωb0

if B is σ-unital and b0 ∈ B is a strictly positive contraction for B.

Proof. If a ∈ (Aω)+ is not in DB,A, then infn ‖(1 − b
1/n
0 )a(1 − b

1/n
0 )‖ > 0.

Thus, there is a pure state µ on C∗(b0, a) with µ(b0) = 0 and µ(a) > 0.
By Lemma 2.5 there exists g ∈ (Aω)+ with ‖g‖ = 1 and gcg = µ(c)g2 for
c ∈ C∗(b0, a). Hence, g ∈ Ann(B,Aω) and ag = g 6= 0. ut

The socle of a C ∗–algebra A is the (algebraic) ideal generated by the
projections p ∈ A with pAp = C · p. If A is simple, then socle(A) 6= {0} if and
only if A ∼= K(H) for some Hilbert space H.

Lemma 2.8 socle(F (A)) = {0} if A is separable and socle(A) = {0}.

Proof. Let p2 = p∗ = p ∈ F (A) a non-zero projection. We show that
pF (A)p 6= C · p if socle(A) = {0}. The idea of the proof goes as follows:
Let s ∈ Ac a self-adjoint contraction with s+ Ann(A) = 1− 2p, and d := s+,
q := s−. We show below that there exist positive contractions g, h ∈ Aω such
that dg = dh = hg = 0, gAh = {0}, Ah 6= {0} and Ag 6= {0}.

If we have found g, h ∈ (Aω)+ with this properties, then Proposition 1.3
(with J = A = B, V = CP (A,A) and a, b, c replaced by d, g, h) yields: There
are positive contractions e, f ∈ Ac with de = df = ef = 0, eg = g, fh = h. It
follows that e′ := e+ Ann(A) and f ′ := f + Ann(A) satisfy e′p = e′, f ′p = f ′

and e′f ′ = 0 in F (A). Since Ag 6= {0} and Ah 6= {0}, we get e, f 6∈ Ann(A)
and e′ 6= 0 6= f ′. Hence, pF (A)p 6= C · p.
The rest of the proof is concerned with the construction of the positive con-
tractions g, h ∈ Aω (as stipulated):
Step 1 (Construction of a0 ∈ A, E ⊂ Aω, µ, ν):
Consider the *-morphism ψ : a ∈ A 7→ ρ(p ⊗ a) = qa ∈ Aω. ψ is non-zero
because p 6= 0 and ρ((·)⊗A) is separating for F (A). Let J denote the kernel
of ψ, and let a1 ∈ J+ and a2 ∈ (A/J)+ strictly positive contractions with
‖a1‖ = ‖a2‖ = 1. There is a positive contraction a3 ∈ A+ with a3 + J = a2.
a0 := (1− a1)1/2a3(1− a1)1/2 + a1 is a strictly positive contraction of A with

‖qa0‖ = ‖ρ(p⊗ a0)‖ = ‖a0 + J‖ = ‖a2‖ = 1.
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Since q and a0 are commuting positive contractions with ‖qa0‖ = 0 there is a
character χ on C∗(a0, q) with χ(qa0) = χ(q) = χ(a0) = 1. By Lemma 2.5 there
is a sequence (µ1, µ2, . . .) of pure states on A such that χ is the restriction
of µ := (µ1, µ2, . . .)ω to C∗(a0, q). The state µ : Aω → C is supported on
the closure E of a0qAωa0q. In particular µ(Ann(E,Aω)) = {0}. It follows
µ(d) = 0 because dq = 0.

E is contained in the closure DA of a0Aωa0. Thus, for every non-zero
element y ∈ E+ holds Ay 6= {0}.

Let G = {u1 = 1, u2, . . .} a countable dense subgroup of the unitary group
of Ã = A + C · 1, and ν(b) :=

∑∞
n=1 2−nµ(u∗nbun) for b ∈ E. Since a0 is

strictly positive in A and q commutes with A, we get that AE + EA ⊂ E, ν
is a state on E with µ ≤ 2ν. Clearly b ∈ Lν := {x ∈ E ; ν(x∗x) = 0} if and
only if bu ∈ Lµ := {x ∈ E ;µ(x∗x) = 0} for all u ∈ G. Thus, LνG ⊂ Lν and
LνA ⊂ Lν .
Step 2 (ν is not faithful on E):
We find a representing sequence (c1, c2, . . .) ∈ `∞(A)+ with πω(c1, c2, . . .) =
a0q and ‖cn‖ = 1. Let Cn a maximal Abelian C ∗–subalgebra of Dn :=
(cn − 1/2)+A(cn − 1/2)+ that contains (cn − 1/2)+. Cn does not contains
a minimal idempotent r 6= 0, because otherwise r must satisfy rAr = C ·r, i.e.
r ∈ socle(A) = {0}. Hence, the primitive ideal space of Cn is a perfect locally
compact metric space and there is fn ∈ (Cn)+ with Spec(fn) = [0, 1], i.e. Cn

contains a copy of C0((0, 1]) up to isomorphisms.
The corresponding monomorphic image C of C0((0, 1])ω in Aω satisfies

wb = bw = b for b ∈ C and w := 2(a0q − (a0q − 1/2)+), thus C ⊂ E.
Let x ∈ (0, 1) and fx,n(t) the continuous function in t ∈ [0, 1] with

fx,n(x) = 1, fx,n(t) = 0 for t ∈ [0, x −min(1/n, x)] ∪ [x + min(1/n, 1 − x), 1]
and fx,n is linear on [x−min(1/n, x), x] and [x, x+ min(1/n, 1− x)].

δx := πω(fx,1, fx,2, . . .) is a positive contraction in C0((0, 1])ω
∼= C with

‖δx‖ = 1 and δxδy = 0 for x 6= y.
It follows that E ⊃ C contains uncountably many pair-wise orthogonal

non-zero positive contractions, because {δx}x∈(0,1) is a family of pair-wise
orthogonal positive elements in C0((0, 1])ω

∼= C with ‖δx‖ = 1. Hence ν can
not be faithful on E, i.e. D := L∗ν ∩ Lν = L∗νLν is a non-zero hereditary
C ∗-subalgebra of E.
Step 3 (Construction of g, h ∈ E+):
Let D := L∗ν ∩ Lν and let h ∈ D+ with ‖h‖ = 1. Then dh = 0, Ah 6= 0,
AD +DA ⊂ D and µ(a∗h2a) ≤ 2ν(a∗h2a) = 0 for all a ∈ A+ C · 1, because
LνA ⊂ Lν ⊂ E ⊂ Ann(d,Aω) ∩DA. By Lemma 2.5 there is g ∈ (Aω)+ with
‖g‖ = 1 such that gyg = µ(y)g2 for all y ∈ C∗(A, q, d, h), because µ1, µ2, . . .
are pure states on A. It follows gd2g = µ(d2)g2 = 0, gh2g = µ(h2)g2 = 0,
ga∗h2ag = µ(a∗h2a)g2 = 0, and ga0g = µ(a0)g2 = g2 6= 0, i.e. g, h ∈ Aω are
as required. ut

Lemma 2.9 Suppose that A is separable.
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(1) Prim(A) is quasi-compact, if and only if, for every non-invertible e ∈
F (A)+, there exists non-zero d ∈ F (A)+ with de = 0.

(2) If Prim(A) is quasi-compact, then every maximal family of mutually or-
thogonal positive contractions in F (A) is either finite and has invertible
sum or is not countable.

Part(2) applies to simple C ∗–algebras A, because Prim(A) is a singleton if
and only if A is simple. The Bourbaki terminology “quasi-compact” is used
for non-Hausdorff T0 spaces.
Proof. (1): Recall that there is a one-to-one isomorphism from the lattice of
closed ideals of A onto the lattice of open subsets of Prim(A). Since A is sep-
arable, Prim(A) is second countable. Thus, if Prim(A) is not quasi-compact,
then there is an increasing sequence J1 ⊂ J2 ⊂ · · · of closed ideals of A with
Jn 6= Jn+1 and

⋃
n Jn dense in A. For each n ∈ N there exists a positive con-

traction cn ∈ Jn with ‖cn+Jn−1‖ = 1 such that cn+Jn−1 is a strictly positive
element of Jn/Jn−1 (where we let J0 := {0}). Then an :=

∑
1≤k≤n 2−kck is

a strictly positive contraction in Jn, and b0 :=
∑

1≤n<∞ 2−ncn is a strictly
positive contraction in A (with norm ≥ 1/2). Let f0 := 0. By induction, we
find positive contractions fn ∈ (A, Jn)c = A′ ∩ (Jn)ω ⊂ Ac with anfn = an

and fn−1fn = fn−1 (cf. Remark 1.15(1)). Let f :=
∑

1≤n<∞ 2−nfn ∈ (Ac)+
and let e := f + Ann(A) ∈ F (A). Then fb0 = b0f is positive, an = fnan ≤
2nfnb0 ≤ 4nfb0 for n ∈ N, and ‖f − fk+1f‖ ≤ 2−k. If d ∈ (Ac)+ satisfies
df ∈ Ann(A), then dfb0 = 0 and dan = 0 for all n ∈ N. Hence, db0 = 0 and
d ∈ Ann(A) whenever d ∈ (Ac)+ and df ∈ Ann(A). Let e := f + Ann(A).
Then g = 0, if g = d+ Ann(A) ∈ F (A)+ with d ∈ Ac

+ and ge = 0 ∈ F (A).
The image F (A, Jn) of (A, Jn)c = (Jn)ω∩Ac in F (A) is a non-trivial ideal

of F (A) by Lemma 2.1(2), because Jn is a non-trivial ideal of A. Since fn ∈
(Jn)ω∩Ac, the element en := fn +Ann(A) ∈ F (A)+ is not invertible in F (A).
It follows that e := f + Ann(A) is not invertible, because ‖ek+1e− e‖ ≤ 2−k.

Conversely, suppose that Prim(A) is quasi-compact and that e ∈ F (A)+
is not invertible. We can suppose that ‖e‖ = 1. Then there is a contraction
f ∈ Ac

+ with e = f + Ann(A). Let a0 ∈ A+ a strictly positive contraction
with ‖a0‖ = 1, and let Jn denote the closure of span(A(a0 − 1/n)+A). Then
Jn is an increasing sequence of closed ideals of A with

⋃
n Jn dense in A,

i.e. the corresponding increasing sequence of open subsets of Prim(A) covers
Prim(A). Since Prim(A) is quasi-compact, there is n ∈ N such that Jn = A,
i.e. that b := (a0 − 1/n)+ is a full positive contraction in A+. Let c :=
2n((a0 − 1/(2n))+ − (a0 − 1/n)+), then bc = b Note that C∗(b, c, f) ⊂ Aω is
an Abelian C ∗–algebra.

By Corollary 1.10, ρ : F (A)⊗maxA→ Aω induces an isomorphism ψ from
F (A) onto (bAb)′ ∩M(Db) with ψ(e)(bn) = ρ(e⊗ bn) = fbn for n ∈ N, where
Db := bAωb denotes the hereditary C ∗–subalgebra of Aω generated by b.

(b − nfb)+ 6= 0 for each n ∈ N, because, otherwise, there is n ∈ N with
b2 ≤ n2(fb)2 and
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‖ψ(e)(bxb)‖2 = ‖ρ(e⊗ bxb)‖2 = ‖bx∗bf2bxb‖ ≥ n−2‖bxb‖2

for all x ∈ Aω, which contradicts that ψ(e) ∈M(Db)+ is not invertible. Thus,
for every n ∈ N there exists a character χn on C∗(b, c, f) with χn(b−nfb) > 0,
i.e. χn(b) > 0 and χn(f) < 1/n. Since cb = b, it follows χn(c) = 1. The set of
characters χ on C∗(b, c, f) with χ(c) = 1 is compact in the space of characters
on C∗(b, c, f). Let χ a character on C∗(b, c, f) that is a cluster point of the
sequence χ1, χ2, . . ., then χ(f) = 0 and χ(c) = 1.

By Lemma 2.5 there exists g ∈ (Aω)+ with ‖g‖ = 1, gfg = χ(f)g2 = 0
and gcg = χ(c)g2 = g2. Then fg = 0 and cg = g. By Proposition 1.3
(with J = A = B, V = CP (A,A), and f, 0, g in place of a, b, c) there there
are positive contractions h, k ∈ Ac with kf = f , hg = g and hk = 0.
Since hc2 ≥ cgc 6= 0 and hf = hkf , we get h 6∈ Ann(A) and hf = 0. Let
d := h+ Ann(A) ∈ F (A)+, then d 6= 0 and de = 0.

(2): If e1, e2, . . . ∈ F (A) is a sequence of pairwise orthogonal positive con-
tractions, and e :=

∑
2−nen. If e is invertible, then en = 0 for n ≤ n0. If e

is not invertible, then there exists non-zero d ∈ (F (A))+ with ed = 0 by (1).
Thus end = 0 for all n ∈ N. ut

The following proposition characterizes A ∼= K(H) by properties of F (A)
if A is simple and separable.

Proposition 2.10 Suppose that A is separable and simple. The following are
equivalent:

(1) A⊗K ∼= K.
(2) F (A) ∼= C.
(3) socle(F (A)) 6= {0}.
(4) F (A) is separable.
(5) F (A) is simple and stably finite.
(6) F (A) has a faithful finite quasi-trace.
(7) Every commutative C ∗–subalgebra of F (A) admits a faithful state.
(8) Every family of mutually orthogonal positive contractions is at most count-

able.

Note that (2) also implies that A is simple (for separable A, by Lemma 2.1),
thus F (A) ∼= C if and only if A ⊗ K ∼= K (for separable A). Clearly one can
restrict in (7) to maximal Abelian C ∗–subalgebras.
Proof. The implications (2) ⇒ (4) ⇒ (7) ⇒ (8), (2) ⇒ (5), (6) ⇒ (7), and
(2) ⇒ (3) are obvious.

(5) ⇒ (6) follows from [9], because F (A) is unital and finite dimension-
functions on simple unital C ∗–algebras B integrate to faithful finite quasi-
traces on B.

(1)⇒(2): F (A) ∼= F (A⊗K) and F (K) ∼= F (C) = C by Corollary 1.10.
(3)⇒(1): socle(A) 6= {0} follows from (3) by Lemma 2.8. Thus A ∼= K(H)

for a separable Hilbert space H, i.e. A⊗K ∼= K.
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(8)⇒(3): Let C ⊂ F (A) a maximal commutative C ∗–subalgebra of F (A).
Every family X ⊂ C+ of mutually orthogonal positive contractions in C is
contained in a maximal family Y ⊂ F (A)+ of mutually orthogonal positive
contractions in F (A). By (8) and Lemma 2.9(2), Y ⊃ X is finite. Thus, the
primitive ideal space Ĉ of C can contain only a finite number of points, i.e. C
is of finite dimension. If p 6= 0 is a minimal idempotent of C, then p∗ = p = p2

and pF (A)p ∼= C · p (by maximality of C). ut

We call a completely positive map T : A → Aω ω-nuclear if there is a
bounded sequence of nuclear c.p. maps Tn : A→ A such that T = Tω|A. Here
Tω : Aω → Aω means the ultrapower (T1, T2, . . .)ω of the bounded sequence of
maps (Tn : A→ A)n given by Tω(πω(a1, a2, . . . )) := πω(T1(a1), T2(a2), . . .).

Lemma 2.11 Suppose that A is a separable C ∗–algebra.

(1) The set Cωnuc of ω-nuclear completely positive maps V : A → Aω is a
point-norm closed (matricially) operator-convex cone (cf. Definition 1.2).

(2) Let κ denote the set of positive elements b ∈ F (A)+ with the property that
the c.p. map

a ∈ A 7→ ρA(b⊗ a) ∈ Aω

is ω-nuclear. Then κ is the positive part of a closed ideal Jnuc of F (A).
(3) Jnuc is an essential ideal of F (A). In particular, Jnuc is non-zero for every

separable C ∗–algebra A 6= {0}.
(4) Jnuc = F (A) if and only if A is nuclear.

Proof. (1): Obviously, Vω ⊂ CP (Aω, Bω) is operator-convex in the sense of
Definition 1.2, if V ⊂ CP (A,B) is an operator-convex cone and if Vω denotes
the set of ultapowers of bounded sequences T1, T2, . . . in V. That is, Vω is a
convex subcone of CP (Aω, Bω) and bT (a∗(·)a)b∗ ∈ Vω for T = (T1, T2, . . .)ω ∈
Vω and rows a ∈M1,n(Aω), b ∈M1,n(Bω). We get an operator-convex subcone
Vω|A of CP (A,Bω), if we restrict the elements of Vω to A ⊂ Aω.

We can apply this construction to B := A and the operator-convex cone
V := CPnuc(A,A) and get Vω|A = Cωnuc.

By Lemma A.5, every ω-nuclear c.p. map V : A→ Aω can be represented
by a sequence of T1, T2, . . . of nuclear c.p. maps from A into A such that
‖Tn‖ ≤ ‖V ‖ and Tω|A = V , because CPnuc(A,A) is operator-convex.

If V1, V2, . . . is a sequence in Cωnuc that converges to a map W : A→ Aω in
point-norm topology, then γ := supn ‖Vn‖ <∞, by the uniform boundedness
theorem. Thus, we find nuclear c.p. maps T (n)

k from A to A with ‖T (n)
k ‖ ≤ γ

such that Vn = T
(n)
ω |A, (cf. Lemma A.5). By Lemma A.3 there are S1, S2, . . . ∈

CPnuc(A,A) with W = Sω|A. Thus W ∈ Cωnuc.
(2): Let κ denote the set of positive elements b ∈ F (A) such that a ∈

A 7→ ρ(b ⊗ a) is in Cωnuc. Then κ is a closed convex sub-cone of F (A)+
by part (1). If b ∈ κ, c ∈ F (A) and d ∈ Ac with c = d + Ann(A) then
a 7→ ρ(c∗bc⊗a) = d∗ρ(b⊗a)d is in Cωnuc by (1). Thus c∗κc ⊂ κ for all c ∈ F (A).
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It follows that κ is the positive part of the closed ideal Jnuc := κ− κ+ i(κ− κ)
of F (A) (by [29, prop. 1.3.8 and 1.4.5]).

(3): Let e ∈ F (A) a positive contraction with ‖e‖ = 1. There is a positive
contraction f ∈ Ac with e = f+Ann(A) and f 6∈ Ann(A). Further let a0 ∈ A+

a strictly positive element with ‖a0‖ = 1. Then ρA(e ⊗ a0) = fa0 6= 0,
because Ann(A) = Ann(a0, Aω). Thus, there is a character χ on C∗(a0, f)
with χ(a0f) = ‖a0f‖ 6= 0. We extend χ to a pure state µ on C∗(A, f).

By Lemma 2.5 there exist pure states µ1, µ2, . . . on A and g1, g2, . . . ∈ A+

such that ‖gn‖ = 1 and µ = µω|C∗(A, f) and Vg(y) := gyg = µ(y)g2 for all
y ∈ C∗(A, f) for g := πω(g1, g2, . . .). In particular, ‖g‖ = 1, g ≥ 0, gfa0g =
µ(fa0)g2 = ‖fa0‖g2 6= 0. Thus Vg|A = Sω|A for the sequence of nuclear
c.p. contractions S1, S2, . . . ∈ CPnuc(A,A) with Sn(a) := µn(a)g∗ngn.

By Proposition 1.3 (with A = B = J , V := CPnuc(A,A) and a, b, c, e, f, g
replaced here by 0, g, 0, 0, h, 0), there are nuclear c.p. contractions T1, T2, . . . ∈
CPnuc(A,A) and a positive contraction h in Ac such that gh = g and y ∈ A→
yh ∈ Aω is the restriction of Tω to A.

Let k := h + Ann(A). Then ρA(k ⊗ y) = hy for y ∈ A and ke = (kf) +
Ann(A). It follows k ∈ Jnuc and gρA(ke⊗a0)g = ghfa0g = ghfa0g = gfa0g 6=
0, i.e., ke 6= 0. Hence, Jnuc is an essential ideal of F (A).

(4): If A is nuclear, then a ∈ A → a = ρ(1 ⊗ a) ∈ Aω is the restriction of
(idA)ω to A and idA is nuclear. Thus 1 ∈ Jnuc, i.e. F (A) = Jnuc.

Conversely, if 1 ∈ Jnuc, then there exists a sequence (V1, V2, . . .) of nuclear
c.p. maps Vn : A → A such that the inclusion map a ∈ A 7→ a = ρ(1 ⊗ a) ∈
Aω is the restriction of Vω to A. This means that idA can be approximated
in point-norm by (convex combinations of) the nuclear c.p. maps Vn , n =
1, 2, . . .. Hence, A is nuclear. ut

Theorem 2.12 Suppose that A is a separable C ∗–algebra and let F (A) :=
Ac/Ann(A).

(1) F (A) ∼= C if and only if A⊗K ∼= K.
(2) If F (A) is simple and F (A) 6∼= C, then A is simple, purely infinite and

nuclear.
(3) If A is simple, purely infinite and nuclear, then F (A) and Aω are simple

and purely infinite, and A ∼= A⊗O∞.

Proof. Recall that F (A) is unital by Corollary 1.10 , that A is simple
and purely infinite iff, Aω is simple by Remark 2.4, and that A is unital
iff Ann(A) = {0} iff Ac = F (A) by Corollary 1.10 .

(1): F (A) = C·1 implies that A is simple (cf. Lemma 2.1). Thus F (A) ∼= C,
if and only if, A⊗K ∼= K (cf. Proposition 2.10).

(2): If F (A) is simple, then A is simple by Lemma 2.1. Thus Proposition
2.10 applies to A: F (A) is simple and stably finite if and only if F (A) = C · 1.
We get that F (A) is not stably finite if F (A) is simple and F (A) 6∼= C. I.e.,
there is n ∈ N such that F (A)⊗Mn contains a copy of O∞ unitally (because
F (A) is unital and simple).
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It follows that A is purely infinite, indeed:
A is simple by Lemma 2.1, and is antiliminal by Proposition 2.10. Let
h : C0((0, 1],Mn) ∼= Mn⊗C0((0, 1]) → A a *-morphism, a := h(1n⊗f0) ∈ A+

and let D the hereditary C ∗–subalgebra of A generated by a. (Here f0(t) := t
for t ∈ [0, 1].) Consider the natural embedding of O∞ ⊗min C∗(a) into
(F (A) ⊗ Mn) ⊗max C∗(a) ∼= F (A) ⊗max (Mn ⊗ C∗(a)) given by O∞ ⊂
F (A) ⊗ Mn and compose with ρ : F (A) ⊗max A → Aω. Then we get a
*-monomorphism k : O∞ ⊗ C∗(a) → Aω with k(1 ⊗ a) = a. Hence, a is
properly infinite in Aω, i.e. for every ε > 0 there exist d1, d2 ∈ Aω with
d∗i adj = δi,j(a − ε)+ (cf. [24, prop. 3.3]). It implies that a is also properly
infinite in A itself (use representing sequences for d1 and d2). Since every
non-zero hereditary C ∗–subalgebra of the antiliminal C ∗–algebra A contains
a non-zero n-homogenous element (cf. [29, lem. 6.7.1]), it follows that every
non-zero element of A is properly infinite by [24, lem. 3.8]. Thus A is purely
infinite by [24, lem. 4.2, prop. 5.4].

If F (A) is simple then F (A) = Jnuc by Lemma 2.11(4). Hence, A is nuclear
by Lemma 2.11(5).

(3): If A is simple, purely infinite and separable, then Aω is simple and
purely infinite by Remark 2.4.

For the rest of the proof it suffices to consider the case, where A is unital,
because, if A is not unital, then there is a non-zero projection p ∈ A such that
A ∼= pAp ⊗ K (Zhang dichotomy, [33]). Thus F (A) ∼= F (pAp) = (pAp)c ⊂
(pAp)ω by Corollary 1.10 .

If A is simple, purely infinite, separable, unital and nuclear, then, F (A) =
Ac 6= C1 by Proposition 2.10. Moreover, for b ∈ Ac with 0 ≤ b ≤ 1 and
‖b‖ = 1, there is an isometry S ∈ Aω with S∗bS = 1 and S∗aS = a for all
a ∈ A. It follows SS∗ ∈ Ac and S ∈ Ac. Thus F (A) is simple and purely
infinite.

To get S, recall that the unital nuclear c.p. map f → f(1) from
C(Spec(b), A) ∼= C∗(b, 1) ⊗ A ∼= C∗(b, A) into A ⊂ Aω is approximately
one-step inner (in Aω) by [25, thm. 7.21]. Then use Proposition A.4 to pass
from the approximate solutions of x∗x−1 = 0, x∗bx−1 = 0 and x∗anx−an = 0
for a dense sequence (a1, a2, . . .) in A+ to the precise solution S.

It remains to show that A⊗O∞ ∼= A if F (A) is simple and purely infinite
(and A is unital):

Then F (A) = Ac contains a copy of O∞ unitally. Thus Ac ⊂ Aω contains
a copy of O∞ unitally. If the contractions (u1, u2, . . .) and (v1, v2, . . .) are
representing sequences in `∞(A) for s1 and s2 in C∗(s1, s2, . . .) = O∞ ⊂
Ac then limn ‖d∗nadn − a ⊗ 12‖ = 0 for suitably chosen row-matrix dn :=
(ukn , vkn) ∈ M1,2(A) and all a ∈ A. It follows A ∼= A ⊗ O∞ by [25, prop.
8.4]. ut

A variation of the proof of the implication “F (A) simple and not stably
stably finite” ⇒ “A purely infinite” shows also:



Central sequences and purely infinite algebras 19

Remark 2.13 Suppose that A is simple, separable and is not stably
projection-less, and that F (A) is not stably finite. Then A is purely infi-
nite. (Here we do not assume that F (A) is simple!)

Proof. We can suppose that that A is unital, because A is stably isomorphic
to a unital C ∗-algebra B and F (A) ∼= F (B) = Bc. On the the other hand,
there is n ∈ N such that there is a *-monomorphism ψ from the Toeplitz
algebra T = C∗(t; t∗t = 1) into Mn(Ac) ⊂Mn(Aω) ∼= (Mn(A))ω.

Since T is (weakly) semi-projective, there is a also *-monomorphism
ϕ : T →Mn(A). In particular, K⊗A contains an infinite projection q, and A
is antiliminal.

Let 0 6= a ∈ A+. Since A is antiliminal, there is a non-zero *-morphism
h : C0(0, 1] ⊗Mn → aAa by the Glimm halving lemma [29, lem. 6.7.1]. Let
d := h(f0⊗e1,1) ∈ A+ and D := dAd, and recall that K ⊂ ψ(T ) ⊂Mn(F (A)).
Thus,

K ⊗A ∼= (idn ⊗ ρ)(K ⊗D) ⊂Mn ⊗Dω
∼= Mn(D)ω .

Since K ⊗ A contains an infinite projection q, Mn(D)ω contains an infinite
projection p. Since the defining relations for infinite projections are semi-
projective, we get that Mn(D) ∼= h(f0 ⊗ 1n)Ah(f0 ⊗ 1n) and aAa contain
infinite projections. ut

Remark 2.13 suggests the question:

Question 2.14 Suppose that A is simple, separable and stably projection-less.
Is 1 finite in F (A)?

Remark 2.15 Let A denote the simple purely infinite reduced free product
C ∗-algebra of two matrix-algebras with respect to non-central states as con-
sidered in [14]. Then F (A) is finite and is not not simple.

Proof. A is simple, purely infinite, unital and exact, but F (A) = Ac does
not contain a non-unitary isometry (because Ac does not contain non-trivial
projections by [14]). F (A) is not simple by Theorem 2.12, because A is not
nuclear. ut

Proposition 2.10 implies that C∗red(F2)c = F (C∗red(F2)) is a non-separable
algebra, moreover, its maximal Abelian C ∗–subalgebras have perfect maximal
ideal spaces and are not separable. F (C∗red(F2)) is stably finite by Remark 2.13.
The natural *-morphism from C∗red(F2)c to the commutant ∼= C of C∗red(F2)
in the von-Neumann ultrapower V N(F2)ω defines a character on C∗red(F2)c.
Thus C∗red(F2)c is not simple (that also follows from Theorem 2.12).

Question 2.16 Is C∗red(F2)c non-Abelian? Is its essential ideal Jnuc simple?

Remark 2.17 Every separable nuclear C ∗-algebra is in the UCT–class, if
and only if, [1] = 0 in K0(F (D)) for every simple p.i.s.u.n. algebra D with
K∗(D) = 0.
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Proof. For simple p.i.s.u.n. algebras D holds that D ∼= O2 if [1] = 0 in
K0(F (D)), i.e. if O2 is unitally contained in the simple purely infinite algebra
F (D) = Dc (cf. [23], or end of [20], or [21], or Section 4 for different proofs).

On the other hand: For every separable C ∗-algebra A there are a separable
commutative C ∗-algebra C and a semisplit extension

0 → SA⊗K → E → C ⊗K → 0

withK∗(E) = 0 (cf. [3, sec. 23]). E is in the UCT-class iff A is in the UCT-class.
E is nuclear (respectively exact) iff A is nuclear (respectively exact).

For every nuclear (respectively exact) separable C ∗–algebra E there is a
KK-equivalent nuclear (respectively exact) separable unital C ∗-algebra B,
which contains a copy of O2 unitally and is KK-equivalent to E (the reader
can find a suitable C ∗–subalgebra of a corner of (E+C·1)⊗O∞). Let h0 : B ↪→
O2 ⊂ B an unital embedding of B into O2, and let h := idB ⊕ h0 ∈ End(B)
(Cuntz addition). Then h : B → B satisfies [h]KK = [idB ]KK , and it is easy
to see that the inductive limit

D := indlimn(hn : B → B)

with hn := h is simple, p.i. and nuclear (respectively exact). Since the unitary
group of O2 is a contractible space, one can construct explicitly a unital *-
morphism k : D → Cb([1,∞), B)/C0([1,∞), B) that has a u.c.p. lift V : D →
Cb([1,∞), B) and that is an “inverse” of the unital embedding h : B → B ⊂
D ⊂ Cb([1,∞), D)/C0([1,∞), D) with respect to an “unsuspended” and cp-
liftable variant of E-theory. (This is the crucial point of the proof, because one
has to overcome the discontinuity of the KK-functor with respect to inductive
limits, cf. [21, chp. 11] for more details.)

It follows, that B → D define a KK-equivalences. Thus, a separable nu-
clear C ∗–algebra A is in the UCT-class, if and only if, the above constructed
(simple) p.i.s.u.n. algebra D with K∗(D) = K∗(B) = K∗(E) = 0 is isomorphic
to O2, and this is the case, if and only if, [1] = 0 in K0(F (D)). ut

Similar arguments show:

Remark 2.18 K0(D ⊗ D) = 0 for all (simple) p.i.s.u.n. algebras D with
K∗(D) = 0, if and only if, the Künneth theorem on tensor products (KTP)
for the calculation of K∗(B1 ⊗ B2) holds for every pair (B1, B2) of nuclear
C ∗-algebras.

There are separable purely infinite unital non-separable C ∗–algebras A
with Ac ∼= C (e.g. the Calkin algebra by Corollary 2.21). This comes from the
following Lemma and from Voiculescu’s description of the neutral element of
Ext(B) for separable B (cf. proof of Proposition 2.20).

Lemma 2.19 Let B a separable unital C ∗-algebra. There exist a unital C ∗-
algebra D, a unital *-monomorphism η : B → D and a projection p ∈ D such
that
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‖(1− p)η(b)p‖ = ‖pη(b)− η(b)p‖ = dist(b,C · 1)

for every b ∈ B.

Proof. Let D := B ∗ E the unital full free C ∗–algebra product of B and of
E := C∗(1, p = p2 = p∗) ∼= C ⊕ C. Then η : b 7→ b ∗ 1 and θ : e → 1 ∗ e are
unital *-monomorphisms from B (respectively from E) into D. We identify
e ∈ E with θ(e). Note that, for all b ∈ B,

max(‖(1− p)η(b)p‖, ‖pη(b)(1− p)‖) = ‖pη(b)− η(b)p‖ ≤ dist(b,C · 1).

Let b ∈ B \C · 1, i.e. dist(b,C · 1) > 0. Since |z| ≤ ‖b− z1‖+ ‖b‖, there exists
z0 ∈ C with |z0| ≤ 2‖b‖ such that ‖b − z01‖ = dist(b,C · 1). dist(b,C · 1) is
the norm of b+ C · 1 in B/(C · 1). Thus, there exists a linear functional ϕ on
B with ϕ(1) = 0, ‖ϕ‖ = 1 and ϕ(b − z01) = ‖b − z01‖. If we use the polar-
decomposition ϕ = |ϕ|(u·) of ϕ in B∗ = (B∗∗)∗, cf. [29, prop. 3.6.7], we can see
that there are a unital *-representation λ : B → L(H) and vectors x, y ∈ H
with ‖x‖ = ‖y‖ = 1 such that ϕ(c) = 〈λ(c)x, y〉 for all c ∈ B. It follows x ⊥ y
and λ(b− z01)x = ‖b− z01‖y. Let q ∈ L(H) denote the orthogonal projection
onto Cx. Then (1− q)λ(b)qx = ‖b− z01‖y. Thus

dist(b,C · 1) ≤ ‖(1− q)λ(b)q‖ ≤ ‖(1− p)η(b)p‖

because there is a unital *-morphism κ : D → L(H) with κ(p) = q and
κ(η(b)) = λ(b). ut

Proposition 2.20 For every separable unital C ∗–subalgebra B of the Calkin
algebra Q := L(H)/K(H) (on H ∼= `2(N)) there is a projection P ∈ Q with
‖Pb− bP‖ = dist(b,C · 1) for all b ∈ B.

Proof. Let D, η : B → D and p ∈ D as Lemma 2.19. D can be unitally and
faithfully represented on H := `2(N) such that D∩K = {0}. Let s1, s2 ∈ L(H)
two isometries with s1s1 ∗ +s2s∗2 = 1, π : t ∈ L(H) 7→ t + K ∈ Q denotes
the quotient map. There is a unitary U ∈ Q with U∗bU = π(s1)bπ(s1)∗ +
π(s2η(b)s∗2) for b ∈ B, by the generalized Weyl–von-Neumann theorem of
Voiculescu, cf. [2]. Thus P := Uπ(s2ps∗2)U

∗ is a projection in Q that satisfies
‖Pb− bP‖ = dist(b,C · 1) for all b ∈ B. ut

Proposition 2.20 implies:

Corollary 2.21 Let Q := L(`2)/K(`2). Then Qc = C · 1.

Proof. Let b = πω(b1, b2, . . .) ∈ Qω for (b1, b2, . . .) ∈ `∞(Q), B the unital
C ∗–subalgebra generated by b1, b2, . . . and P ∈ Q as in Proposition 2.20.
Then

Pb− bP = πω(Pb1 − b1P, Pb2 − b2P, . . .)

and ‖Pb− bP‖ = limω dist(bn,C · 1). It follows b ∈ C · 1 ∼= (C · 1)ω if Pb = bP .
ut
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Question 2.22 Is L(`2)c = C · 1?

The question leads to a study of the positive elements in Ann(K,Kω): Note
that L(`2)c ⊂ (K(`2)+C·1)ω by Cor. 2.21, and that F (K+C·1) = (K+C·1)c =
Ann(K,Kω) + C · 1, because F (K) ∼= F (C) ∼= C.

Remark 2.23 If A is a simple C ∗-algebra, then for every g, h ∈ (Aω)+ with
‖g‖ = ‖h‖ = 1 there is z ∈ Aω with ‖z‖ = 1 and zz∗g = zz∗, z∗zh = z∗z. In
particular, Ann(A) does not contain a non-zero closed ideal J of Aω if A is
simple.

3 The invariant cov(F (A)) and applications.

Here we consider the case where A is separable and F (A) contains a full simple
C ∗–algebra B of dimension Dim(B) > 1. We show below that (in this case) A
is strongly purely infinite if A is weakly purely infinite. Other considerations of
this section are concerned with a (sufficient) condition on F (A) under which
A is weakly purely infinite if every (extended) lower semi-continuous 2-quasi-
trace on A+ is trivial (i.e. takes only the values 0 and ∞, cf. Proposition 3.7).
The main result of this section is Theorem 3.10.

We say that X ⊂ B+ is full if the ideal of B generated by X is dense in
B, b ∈ B+ is full if X := {b} is full, and a *-morphism h : C → B is full if
h(C+) is full in B.

Recall that a positive contraction b ∈ B+ is k-homogenous if there is a
*-morphism h : C0((0, 1])⊗Mk → B such that h(f0⊗1k) = b. (Here f0(t) := t
for t ∈ (0, 1], and 0 is k-homogenous for every k ∈ N by definition.)

Definition 3.1 We define cov(B,m) ∈ N ∪ {+∞} for a unital C ∗–algebra
B (and m > 1) as the minimum of the set of n ∈ N with the property that
there are a1, . . . , an ∈ B+ and d1, . . . , dn ∈ B with

∑
j d
∗
jajdj = 1 and that aj

is the sum aj =
∑lj

i=1 aj,i of mutually orthogonal kj,i-homogenous elements
aj,i ∈ B+ with kj,i ≥ m for j = 1, . . . , n and i = 1, . . . , lj. (The minimum of
an empty subset of N is considered as +∞.) In other words:
cov(B,m) ≤ n < ∞, if and only if, there are finite-dimensional C ∗–
algebras F1, . . . , Fn, *-morphisms hj : C0((0, 1]) ⊗ Fj → B and d1, . . . , dj

such that every irreducible representation of Fj is of dimension ≥ m and
1 =

∑
j d
∗
jhj(f0 ⊗ 1)dj for j = 1, . . . , n.

We define:
cov(B) := sup

m
cov(B,m).

One can replace the Fj in the definition of cov(B,m) by those unital C ∗-
subalgebras Gj ⊂ Fj which have, moreover, only irreducible representations
D : Gj → L(H) of dimension m ≤ Dim(H) < 2m and a center Z(Gj) of
dimension < m.
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It is useful to note that the definition of cov(B,m) can be described by
weakly semi-projective relations (e.g. for the study of cov of ultrapowers or of
continuity properties of B 7→ cov(B), Remark 3.3 and below):

Remark 3.2 We can suppose that the d1, . . . , dn and hj : C0((0, 1]Fj) → B
of Definition 3.1 satisfy in addition the weakly semi-projective relations

d∗1d1 + . . .+ d∗ndn = 1 and hj(f0 ⊗ 1)dj = dj

for j = 1, . . . , n := cov(B,m).
It follows:

cov(B) ≤ n, if and only if, there is a unital *-morphism from the “locally”
weakly semi-projective C ∗–algebra An := An,1 ∗ An,2 ∗ · · · into B.
Here An,k denotes the (weakly semi-projective) universal unital C ∗–algebra
generated by n copies hj(Ck) ⊂ B of Ck := C0((0, 1], (M2 ⊕ M3)⊗k) and
elements d1, . . . , dn with relations d∗1d1 + . . .+d∗ndn = 1 and hj(f0⊗1)dj = dj

for j = 1, . . . , n, and An,1∗An,2∗An,3∗· · · means the unital universal (=“full”)
free product of unital C ∗–algebras.

Proof. To get weakly semi-projective relations, let kj : C0((0, 1])⊗ Fj → B
and e1, . . . , en such that 1 =

∑
j e
∗
jkj(f0⊗1)ej (where Fj is finite-dimensional

and every irreducible representation of Fj is of dimension ≥ m for j =
1, . . . , n). Then 1/2 < g :=

∑
j e
∗
jkj((f0−δ)+⊗1)ej ≤ 1 for suitable δ ∈ (0, 1).

Let dj := kj((f0−δ)+⊗1)1/2ejg
−1/2 then d∗1d1 + . . .+d∗ndn = 1. There is a *-

morphism ψ : C0(0, 1] → C0(0, 1] with ψ(f0) = gδ where gδ(t) := min(t/δ, 1).
Let hj := kj ◦ (ψ ⊗ idFj ), then hj(f0 ⊗ 1)dj = dj .

The new relations are away from the old relations, but they do the same
job (for the definition of cov(B,n)) and they are weakly semi-projective in the
category of unital C ∗–algebras:
The relation

∑
d∗jdj = 1 is semi-projective in the category of unital C ∗–

algebras and the defining relations of C0((0, 1], Fj) are even projective in
the category of all C ∗–algebras (cf. [27, thm. 10.2.1], [28], or the elemen-
tary proof in [6, sec. 2.3]). Let d1, . . . , dn contractions with

∑
j d
∗
jdj = 1, and

hj : C0((0, 1], Fj) → B *-morphisms with ‖hj(f0 ⊗ 1Fj
)dj − dj‖ < δ2/n for

some δ ∈ (0, 1/2). Then

‖1− δ−1
∑

d∗jcjdj‖ < δ < 1/2

for cj := hj (f0 ⊗ 1), because ‖dj‖ ≤ 1 and δ −max(0, t− (1− δ)) ≤ 1− t for
0 < δ < 1, t ∈ [0, 1] ( i.e. because 1− δ−1(cj − (1− δ))+ ≤ δ−1(1− cj) ).

Let g0 := δ−1 (f0 − (f0 − (1− δ)))+, w := (
∑

j δ
−1d∗jcjdj)−1/2, d′j :=

δ−1/2c
1/2
j djw and define *-morphisms h′j : C0((0, 1], Fj) → B by h′j(f

k
0 ⊗x) :=

hj(gk
0 ⊗ x) for k ∈ N , x ∈ Fj and j = 1, . . . , n.

The new system d′j ∈ B, h′j : C0((0, 1], Fj) → B satisfies h′j(f0⊗1)d′j = d′j
and the canonical generators differ form dj and the old images by hj of the
canonical generators of C0((0, 1], Fj) by ‖f0− g0‖ < δ1/2 and ‖w− 1‖ < δ1/2.
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The use of (M2 ⊕M3)⊗k instead of Fj (with minimal dimension of irre-
ducible representations ≥ m in an asymptotic sense) is possible, because every
irreducible representation of (M2 ⊕M3)⊗k has dimension ≥ 2k and there is
a unital *-morphism from (M2 ⊕ M3)⊗k into M` for all ` > 6k, because
1 = 2kx − 3ky = 3k(2k − y) − 2k(3k − x) with 1 < x < 3k and 1 < y < 2k

(but 6k + 1 is not the smallest value for ` with the property that all numbers
`, `+ 1, `+ 2 . . . , are sums

∑
0≤j≤k nj2j3k−j with nj ∈ N ∪ {0}). ut

One can read off some properties of cov(B,m) and cov(B) straight from
Definition 3.1 and Remark 3.2:

Remark 3.3 The maps (B,m) 7→ cov(B,m) and B 7→ cov(B) on unital
C ∗–algebras B have the properties:

(1) cov(B,m) ≤ cov(B,m+ 1),
(2) cov(C,m) ≤ cov(B,m) if there exist a *-morphism ψ : B → C such that

ψ(1) = 1, or that ψ(1B) is properly infinite and is full in C.
In particular, cov(O∞,m) = cov(O2,m) = cov(M2∞ ,m)cov(M2m ,m) = 1
for m > 1.

(3) If B1, B2, . . . is a sequence of unital C ∗–algebras, then, for every m ∈ N,
cov(

∏
ω{B1, B2, . . .),m} = limω cov(Bn,m) and cov(

∏
ω{B1, B2, . . .}) =

limω cov(Bn). 1

In particular, cov(Bω,m) = cov(B,m), and cov(Bω) = cov(B).
(4) cov(B,m) = infn cov(Bn,m) , cov(B) = supm infn cov(Bn,m) ≤

supn cov(Bn) , if B1 ⊂ B2 ⊂ · · · ⊂ B are unital C ∗-subalgebras with⋃
nBn dense in B.

(5) Suppose that 1B is finite. Then cov(B,m) = 1, if and only if, there are a
C ∗–algebra Am of finite dimension and a unital *-morphism hm : Am →
B, where every irreducible representation of Am has dimension ≥ m.

(6) cov(B) = 1 if 1B is properly infinite.
(7) cov(B) = cov(B,m) = ∞ if every irreducible representation of B has

dimension ≤ m− 1.
(8) cov(B,m) <∞ for every m ∈ N if B is strictly antiliminal.
(9) If B has real rank zero, then cov(B,m) = 1 if and only if there exist

1 ≤ p < m, F = Mk1 ⊕ . . .⊕Mkp ⊂ B with m ≤ kj < 2m for j = 1, . . . , p
and an isometry d ∈ B with 1F d = d.

(10) Every separable C ∗–subalgebra B1 ⊂ B of a unital C ∗–algebra B is
contained in a unital C ∗-subalgebra 1B ∈ B2 ⊂ B with cov(B2,m) =
cov(B,m) for all m ∈ N.

Proof. (1),(2), and (7) follow immediately from Definition Definition 3.1. (5)
and (9) follow from Remark 3.2. (3): Use Remark 3.2 and (2).
(4): Use (2) for ≤ and (i,iii) for ≥. (6): Use (2). (8): Use the Glimm halving
lemma [29, lem. 6.7.1] to see that 1B is majorized by a finite sum of m-
homogenous positive contractions. (10): Use Remark 3.2 and (4). ut
1 We extended limω to all sequences (α1, α2, . . . , αn, . . .) with αn ∈ [0,∞].
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Proposition 3.4 Suppose that A is an inductive limit indlim(hn : An →
An+1) of separable C ∗–algebras A1, A2, . . .. Then

cov(F (A),m) ≤ lim inf
n→∞

cov(F (An),m) .

In particular, cov(F (A)) ≤ lim inf cov(F (An)).

Proof. Remark 3.3(4) is not applicable, because the F (An) are not related
to F (A). But Proposition 1.14 works:
cov(F (An/I)) ≤ cov(F (An)) for closed ideals I of An by Remark 3.3(2),
because F (An/I) is a quotient of F (An) by Remark 1.15. Thus, we may
suppose that A1, A2, . . . ⊂ A and

⋃
nAn is dense in A.

By Proposition 1.14, for every ω ∈ β(N) \N and for every separable unital
C ∗–subalgebra E ⊂

∏
ω{F (A1), F (A2), . . .}, there is a unital *-morphism

E → F (A). Thus cov(F (A)) ≤ cov(E) by Remark 3.3(2). E can be found such
that cov(E,m) = cov(

∏
ω{F (A1), F (A2), . . .},m) for every m ∈ N by Remark

3.3(10). Now apply Remark 3.3(3) and note that for α1, α2, . . . ∈ [0,∞] there
is a free ultrafilter ω ∈ β(N) \ N with limω αn = lim infn→∞ αn. ut

Proposition 3.5 If a unital nuclear separable C ∗–algebra B has decomposi-
tion rank dr(B) <∞ (cf. [26, def. 3.1]) and if B has no irreducible represen-
tation of finite dimension, then cov(B) ≤ dr(B) + 1.

Proof. This follows easily from the definition of the decomposition rank
[26, def. 3.1] by [26, prop. 5.1], which implies that the c.p. contractions
ϕri

: Mri
→ B of strict order zero arising in n-decomposable c.p. approxi-

mations ϕ :
⊕s

i=1Mri → B and ψ : B →
⊕s

i=1Mri of [26, def. 3.1] can be
chosen such that (eventually) min{r1, . . . , rs} ≥ q if ψ ◦ ϕ → idB (in point-
norm) and B has no irreducible representation of dimension ≤ q.

Indeed, suppose that ϕn : Cn ⊕ Dn → B and ψn : B → Cn ⊕ Dn are
completely positive contractions with suitable C ∗-algebras Cn and Dn such
that ϕn ◦ ψn tends to idB in point-norm, limn ‖ψn(b∗b) − ψn(b∗)ψn(b)‖ = 0
for all b ∈ B, ψn is unital and every irreducible representation of Cn has
dimension≤ q. Then the ultrapower C :=

∏
ω{C1, C2, . . .} has only irreducible

representations of dimension ≤ q and the restriction to B of the ultrapower
U : Bω → C of the completely positive contractions p1 ◦ ψn : B → Cn is
a unital *-morphism from B into C. The latter contradicts that B has no
irreducible representation of dimension ≤ q. ut

Recall that a quasi-trace τ : A+ → [0,∞] is trivial if it takes only the
values 0 and +∞. The following is a reformulation of [24, prop. 5.7].

Remark 3.6 Suppose that every lower semi-continuous 2-quasi-trace on A+

is trivial. Then, for every n ∈ N, a ∈ A+ \ {0} and ε > 0 there exists k0 ∈ N
such that for every k ≥ k0 there are d1, . . . , dn in Mk ⊗ A such that d∗i (1k ⊗
a)dj = δi,j(1k ⊗ (a− ε)+) for i, j = 1, . . . , n.

Proposition 3.7 If cov(F (A)) < ∞ and if every lower semi-continuous 2-
quasi-trace on A+ is trivial, then A is weakly purely infinite.
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Proof. Let m := cov(F (A)) and n := 2m. Below we show that, for a ∈
A+ and ε > 0, there exists a matrix V = [vj,q]m,n ∈ Mm,n(Aω) such that
V ∗(a ⊗ 1m)V = (a − ε)+ ⊗ 1n. It follows that A is pi-m in the sense of [25,
def. 4.3] (because one can use representing sequences and the isomorphism
Mm,n(Aω) ∼= (Mm,n(A))ω). Thus A is weakly purely infinite.

Let k0 ∈ N as in Remark 3.6 for a ∈ A+ and ε > 0. We find finite-
dimensional C ∗-algebras F1, . . . , Fm, *-morphisms hj : C0((0, 1]) ⊗ Fj) →
F (A) and elements gj ∈ F (A) such that

∑
j g
∗
j bjgj = 1 for bj := hj(f0⊗ 1Fj ),

and that Fj has only irreducible representations of dimension ≥ k0 for
j = 1, . . . ,m. (We allow bj = 0 for cov(F (A), k0) ≤ j ≤ m, to simplify
notation.)

For every j = 1, . . . ,m we find by Remark 3.6 dj,1, . . . , dj,n ∈ Fj ⊗A such
that, for 1 ≤ j ≤ m and 1 ≤ p, q ≤ n

d∗j,p(1Fj
⊗ a)dj,q = δp,q(1Fj

⊗ (a− ε)+) .

Since gj⊗1 ∈M(F (A)⊗A), we can define, for j = 1, . . . ,m and q = 1, . . . , n =
2m,

vj,q := ρ(hj ⊗ idA(f0 ⊗ dj,q)(gj ⊗ 1)) .

A straight calculation shows

v∗j,pavj,q = δp,qρ
(
g∗j bjgj ⊗ (a− ε)+

)
,

i.e. V := [vj,q]m,n is as desired. ut

Now we study situations where we can deduce strong pure infiniteness
from weak pure infiniteness.

Lemma 3.8 If A is purely infinite and F (A) contains two orthogonal full
hereditary C ∗-subalgebras, then A is strongly purely infinite.

Proof. Let a, b ∈ A+ and ε > 0, δ := ε/2. If E1, E2 ⊂ F (A) are orthogo-
nal full hereditary C ∗–subalgebras, there are ei ∈ (Ei)+ and gj , hk ∈ F (A)
(i = 1, 2, j = 1, . . . ,m, k = 1, . . . , n) such that 1 =

∑
j g
∗
j (e1)2gj and

1 =
∑

k h
∗
k(e2)2hk. Thus, a2 = ρ(1 ⊗ a2) (respectively b2) is in the ideal

of Aω generated by ρ(e1 ⊗ a) (respectively ρ(e2 ⊗ b)), because, e.g. 1 ⊗ a2 is
in the ideal of F (A) ⊗max A generated by e1 ⊗ a. Let ui ∈ (Ac)+ ⊂ Aω with
ei = ui + Ann(A). Then u1abu2 = ρ(e1e2 ⊗ ab) = 0 and a2 (respectively b2)
is in the closed ideal of Aω generated by u1a

2u1 = ρ((e1)2 ⊗ a2) (respectively
u2b

2u2).
Since A is purely infinite, Aω is again purely infinite, cf. [24]. It follows

that there are f1, f2 ∈ Aω such that f1u1a
2u1f1 = (a2−δ)+ and f2u2b

2u2f2 =
(b2 − δ)+.

With vi := fiui holds ‖v∗1a2v1−a2‖ < ε, ‖v∗2b2v2−b2‖ < ε and v∗1abv2 = 0
in Aω. With help of representing sequences for v1 and v2 in `∞(A) we find
d1, d2 ∈ A with ‖d∗1a2d1 − a2‖ < ε, ‖d∗2b2d2 − b2‖ < ε and ‖d∗1abd2‖ < ε. This
means that A is strongly purely infinite, cf. [6], [25]. ut
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Lemma 3.9 If F (A) contains a full 2-homogenous element, then A has the
global Glimm halving property of [5] (cf. also [6]).

If, in addition, A is weakly purely infinite, then A is strongly purely infinite.

Proof. Let a ∈ A+, ε ∈ (0, 1), δ := ε2/2 and D := aAa. By assumption,
there exists b ∈ F (A) and d1, . . . , dn ∈ F (A) with b2 = 0 and

∑
j d
∗
jb
∗bdj = 1.

Let ej := ρ(dj ⊗ a1/2), c ∈ Ac with b = c + Ann(A) and f := ca =
ρ(b ⊗ a1/2). Then f2 = 0 and a2 =

∑
j ejf

∗fej . f and e1, . . . , en are in
the hereditary C ∗–subalgebra of Aω generated by a, in particular they are
in Dω. Let h = (h1, h2, . . .) ∈ `∞(D) self-adjoint with πω(h) = f∗f − ff∗,
g = (g1, g2, . . .) ∈ `∞(D) with πω(g) = f , and let uk := (hk)1/k

− gk(hk)1/k
+ for

k = 1, 2, . . .. Then uk ∈ D, u2
k = 0 and πω(u1, u2, . . .) = f .

There exists k ∈ N and v1, . . . , vn ∈ D such that ‖a2 −
∑

j v
∗
ju
∗
kukvj‖ < δ

(use representing sequences for e1, . . . , en ∈ Dω).
By [25, lem. 2.2] there is a contraction z ∈ A such that

∑
j w

∗
ju
∗
kukwj =

(a− ε)+ for wj := vjzh(a) with h(t) := max(0, t− ε)1/2/max(0, t2 − δ)1/2 on
[0,∞]. Hence (a− ε)+ is in the ideal generated by uk.

Thus A has the global Glimm halving property of [5].
By [6] (and [5]) A is purely infinite, if and only if, A is weakly purely infinite

and has the global Glimm halving property. Then A is moreover strongly
purely infinite, by Lemma 3.8. ut

Theorem 3.10 If every lower semi-continuous 2-quasi-trace on A+ is trivial
and if F (A) contains a simple C ∗-subalgebra B with 1 ∈ B and

cov(B ⊗max B ⊗max · · · ) <∞,

then A is strongly purely infinite.

Proof. There is a unital *-morphism from B ⊗max B ⊗max · · · , into F (A)
by Corollary 1.13. Since cov(B ⊗max B ⊗max · · · ) <∞, it follows B 6= C and
cov(F (A)) <∞, cf. Remarks 3.3(ii,vii).

Thus Proposition 3.7 applies, and A is weakly purely infinite. The Glimm
halving lemma (cf. [29, lem. 6.7.1]) applies to B or to B⊗B⊗ · · · if B ∼= Mn

with n > 2. Thus Lemma 3.9 applies, and A is strongly purely infinite. ut

Let I(m,n) ⊂ C([0, 1],Mmn) for m,n > 1 denote the dimension-drop
algebra given by the subalgebra of C([0, 1],Mm⊗Mn) of continuous functions
f : [0, 1] → Mm ⊗Mn with f(0) ∈ Mm ⊗ 1n and f(1) ∈ 1m ⊗Mn. In the
following we use only that the Jian–Su algebra Z (cf.[18]) is a simple unital
C ∗–algebra, that Z is an inductive limit of I(mk, nk) with min(mk, nk) →∞
for k → ∞, that Z does not contain a non-trivial projection, and that Z ∼=
Z ⊗ Z ⊗ · · · .

Lemma 3.11 cov(I(m,n),min(n,m)) ≤ 2 and cov(Z) = 2.
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The proof follows from Proposition 3.5 and parts (2),(4) and (5) of Remark
3.3, because dr(I(m,n)) = 1. But we give an independent proof.
Proof. Let a ∈ C([0, 1],Mmn)+ given by a(t) := t1mn. Then a ∈ I(m,n),
a1/3 is n-homogenous and (1 − a)1/3 is m-homogenous in I(m,n). 1 =
d∗1a

1/3d1 + d∗2(1 − a)1/3d2 for d1 = a1/3 and d2 = (1 − a)1/3. Hence,
cov(I(m,n),min(n,m)) ≤ 2.

For k ∈ N there are n,m ≥ k such that there is a unital *-morphism from
I(m,n) into Z. Thus, cov(Z, k) ≤ 2 by Remark 3.3(2).

cov(Z, 2) > 1 by Remark 3.3(5), because 1Z is finite and does not contain
a non-trivial projection. Hence cov(Z, k) = 2 for k = 2, 3, . . .. ut

Corollary 3.12 A ⊗ Z is strongly purely infinite if every lower semi-
continuous 2-quasi-trace on A+ is trivial.

Proof. Then every l.s.c. 2-quasi-trace (A⊗Z)+ → [0,∞] is trivial. F (A⊗Z)
contains a copy of Z unitally, because Z ∼= Z ⊗ Z ⊗ · · · . The result follows
from Lemma 3.11, Remark 3.3(2) and Proposition 3.7. ut

Corollary 3.13 If A is simple and separable, and is neither stably finite nor
purely infinite, then there is k0 <∞ such that, for all m,n ≥ k0, there is no
unital *-morphism from I(m,n) into F (A).

Proof. The assumptions imply that every l.s.c. 2-quasi-trace on A+ is trivial.
Since A is simple and is not purely infinite, A is not weakly purely infinite.
Thus cov(F (A)) = ∞ by Proposition 3.7.

Let k0 := inf{k ∈ N ; cov(F (A), k) > 2}. If h : I(m,n) → F (A) is a unital
*-morphism, then cov(F (A),min(m,m)) ≤ cov(I(m,n),min(m,n)) ≤ 2 by
Remark 3.3(2) and Lemma 3.11. Thus min(m,n) < k0. ut

Corollary 3.14 Let R an example of a simple separable unital nuclear C ∗–
algebra that is neither stably finite nor purely infinite (cf. Rørdam [30]).
Then cov(F (R)) = ∞, F (R) is stably finite, and F (R) does not contain a
simple unital C ∗–subalgebra B 6= C · 1.

Proof. cov(F (R)) = ∞ by Proposition 3.7. F (R) must be stably finite by
Remark 2.13, because R is not (locally) purely infinite. There is no unital C ∗–
subalgebra B 6= C · 1 of F (R), such that B ⊗R is weakly purely infinite (i.e.
n–purely infinite for some n), because otherwise a⊗ 1n is properly infinite in
ρ(B⊗R)⊗Mn ⊂ Rω⊗Mn, for every a ∈ R, which implies that R is n–purely
infinite, a contradiction. Suppose that B 6= C · 1 is a simple C ∗–subalgebra of
F (R) then there is also an antiliminal simple algebra B unitally contained in
F (R) (cf. Corollary 1.13). But then B ⊗R is purely infinite by [6, cor. 3.11],

ut

Question 3.15 Does F (R) contain a strictly antiliminal unital C ∗–
subalgebra B?
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A positive answer to Question 3.15 would show that:
(1) there exists a separable strictly antiliminal stably finite unital C ∗–algebra
that does not contain a non-trivial simple C ∗–algebra unitally (because of
3.14 and because every strictly antiliminal unital C ∗–algebra is the inductive
limit of its separable strictly antiliminal C ∗–subalgebras), and
(2) there are locally purely infinite algebras that are not weakly purely infinite
(because B ⊗R is not weakly p.i. by the argument in the proof of 3.14, but
is locally p.i. by [6, cor. 3.9(iv)]).

Question 3.16 Suppose that A is a simple stably projection-less separable
C ∗–algebra and that M2 ⊕M3 is unitally contained in F (A).
Is A approximately divisible?

If 1F (A) ∈ M2 ⊕ M3 ⊂ F (A), then there is a unital *-morphism from the
infinite tensor product

E := (M2 ⊕M3)⊗ (M2 ⊕M3)⊗ · · ·

into F (A) by Corollary 1.13. E contains a simple AF–algebra D unitally
(communicated by M. Rørdam, May 2004). Every simple unital AF–algebra
contains a copy of M2 ⊕ M3 unitally. Thus, the property in the question
equivalently means that F (A) contains a copy of a simple AF–algebra unitally.
Every simple unital AF–algebra absorbs a copy of Z, cf. [18]. It follows that
A ∼= A⊗Z (cf. Section 4).

The estimate for cov(F (A),m) in Proposition 3.4 is not optimal, e.g.
cov(F (M2∞),m) = 1 and cov(F (M2k), 2) = ∞ for all k ∈ N, because F (M2∞)
contains a copy of M2∞ unitally and F (M2k) = F (C) = C.
Since F (M2k ,M2k+m) = M2m , one gets better estimates if one considers in
some case also also cov(F (Ank

, Ank+1),m) for suitable n1 < n2 < · · · .

4 Self-absorbing subalgebras of F (A).

Suppose that 1F (A) ∈ D ⊂ F (A) is a simple separable and nuclear unital C ∗-
subalgebra of F (A). Then D := D⊗∞ := D⊗D⊗ · · · is unitally contained in
F (A) by Corollary 1.13.

Here we are interested in the question, when this implies that there is an
isomorphism ψ from A onto A⊗D, and when ψ can be found such that ψ is
approximately unitarily equivalent to the morphism a ∈ A 7→ a⊗ 1 ∈ A⊗D.

Definitions 4.1 Let A and D C ∗-algebras, where D is unital. We say that
A is D-absorbing (in a strong sense) if there exists an isomorphism ψ from
A onto A ⊗ D that is approximately unitarily equivalent to the morphism
a 7→ a ⊗ 1 (by unitaries in M(A ⊗ D)). We call A stably D-absorbing if
K ⊗A is D-absorbing.
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A unital C ∗-algebra D is self-absorbing if D is D-absorbing.
D has approximately inner flip if the flip automorphism of D ⊗D is ap-

proximately inner.

If there exists A 6= {0} such that A is D-absorbing, then D is simple and
nuclear (cf. Lemma 4.9). Conversely, if D is simple, separable, unital, and
nuclear, then O2 is D-absorbing (by classification theory).

If A and D are separable, D simple, unital and nuclear and A is D-
absorbing, then D⊗∞ is unitally contained in F (A). (cf. Proposition 4.11).
This property is not enough to ensure that A is D-absorbing, as the following
remark shows (see Appendix C for details):

Remark 4.2 The infinite tensor product On⊗On⊗· · · is unitally contained
in F (On). But the maps η1,∞ : a 7→ a ⊗ 1 ⊗ 1 ⊗ . . . and η2,∞ : a 7→ 1 ⊗ a ⊗
1⊗ . . . from On into On ⊗On ⊗ . . . (i = 1, 2) are not approximately unitarily
equivalent for n ≥ 3. In particular, On

⊗∞ is not self-absorbing, and the flip
on (On

⊗∞)⊗ (On
⊗∞) is not approximately inner.

Let us fix some notation for this section. If D is a unital, we let D :=
D⊗∞ := D ⊗D ⊗ . . . denote the infinite tensor product of D.

We define ηk,n : D → D⊗n for n = 2, 3, . . . ,∞, k = 1, 2, . . . with k ≤ n by
ηk,n(a) = 1⊗ · · · ⊗ 1⊗ a⊗ 1⊗ · · · ⊗ 1 for a ∈ D with a on k-th position. We
let η1 := η1,2 and η2 := η2,2.

The different behavior of D and D can be seen from the following.

Remarks 4.3 Suppose that D is a simple separable unital nuclear C ∗–algebra
that contains a copy of O2 unitally. Then:
(1) The morphisms η1 and η2 are approximately unitarily equivalent in D⊗D
and D⊗∞ ∼= O2.

An example with D 6∼= D is D := P∞ the unique p.i.s.u.n. algebra in the
UCT class with K0(P∞) = 0 and K1(P∞) ∼= Z.
(2) The flip automorphism on P∞ ⊗ P∞ is not approximately inner.
(3) There exist simple nuclear C ∗–algebras D that contains a copy of O2

unitally and are not purely infinite (e.g. the examples of Rørdam [30] are
stably isomorphic to those algebras).

See Appendix C for more explanation.
It shows that infinite tensor products D = D⊗∞ considerably loose prop-

erties of D. D is stably finite or purely infinite by [6, cor. 3.11] for simple
D.

Below we see that D ∼= D and every unital *-endomorphism of D is ap-
proximately inner if and only if D is self-absorbing and separable. Therefore
we use the notation D also for self-absorbing algebras.

This class of separable self-absorbing algebras could be of interest for a
classification theory of (not necessarily purely infinite) separable nuclear C ∗–
algebras up to tensoring with D:
The classification of separable stable strongly purely infinite nuclear algebras
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is a classification of all separable stable nuclear C ∗–algebras modulo tensor
product with D = O∞. The strongly purely infinite algebras are contained in
the (possibly larger) class of algebras A with the property that O∞ is unitally
contained in F (C,A) for every separable nuclear C ∗–subalgebra C of Aω.

We list some results on self-absorbing D in the UCT-class, and point out
some open questions on self-absorbing D in the UCT class that have a tracial
state.

Proposition 4.4 Let D a unital separable self-absorbing C ∗–algebra. Then:

(1) D is simple and nuclear. Either D is purely infinite or D has a unique
tracial state.

(2) D ∼= D ⊗D ⊗ · · · .
(3) Every unital endomorphism of D is approximately inner by unitaries in

the commutator subgroup of U(D).
(4) If B is separable and M(B) contains a copy of O2 unitally, then B is

D-absorbing if and only if F (B) contains a copy of D unitally.
In particular, a separable algebra A is stably D-absorbing if and only if
D ⊂ F (A).

(5) If the commutator subgroup of U(D) is contained in the connected compo-
nent U0(D) of 1, then every stably D-absorbing separable C ∗-algebra is
D-absorbing.

It is a consequence of the basic Proposition 4.11 and of Corollaries 4.12 and
4.13. See end of this section for a proof.

We use the invariant F (A) to give an alternative approach to permanence
properties of the class of (strongly) D-absorbing separable C ∗–algebras, as
e.g. studied by A. Toms and W. Winter [32], and we give a simple necessary
and sufficient condition under which the class is closed under extensions (and
is then automatically closed under Morita equivalence).

Theorem 4.5 Suppose that D is unital, separable and self-absorbing.

(1) If B is a unital separable C ∗–algebra and a copy of D is unitally contained
in Bω, then B ⊗B ⊗ · · · is D-absorbing.
In particular:

D ⊗M2 ⊗M3 ⊗ · · · ∼= M2 ⊗M3 ⊗ · · ·

if D is quasi-diagonal.
If for every n ∈ N there exist p, q ≥ n and a unital *-morphism from
E(Mp,Mq) into Dω, then D ∼= D ⊗Z .

(2) The class of stably D-absorbing separable C ∗–algebras is closed under
inductive limits, passage to hereditary C ∗–subalgebras, and to quotients.
A unital separable algebra B is D-absorbing if B is stably D-absorbing.

(3) The class of stably D-absorbing separable algebras is closed under exten-
sions, if and only if,
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E(D,D) ∼= E(D,D)⊗D ,

if and only if, the commutator subgroup of U(D) is in the connected com-
ponent U0(D) of 1.

(4) If the class of stably D-absorbing separable algebras is closed under exten-
sion, then every stably D-absorbing algebra is D-absorbing.

We give a proof at the end of this section.
Parts (2)-(4) together imply that the class of D-absorbing separable alge-

bras is closed under all above considered operations, if and only if, uvu−1v ∈
U0(D) for all unitaries u, v ∈ D. The property [U(D),U(D)] ⊂ U0(D) holds
for simple purely infinite algebras D, because the natural group morphism
U(D)/U0(D) → K1(D) is an isomorphism (J. Cuntz [10]) if D is simple and
purely infinite. A. Toms and W. Winter [32] obtained permanence results for
tensorially D–absorbing algebras under the (perhaps stronger) assumption
that U(D)/U0(D) ∼= K1(D) for self-absorbing D.

Remark 4.6 The Cuntz algebras O2, O∞, the UHF algebras Mp∞ (p prime),
the Jiang-Su algebra Z and all (finite and infinite) tensor products D1⊗D2⊗. . .
are examples of self-absorbing D in the sense of Definition 4.1.

Up to tensoring with O∞ this list exhausts all D in the UCT class.
The Elliott invariants of this algebras exhaust all possible Elliott invariants

of D ⊗Z for self-absorbing D in the KTP class (⊃ UCT class).
They all have connected unitary groups, thus the class of separable D-

absorbing algebras is closed under inductive limits, extensions, passage to
hereditary subalgebras and under passage to quotients.

The flip automorphism on D ⊗ D is (unitarily) homotopic to the identity
for UHF-algebras D, D = O2 and D = O∞.

Clearly, Mp∞ has the required properties. The considered properties are in-
variant under infinite tensor products. Z has the properties by [18]. The others
follow from KTP, UCT and the classification of p.i.s.u.n. algebras by means
of KK-theory (see Appendix C for details, or [32] for an alternative proof).
We do not know if η1, η2 are (unitrily) homotopic for D = Z.

The case of UCT algebras suggests:

Conjecture 4.7 If D is self-absorbing and D 6= O2 then

D ⊗O∞ ⊗M2 ⊗M3 ⊗ · · · ∼= O∞ ⊗M2 ⊗M3 ⊗ · · · .

Recall from Proposition 1.9(4,5,9), that the natural *-morphism from the
normalizer N (DB) ⊂M(B)ω of DB ⊂ Bω into M(DB) defines isomorphisms
N (DB)/Ann(B,M(B)ω) ∼= M(DB) and

F (B) = (B′ ∩M(B)ω)/Ann(B,M(B)ω) ∼= B′ ∩M(DB)

if B is σ–unital. It allows to improve [25, prop. 8.1] as follows:
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Proposition 4.8 Suppose that B is a separable C ∗-algebra and A is a non-
degenerate C ∗–subalgebra of B. Let U1 ⊂ M(DB) denote the image of the
unitary group of N (DB) in M(DB).

If there are unitaries W1,W2, . . . ∈ U1 with limn→∞ ‖Wna−aWn‖ = 0 for
every a ∈ A and limn→∞ dist(W ∗

nbWn, Aω) = 0 for every b ∈ B, then there is
a unitary U = πω(u1, u2, . . .) ∈M(B)ω with U∗BU = A.

The *-isomorphism ψ(a) := UaU∗ from A onto B is approximately unitar-
ily equivalent to the inclusion map A ⊂ B by the unitaries u∗1, u

∗
2, . . . ∈M(B).

If one can find the Wn even in U0(M(DB)) then u1, u2, . . . can be chosen
in U0(M(B)).

Proof. Let G ⊂ U(M(B))) a (countable) subgroup such that for each n ∈ N
there is a sequence (g1, g2, . . .) ∈ G with πω(g1, g2, . . .) ∈ N (DB) ⊂ M(B)ω

and
πω(g1, g2, . . .) + Ann(B,M(B)ω) = Wn .

Note that G can be found in U0(M(B)) if Wn ∈ U0(M(B)), because unitaries
in

U0(M(DB)) ∼= U0(N (DB ,M(B)ω)/Ann(B,M(B)ω))

lift to unitaries in U0(M(B)ω) and U0(M(B)ω) ⊂ (U0(M(B)))ω.
Let (a1, a2, · · · ) and (b1, b2, . . .) dense sequences in the unit-ball of A re-

spectively of B. Consider the sequence of functions f1, f2, . . . on G given by
f2k−1(g) := ‖gak − akg‖ and f2k(g) := dist(g−1bkg,A) for k ∈ N. Then
G ⊂ M(B) and (f1, f2, . . .) satisfy the assumptions of Remark A.2: indeed,
use the representing sequences for Wn and apply the assumptions on Wn.
It follows, that there is a sequence (v1, v2, . . .) in G ⊂ U(M(B)) such that
limn fk(vn) = 0 for all k ∈ N. This means that id: A ↪→ B and (v1, v2, . . .) sat-
isfy the assumptions of [25, prop. 8.1]. The proof of [25, prop. 8.1] shows that
there is a sequence of unitaries u1, u2, . . . ∈ G, such that U := πω(u1, u2, . . .)
is as required. ut

Lemma 4.9 Suppose that D and E are C ∗–algebras a ∈ D+, that
h : C0((0, 1], D) → E is a *-morphism with h(f0 ⊗ a) 6= 0. If there is a
net {Uτ} unitaries in M(E ⊗D) such that {U∗τ (h(f0 ⊗ d)⊗ a)Uτ} converges
to h(f0 ⊗ a)⊗ d for all d ∈ D, then:

(1) D is simple and nuclear.
(2) If there are δ > 0 and a lower semi-continuous 2-quasi-trace µ : E+ →

[0,∞] with 0 < µ(h((f0 − δ)+ ⊗ (a − δ)+)) < ∞, then all l.s.c. 2-traces
ν : D+ → [0,∞] are additive and are proportional to the trace

a ∈ D+ 7→ µ(h((f0 − δ)+ ⊗ a)) .

Proof. (1): Use inner automorphisms of E ⊗ D composed with slice maps
from E ⊗D into D.

(2): Since D is simple and nuclear, every l.s.c. 2-quasi-trace ν on D+ is an
additive trace, and there is an extended l.s.c. 2-quasi-trace λ : (E ⊗ D)+ →
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[0,∞] with λ(e ⊗ d) = µ(e)ν(d) for d ∈ D+, e ∈ E+ with ν(d) < ∞ and
µ(e) <∞, cf. [6, rem. 2.29, proof of cor. 3.11(iv)]. ν is semi-finite and faithful
if ν is non-trivial, in particular 0 < ν((a− δ)+) <∞ for δ > 0.

Then µ(h((f ⊗ d))ν(b) ≤ µ(h((f ⊗ b))ν(d) for d ∈ D+, f := (f0− δ)+ and
b := (a − δ)+, because h(f ⊗ d) ⊗ b is the limit of Uτ (h(f ⊗ b) ⊗ d)U∗τ and
λ is l.s.c. A similar argument shows ”≥”. Thus ν(d) = γµ(h(f ⊗ d)) for all
d ∈ D+, where γ := ν(b)/µ(h(f ⊗ b)). ut

Remark 4.10 Suppose that A and D are separable where D is unital. Con-
sider the following conditions for A and D:

(β) The two *-morphisms idA⊗η1 and idA⊗η2 from A⊗D into A⊗(D⊗D) are
approximately unitarily equivalent by unitaries in the connected component
U0(M(A⊗D ⊗D)) of the unitaries in M(A⊗D ⊗D).

(β’) The *-morphisms idA ⊗ η1,∞ and idA ⊗ η2,∞ from A⊗D into A⊗ (D ⊗
D⊗· · · ) are approximately unitarily equivalent by unitaries in U0(M(A⊗
D ⊗D ⊗ · · · )).

Then:

(1) (β) implies (β’), (β’) implies that D is simple and nuclear, and that for
every unital endomorphism ϕ of D⊗D⊗· · · the endomorphism idA⊗ϕ of
A⊗D⊗D⊗. . . is approximately inner by unitaries in U0(A⊗D⊗D⊗· · · ).
In particular (β) holds with D ⊗D ⊗ . . . in place of D.

(2) If A+ has a non-trivial lower semi-continuous (extended) 2-quasi-trace,
then (β’) implies that D has a unique tracial state.

(3) The condition (β’) is satisfied if the morphisms η1,∞ and η2,∞ from D into
D⊗D⊗ · · · are approximately unitarily equivalent and if M(A) contains
a copy of O2 unitally (e.g. if A is stable).

(4) The condition (β’) is satisfied for every A if the morphisms η1,∞ and η2,∞
from D → D⊗D⊗· · · are approximately unitarily equivalent by unitaries
in the connected component U0(D ⊗D ⊗ · · · ) of 1 in U0(D ⊗D ⊗ · · · ).

(5) If A ∼= A⊗D ⊗D ⊗ · · · , then (β’) implies (β).

The morphisms ηk and ηk,∞ are above defined. Recall that U(A⊗D⊗D⊗. . .) is
connected in norm-topology if A is stable and σ-unital (by a result of J. Cuntz
and N. Higson).
Proof. (2) follows from from Lemma 4.9(2).

(4) is obvious.
(3): Since η1,∞ and η2,∞ are approximately unitarily equivalent, we get

from Lemma 4.9(1) that D is simple and nuclear.
By classification theory, O2

∼= O2⊗D, because D is simple, separable and
nuclear. The group of unitaries U(O2) is connected (cf. [10]).

(1): It is obvious that (β) implies (β’). D is simple and nuclear by Lemma
4.9(1).

Let B1 and B2 unital algebras, and psi1, ψ2 unital morphisms from B1 into
B2. We use the notation ψ1 ∼ ψ2 if idA ⊗ψ1 and idA ⊗ψ2 are approximately
unitarily equivalent by unitaries in U0(M(A⊗B2)).
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There are obvious composition rules:
ψ1 ∼ ψ2 and ψ2 ∼ ψ3 imply ψ1 ∼ ψ3. If λ : B2 → B3 and µ : B0 → B1 are
unital, and if ψ1 ∼ ψ2, then λ ◦ ψ1 ∼ λ ◦ ψ2 and ψ1 ◦ µ ∼ ψ2 ◦ µ.

For n ∈ N and permutations σ of {1, . . . , n}, we define *-morphisms

ψσ : D⊗n → D⊗n ⊗ 1⊗ 1⊗ . . . ⊂ D

by

ψσ(d1 ⊗ d2 ⊗ . . .⊗ dn) = dσ(1) ⊗ dσ(2) ⊗ . . .⊗ dσ(n) ⊗ 1⊗ 1⊗ · · · .

Further let εn := ψσ for σ = id of {1, . . . , n}. For m < n we define
νm,n : D⊗m → D⊗n by εm = εn ◦ µm,n, i.e.

νm,n(d1 ⊗ · · · ⊗ dm) = d1 ⊗ · · · ⊗ dm ⊗ 1⊗ · · · ⊗ 1 .

The condition (β’) implies that ψσ ∼ εn for every transposition σ. Since every
permutation is a product of transpositions, one can see by the rules for the
relation ∼ that ψσ ∼ εn.

Let τ1 and τ2 denote the endomorphisms of D given by

τ1(d1 ⊗ d2 ⊗ · · · ⊗ dn ⊗ · · · ) = d1 ⊗ 1⊗ d2 ⊗ 1⊗ · · · ⊗ 1⊗ dn ⊗ 1⊗ · · ·

respectively

τ2(d1 ⊗ d2 ⊗ · · · ⊗ dn ⊗ · · · ) = 1⊗ d1 ⊗ 1⊗ d2 ⊗ · · · ⊗ 1⊗ dn ⊗ 1⊗ · · ·

Since there is a permutation σ of {1, . . . , 2n} with τσ ◦ εn = ψσ ◦ νn,2n, we
get that (β’) implies that τk ◦ εn ∼ εn for k = 1, 2, n ∈ N. It follows that

τ1 ∼ idD ∼ τ2 .

We denote by γ the isomorphism from D onto D ⊗D onto D with

γ ((d1 ⊗ d2 ⊗ · · · )⊗ (e1 ⊗ e2 ⊗ . . .)) = (d1 ⊗ e1 ⊗ d2 ⊗ e2 ⊗ · · · )

for d1, e1, d2, e2, . . . ∈ D.
Then γ ◦ηk = τk ∼ id for k = 1, 2. It follows η1 = γ−1 ◦ τ1 ∼ γ−1 ◦ τ2 = η2
Let ψ : D → D unital. Then

ψ ∼ γη1ψ = γ(ψ ⊗ id)η1 ∼ γ(ψ ⊗ id)η2 = γη2 = τ2 ∼ id .

(5): Conditions (β) and (β’) are preserved if one passes over to isomorphic
algebras, e.g. if E ∼= D, then A and E satisfy (β), with E in place of D, if
and only if, A and D satisfy (β).

Let B := D ⊗ D, D := D ⊗ D ⊗ · · · , and let τ : B → B denote the flip
map τ : b1 ⊗ b2 7→ b2 ⊗ b1.

Suppose that A andD satisfy condition (β’). Then A andD⊗B ∼= D satisfy
by part (1), that for every isomorphism ϕ of D⊗B the isomorphism idA ⊗ ϕ
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of A ⊗ D ⊗ B is approximately unitarily equivalent to id = idA ⊗ idD ⊗ idB

by unitaries in U0(A⊗D ⊗B) This applies to ϕ := idD ⊗ τ .
If there is an isomorphism λ from A onto A ⊗ D then there is a unital

morphism Ψ from M(A⊗ (D⊗B)) onto M(A⊗B) with Ψ(A⊗ (D⊗ 1B)) =
A⊗1B and Ψ(a⊗d⊗ b) = λ(a⊗d)⊗ b for a ∈ A, d ∈ D and b ∈ B. It follows,
that idA⊗ τ = Ψ ◦ (idA⊗ idD⊗ τ) ◦Ψ−1 is approximately unitarily equivalent
to idA ⊗ idB by unitaries in U0(M(A⊗B)).

In particular, A and D satisfy condition (β), because τ ◦ η1 = η2. ut
The following proposition is the basic observation of this section. It gener-

alizes [25, thm. 8.2] and observations of Effros and Rosenberg [15]. The proof
uses Proposition 4.8. Here we consider a property that is a bit stronger than
D-absorption.

Proposition 4.11 Suppose A and D are separable, and that D is unital.
Then the following are equivalent:

(1) There is an isomorphism ϕ from A onto A ⊗ D that is approximately
unitarily equivalent to a ∈ A 7→ a⊗ 1 by unitaries in U0(A⊗D).

(2) A and D satisfy condition (β) of Remark 4.10 and F (A) contains a copy
of D unitally.

(3) A and D satisfy condition (β’) of Remark 4.10 and F (A) contains a copy
of D unitally.

(4) There is an isomorphism ψ from A onto A⊗D⊗D⊗ · · · that is approx-
imately unitarily equivalent to a 7→ a⊗ 1 by unitaries in U0(M(A⊗D ⊗
D ⊗ · · · )).

(5) A and D satisfy (β’) and A ∼= A⊗D ⊗D ⊗ · · · ..

In part (5) we don’t suppose that the isomorphism from A onto A ⊗ D is
approximately unitarily equivalent to a 7→ a⊗ 1⊗ 1⊗ · · · .
Proof.
(1)⇒(2): Let ϕ : A→ A⊗D as in part (1). Then a 7→ ϕ(a)⊗1 is approximately
unitarily equivalent to a 7→ a ⊗ 1 ⊗ 1 by unitaries in U0(A ⊗ D ⊗ D). The
same must happen for a 7→ (idA ⊗ σ)(ϕ(a) ⊗ 1), because idA ⊗ σ extends to
an automorphism of M(A ⊗ D ⊗ D). If we let a := ϕ−1(f) for f ∈ A ⊗ D,
then this shows that f → (idA ⊗ σ)(f ⊗ 1) and f → f ⊗ 1 are approximately
unitarily equivalent, In particular, A and D satisfy condition (β) of Remark
4.10, and D is simple and nuclear by Remark 4.10(1).

The non-degenerate endomorphism a 7→ ϕ−1(a⊗ 1) of A is approximately
unitarily equivalent to idA. If u1, u2, . . . ∈ M(A) is a sequence of unitaries
with limu∗nϕ

−1(a⊗ 1)un = a for a ∈ A, then

ϕn : d ∈ D → u∗nM(ϕ−1)(1⊗ d)un ∈M(A)

is a unital *-monomorphism with lim ‖[ϕn(d), a]‖ = 0, i.e.

πω(ϕ1(d), ϕ2(d), . . . ) ∈ (A,M(A))c .
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Since F (A) ∼= (A,M(A))c/Ann(A,M(A)ω) and D is simple, it follows that
F (A) contains a copy of D unitally.

(2)⇒(3): is obvious.
(5)⇒(3): Property (β’) implies that D is simple and nuclear, cf. Remark

4.10(1). If λ is an isomorphism from A⊗D⊗D⊗ . . . onto A, then λ extends
to a unital *-isomorphism from M(A⊗D ⊗D ⊗ . . .) onto M(A). For d ∈ D
let

ϕn(d) := λ(1M(A) ⊗ 1⊗ · · · ⊗ 1⊗ d⊗ 1⊗ · · · ) ∈M(A⊗D ⊗D ⊗ · · · )

with d on n-th position. This defines unital *-morphisms from D into M(A)
with lim ‖[ϕn(d), a]‖ = 0. Now deduce (3) as in the proof of the implication
(1)⇒(2).

(3)⇒(4): By Remark 4.10(1), D must be simple and nuclear, and condition
(β) is satisfied for A and D := D ⊗D ⊗ · · · (in place of D).

By Corollary 1.13, there is also a copy of D := D ⊗ D ⊗ · · · unitally
contained in F (A), because A and D are separable, and D is unital, simple
and nuclear.

Let A ⊂ B := A⊗D (and identify A with A⊗ 1D). We show that A and
B satisfy the assumptions of Proposition 4.8:

Let h : D → F (A) a unital *-morphism. There is an isomorphism λ from
A ⊗ D ⊗ D into Bω with λ(a ⊗ 1 ⊗ 1) = a ∈ Aω ⊂ Bω, λ(a ⊗ d ⊗ 1) =
ρA(h(d) ⊗ a) ∈ DA ⊂ Aω, and λ(a ⊗ 1 ⊗ d) = a ⊗ d ∈ B. λ is give by
application of

(ρA ◦ σ)⊗ idD : A⊗max F (A)⊗D → Aω ⊗D ⊂ Bω

on idA ⊗ h⊗ idD. (Here σ means the flip isomorphism a⊗ b 7→ b⊗ a).
I.e. A⊗D ⊗D may be considered as a non-degenerate C ∗–subalgebra of

A(Bω)A = DB .
The image of λ is a non-degenerate subalgebra of DB . Thus

M(λ) : M(A⊗D ⊗D) →M(DB)

exists and is unital. Since A and D satisfy (β), we find a sequence of unitaries
Wn = M(λ)(Vn) ∈ U0(M(DB)) with limnW

∗
nλ(a⊗ 1⊗ d)Wn = λ(a⊗ d⊗ 1)

for all a ∈ A and d ∈ D. Thus (W1,W2, . . .) satisfies the assumptions of
Proposition 4.8. It follows that there is an isomorphism ψ from A onto B =
A ⊗ D that is approximately inner by unitaries in U0(A ⊗ D), i.e. ψ is as
stipulated in (3).

(4)⇒(1): If we apply the above verified implications (1)⇒(2) to A and
D := D ⊗ D ⊗ · · · in place of D, then we get that condition (β) is satisfied
for A and D. It follows that D is simple and nuclear.

By assumption, there is an isomorphism ψ : A→ A⊗D from A onto A⊗D
such that a ∈ A 7→ a⊗ 1 ∈ A⊗D is approximately unitarily equivalent to ψ
by unitaries in U0(M(A⊗D)).
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It follows that a ∈ A 7→ ψ−1(a ⊗ 1D) ∈ A is approximately unitar-
ily equivalent to idA by unitaries in U0(M(A)). Let λ : D → D ⊗ D the
isomorphism given by λ(d1 ⊗ d2 ⊗ · · · ) := (d2 ⊗ d3 ⊗ · · · ) ⊗ d1. Then
ϕ := (ψ−1 ⊗ idD) ◦ (idA ⊗ λ) ◦ ψ is an isomorphism from A onto A ⊗D and
is approximately unitarily equivalent to a ∈ A 7→ ψ−1(a⊗ 1D)⊗ 1D ∈ A⊗D
by unitaries in U0(M(A ⊗ D)). Thus, the isomorphism ϕ : A → A ⊗ D is
approximately unitarily equivalent to a 7→ a⊗ 1 by unitaries in U0(A⊗D).

(4)⇒(5): Since (4) implies (1), it implies also (2) and (3). Thus (4) implies
condition (β’) for A and D. A⊗A⊗D ⊗D ⊗ . . . is part of (4). ut

Corollary 4.12 Suppose that D is unital and separable, and let D :=
D⊗∞ := D ⊗D ⊗ · · · . Following properties (1)–(4) of D are equivalent:

(1) Any two endomorphisms ϕ and ψ of D are approximately unitarily equi-
valent by commutators un = v∗nw

∗
nvnwn of unitaries vn, wn in D.

(2) The flip automorphism σ : d⊗ e 7→ e⊗d of D⊗D is approximately inner,
(3) D is self-absorbing.
(4) The morphisms η1,∞ : d 7→ d⊗ 1⊗ 1⊗ · · · and η2,∞ : d 7→ 1⊗ d⊗ 1⊗ · · ·

from D into D are approximately unitarily equivalent in D.

Proof. (1)⇒(2): Since D ∼= D⊗D by some isomorphism ψ : D → D⊗D, we
get that ψ−1σψ is approximately unitarily equivalent to idD. Thus, σ is an
approximately inner automorphism of D ⊗D.

(2)⇒(3): D is simple and nuclear by Lemma 4.9(1). Let A := K⊗D, then
A ∼= A⊗D ⊗D ⊗ · · · (by any isomorphism from D to D ⊗D ⊗ · · · ).

Since η1 = σ ◦ η2, we get that idA ⊗ η1 and idA ⊗ η2 are approximately
unitarily equivalent by unitaries in O2⊗D⊗D ⊂M(A⊗D⊗D). The unitary
group of O2⊗D⊗D ∼= O2 is connected. Thus, A and D satisfy condition (β)
(with D in place of D).

It follows that Proposition 4.11 can be applied on A and D. It leads to an
isomorphism ψ from A onto A⊗D that is approximately unitarily equivalent
to a 7→ a⊗ 1. Since D is unital, ψ defines an isomorphism from D ∼= e1,1 ⊗D
onto D⊗D, that is approximately unitarily equivalent to d 7→ d⊗ 1, i.e. D is
self-absorbing.

(3)⇒(4): If D := D⊗∞ is self-absorbing, then A := K ⊗D and D satisfy
part (4) of Proposition 4.11. Thus, A and D fulfill condition (β) by the impli-
cation (4)⇒(2) of 4.11. But this means that idD⊗ηk : D⊗D → D⊗ (D⊗D),
with k = 1, 2 are approximately unitarily equivalent. The latter is an equi-
valent formulation of (4).

(4)⇒(1): A := K and D satisfy condition (β’) of Remark 4.10. Thus, by
part (1) of 4.10, idK ⊗ ψ is approximately unitarily equivalent to idK ⊗ idD
for every unital endomorphism of D := D ⊗ D ⊗ · · · . This implies that any
two unital endomorphisms of D are approximately unitarily equivalent.

It implies that u⊗u∗⊗1⊗· · · ∈ U(D) for u ∈ U(D⊗n) is in the norm closure
of the set of commutators {wv∗w∗v ; v, w ∈ U(D)} in U(D). Indeed: the flip
σn on D⊗n⊗D⊗n extends to an isomorphism λ of D with λ(a⊗b⊗1⊗· · · ) =
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a⊗b⊗1⊗· · · for a, b ∈ D⊗n. Since λ is approximately inner, we get a sequence
of unitaries vn ∈ U(D) with u ⊗ u∗ ⊗ 1 ⊗ · · · = wλ(w∗) = limn wv

∗
nw

∗vn for
w := u⊗ 1⊗ 1⊗ · · · .

IfX ⊂ D is a finite subset of the contractions inD and if v ∈ U(D), then for
every ε > 0 there exists n ∈ N and u ∈ U(D⊗n), such that ‖v∗dv−w∗dw‖ < ε
for d ∈ X where w := u⊗ u∗ ⊗ 1⊗ · · · . Recall here that one can find n such
that the elements of X ∪ {v} have distance < ε/9 from D⊗n ⊗ 1⊗ · · · ⊂ D.

It follows that unital endomorphisms ϕ and ψ of D are approximately
unitarily equivalent by unitaries wn in the set of commutators in U(D). ut

Proposition 4.11 (with A := K⊗D) and Corollary 4.12 immediately imply
the following corollary:

Corollary 4.13 If D is a unital and separable, then D is self-absorbing (in
the sense of Definitions 4.1) if and only if D ∼= D ⊗ D ⊗ · · · and all en-
domorphisms of D are approximately unitarily equivalent by unitaries in the
commutator subgroup of U(D).

Proof. If D ∼= D ⊗ D ⊗ · · · and all endomorphisms of D := D ⊗ D ⊗ · · ·
are unitarily equivalent, then D ∼= D is self-absorbing by Corollary 4.12(3). If
D is self-absorbing, then the implication (1)⇒(4) of Proposition 4.11 applies
to A := K ⊗ D and D. Thus, there is an isomorphism ψ from K ⊗ D onto
(K⊗D)⊗D, such that ψ is approximately unitarily equivalent to a ∈ K⊗D 7→
a⊗ 1. Since D is unital, this implies that D ∼= D ⊗D ⊗ . . .. ut

Corollary 4.14 If A is separable and if there is a unital *-morphism from
M2 ⊕M3 into F (A) then A ∼= Z ⊗A.

It could be that 1F (A) ∈ M2 ⊕ M3 ⊂ F (A) does not imply approximate
divisibility of A in general, cf. Question 3.16.
Proof. Let E := (M2 ⊕ M3) ⊗ (M2 ⊕ M3) ⊗ · · · . There is a sequence of
unital *-morphisms hn from E(Mpn ,Mqn) into E such that gcd(pn, qn) = 1
and pn, qn ≥ n. This defines a unital morphism from Z into Eω. Since Z is
self-absorbing, this implies E⊗Z ∼= E by Theorem 4.5(1). There is a unital *-
morphism from E into F (A) by Corollary 1.13. Thus Z ⊂ F (A) unitally. Since
U(Z) = U0(Z) and Z is tensorially self-absorbing, A ∼= A⊗Z by Proposition
4.4(4,5). ut

Proof of Proposition 4.4:
(1,2,3): D ∼= D⊗D⊗ · · · and every unital endomorphism of D is approxi-

mately inner by unitaries in the commutator group, cf. by Corollary 4.13. In
particular, the flip automorphism of D⊗D ∼= D is approximately inner. Thus
D is simple and nuclear and has at most one tracial state by Lemma 4.9. Since
D is tensorially non-prime, it follows from [6, cor. 3.11(i)], that either D is
purely infinite or D is stably finite. If a unital nuclear C ∗-algebra D is stably
finite then D admits tracial state (by results of B. Blackadar, J. Cuntz and
U. Haagerup).

(3): See Corollary 4.13 or Corollary 4.12(1).
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(4): The pair of algebras (B,D) satisfies condition (β’) by part (3) of
Remark 4.10, because the flip automorphism on D⊗D is approximately inner
by part (2) and Corollary 4.12(2). By the equivalences (1)⇔(3) of Proposition
4.11, B is D-absorbing if and only if there is a copy of D unitally contained
in F (B)

M(K⊗A) contains a unital copy of O2 for every A, and F (A) ∼= F (K⊗A)
for separable A.

(5): By part (3), the maps η2 and η2 from D ∼= D ⊗ D ⊗ · · · into D ⊗
D ∼= D are approximately unitarily equivalent by unitaries in the commutator
subgroup of U(D).

By assumption, the commutator subgroup is contained in U0(D). Thus, by
Remark 4.10(4), the pair of algebras (A,D) satisfies condition (β’) for every
separable algebra A. Now Proposition 4.11 applies: A is D-absorbing if and
only if F (A) contains a copy of D unitally. ut

Proof of Theorem 4.5:
(1): Let B⊗∞ := B ⊗B ⊗ · · · There is a unital *-morphism

ψ : Bω → (B ⊗B ⊗ · · · )c ∼= F (B ⊗B ⊗ · · · ) .

It is the ultrapower ψ := (ψ1, ψ2, . . .)ω of the morphisms ψn : B → B⊗∞ given
by ψn(b) := 1n ⊗ b⊗ 1∞, where 1n+1 := 1n ⊗ 1 and 1∞ := 1⊗ 1⊗ · · · .

If ϕ : D → Bω is unital, then ψ ◦ ϕ is a unital *-morphism from D into
F (B ⊗ B ⊗ · · · ). Since D is simple, a copy of D is unitally contained in
F (B ⊗ B ⊗ · · · ). Thus B ⊗ B ⊗ · · · is stably D-absorbing by Proposition
4.4(4).

If D is quasi-diagonal, then D is unitally contained in Bω for B := M2 ⊗
M3 ⊗ · · · .

Let ψn : E(Mpn ,Mqn) → Dω unital *-morphisms, where pn, qn ≥ n. Then

ψω :
∏
ω

E(Mpn ,Mqn) → (Dω)ω

is a unital morphism. One can see, that there is a unital *-morphism from Z
into

∏
ω E(Mpn ,Mqn). (If limω gcd(pn, qn) = ∞ this is trivial, because then it

contains an ultrapower of matrix algebras.)
Thus, there is a unital morphism from Z into (Dω)ω. On the other hand,

(Dω)ω is the quotient of `∞(`∞(D)) ∼= `∞(D) induced by some other character
ω1 on its center `∞(`∞) ∼= `∞, i.e. (Dω)ω

∼= Dω1 . We obtain that Z ⊂ Dω1

for some free ultrafilter on N ∼= N × N. Since D ∼= D ⊗ D ⊗ · · · and Z is
self-absorbing, D is Z-absorbing.

(2): By Proposition 4.4(4), A is stably D-absorbing if and only if a copy of
D is unitally contained in F (A). If J is a closed ideal of A, then there are unital
*-morphisms from F (A) into F (J) and from F (A) onto F (A/J), cf. Remark
1.15(3). Thus, J and A/J are stably D-absorbing if A is D-absorbing.
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If E ⊂ A is a hereditary C ∗-subalgebra and if J denotes the closed ideal
of A generated by E, then K⊗E ∼= K⊗ J . Hence, E is stably D-absorbing if
A is stably D-absorbing.

Suppose that A = indlim(hn : Bn → Bn+1), where B1, B2, . . . are separa-
ble. Let hn,∞ : Bn → A denote the corresponding natural morphisms. Then
An := hn,∞(Bn) is an increasing sequence of C ∗-subalgebras of A, such that⋃

nAn is dense in A. If Bn is stably D-absorbing, then its quotient An is
stably D-absorbing.

It follows that D is unitally contained in F (An) for n ∈ N. Since D and
A are separable, we get that D is unitally contained in F (A) by Proposition
1.14.

Suppose that B is unital and stably D-absorbing, i.e. there is an isomor-
phism ψ from K⊗B onto K⊗B⊗D that is approximately unitarily equivalent
to a 7→ a⊗ 1 for a ∈ K ⊗B.

Then there exist a unitary u ∈M(K ⊗B ⊗D) such that

u∗ψ(e1,1 ⊗ 1B)u = e1,1 ⊗ 1B ⊗ 1D .

Then there is a unique isomorphism ϕ from B onto B ⊗D with

u∗ψ(e1,1 ⊗ b)u = e1,1 ⊗ ϕ(b)

for b ∈ B, and ϕ is approximately unitarily equivalent to b 7→ b⊗ 1.
(3): Suppose that the commutator group [U(D),U(D)] of U(D) is contained

in U0(D). Let z1, z2, . . . a sequence that is dense in U(D). For n ∈ N there are
un, vn ∈ U(D ⊗D) with

‖((vnun)∗unvn)∗η1(zk)((vnun)∗unvn)− η2(zk)‖ < 1/n ,

and there is a continuous map w : [0, 1/2] → U(D ⊗ D) with w0 = 1 and
w1/2 = (vnun)∗unvn. We define unital completely positive maps Tn : D →
E(D,D) by Tn(d)t := (wt)∗η1(d)(wt) for t ∈ [0, 1/2] and Tn(d)t := (2t −
1)η2(d) + 2(1 − t)Tn(d)1/2 for t ∈ (1/2, 1]. Then Tn is 2/n-multiplicative on
{z1, . . . , zn}. Thus, the restriction of the ultrapower Tω to D ⊂ Dω defines a
unital *-morphism

Ψ : D → E(D,D)ω .

Let A a separable C ∗-algebra and J a closed ideal of A such that J and
A/J are stably D-absorbing. Then there exist unital subalgebras D0 ⊂ F (J)
and D1 ⊂ F (A/J) that are isomorphic to D. Thus E(D,D) ∼= E(D0, D1), and,
by Proposition 1.17, there exits a unital *-morphism h : E(D,D) → F (A). The
superposition hω ◦ Ψ is a unital *-morphism from D into F (A)ω. Since D is
simple and separable, there is a copy of D unitally contained even in F (A)
itself, cf. Proposition 1.14 (with An = A). Hence, A is stably D-absorbing.

Conversely, suppose that the class of separable stablyD-absorbing algebras
is closed under extensions. Then E(D,D) ∼= D ⊗ E(D,D), because E(D,D) is
a unital extension of the D–absorbing algebra D ⊕D by C0(0, 1)⊗D :
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0 → C0((0, 1),D ⊗D) → E(D,D) → D ⊗ 1⊕ 1⊗D → 0 .

In particular, there is a unital *-morphism ψ : D → E(D,D). It is given by
a point-norm continuous path of unital *-morphisms ψt : D → D ⊗ D with
ψ0(D) ⊂ D⊗1 and ψ1(D) ⊂ 1⊗D. For u, v ∈ U(D) we have that ψ0(u∗v∗uv) is
in U0(D⊗D) by the path wt := ψ0(u)∗ψt(v)∗ψ0(u)ψt(v) with w0 = ψ0(u∗v∗uv)
and w1 = 1 ⊗ 1. If ι denotes an isomorphism from D ⊗ D onto D, then ι ◦ ψ
is approximately inner. Since ι(ψ0(u∗v∗uv)) ∈ U0(D), and since U0(D) is a
closed and open normal subgroup of U(D), it follows u∗v∗uv ∈ U0(D).

(4): If the class of stably D-absorbing separable C ∗–algebras is closed
under extensions, then [U(D),U(D)] ⊂ U0(D). The latter implies that every
stably D-absorbing algebra is D-absorbing. ut

We conclude this section with some remarks and questions:
(1) If η1, η2 : D → D⊗D are homotopic then for every separable C ∗–algebra
A there is a natural isomorphism

KK(D, A⊗D) ∼= K0(A⊗D) .

(Here we do not assume that the UCT is valid for D.)
(2) In particular, KK(D,D) ∼= K0(D) with ring-structure given by tensor
product of projections, and KK1(D,D) ∼= K1(D).
(3) Let D be a self-absorbing algebra.

Are η1 and η2 homotopic?
Is cov(D) <∞ ? Is D ∼= D ⊗Z?
Is U(D)/U0(D) → K1(D) an isomorphism if D is self-absorbing ?
Is always K1(D) = 0 for self-absorbing unital D?

(4) Does there exist a nuclear C ∗-algebra A such that A is stably projection-
less, that the flip automorphism of A⊗A is approximately inner (by unitaries
in M(A⊗A)) and with K∗(A) = K∗(C)?

A Elementary properties of ultrapowers.

One has to take a more general and flexible approach to ultrapowers to get a
tool for our proofs: It is useful for our applications to consider bounded subsets
Xn of the closed unit-ball of a Banach spaces Bn (or of L(Bn, Bn)). This is the
most general form of bounded metric spaces (with an given uniform bound
for the diameters). But the needed selection results are part of elementary set
theory (and are rather elementary).

Let ω ⊂ ℘(N) a (fixed) free ultrafilter on N. Then X1 × X2 × · · · with
semi-metric

dω((s1, s2, . . .), (t1, t2, . . .)) := lim
ω
‖sn − tn‖

defines a metric space that is isometric to the (closed) subset
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Xω := {πω(s1, s2, . . .) ; s1 ∈ X1, s2 ∈ X2, . . .}

of the Banach space∏
ω

{B1, B2, . . .} := `∞(B1, B2, . . .)/cω(B1, B2, . . .) .

We suppose now that on each Xn there is given a sequence of functions
f

(1)
n , f

(2)
n , . . . with f

(k)
n : Xn → [0,∞) for k = 1, 2, . . .. Further we suppose

that for fixed k ∈ N the sequence has a common estimate γk < ∞ for the
Lipschitz constants of f (k)

n for n = 1, 2, . . .. (This condition can be relaxed in
applications by ω-lim-existence conditions.)

We can define functions f (k)
ω : Xω → [0,∞] for k ∈ N by

f (k)
ω (πω(s1, s2, . . .)) := ω- lim

n
f (k)

n (sn) ,

because ω- limn f
(k)
n (tn)− f

(k)
n (sn) = 0 , if ω- limn ‖tn − sn‖ = 0.

The basic lemma is:

Lemma A.1 Let X1, X2, . . . any sequence of sets and suppose that for each
n ∈ N there is given a sequence f (1)

n , f
(2)
n , . . . of functions f (k)

n : Xn → [0,∞)
for k = 1, 2, . . .. For k ∈ N, let

f (k)
ω (s1, s2, . . .) := ω- lim

n
f (k)

n (sn) .

Suppose that for every m ∈ N and ε > 0, there is s = (s1, s2, . . .) ∈ X1×X2×
· · · with f (k)

ω (s) < ε for k = 1, . . . ,m.
Then there is t = (t1, t2, . . .) ∈ X1 ×X2 × . . . with

ω- lim
n
f (k)

n (tn) = f (k)
ω (t) = 0

for all k ∈ N.
Moreover, then there is a sequence n1 < n2 < · · · in N such that there are

s` ∈ Xn`
with f (k)

n` (s`) < 2−` for k ≤ `, ` = 1, 2, . . ..

The second part is almost trivial by the fact that any subsequence of a zero-
sequence is a zero-sequence. It does not imply the first part because the infinite
set {n1, n2, . . .} ⊂ N is not necessarily contained in the given free ultrafilter
ω on N.

Proof. We define subsets Xn,m ⊂ Xn by Xn,0 := Xn

Xn,m := {s ∈ Xn ; max(f (1)
n (s), . . . , f (m)

n (s)) < 1/m} .

Then Xn,m+1 ⊂ Xn,m. We let m(n) := sup{m ≤ n ; Xn,m 6= ∅}. For every
k ∈ N, the set Yk of n ∈ N with k < m(n) is in the free ultrafilter ω, because
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there are sn ∈ Xn with ω– limn f
(j)
n (sn) < (2k)−1 for 1 ≤ j ≤ k + 1. Yk ∈ ω

(for all k ∈ N) implies ω– limn 1/m(n) = 0.
By definition of m(n) we find tn ∈ Xn,m(n) ⊂ Xn. Then ω– limn f

(j)
n (tn) =

0 for every j ∈ N, because f (j)
n (tn) ≤ 1/m(n) for n > j.

Second part: We find n1 < n2 < . . . with m(n`) > 2`, because
ω– limn 1/m(n) = 0. Now let s` := tn`

∈ Xn`
. ut

A special case of Lemma A.1 is:

Remark A.2 Let ω a (fixed) free ultrafilter on N, and let X a bounded sub-
set of a Banach space B. Suppose that f1, f2, . . . is a sequence of functions
fk : X → [0, 2].

If for every m ∈ N and ε > 0 there is a sequence s1, s2, . . . ∈ X such that
ω- limn fk(sn) < ε for k = 1, . . . ,m, then there is a sequence (t1, t2, . . .) in X
such that limn fk(tn) = 0 for all k ∈ N.

Let A a C ∗–algebra, 0 < γ < ∞ and suppose that Xn ⊂ L(A) are
subsets with ‖T‖ ≤ γ for all T ∈ Xn (n = 1, 2, . . .). Then

∏
ω{X1, X2, . . .}

denotes the set of ultrapowers Tω : Aω → Aω for Tω = (T1, T2, . . .)ω defined
by Tω(πω(a1, a2, . . .)) := πω(T1(a1), T2(a2), . . .) where (a1, a2, . . .) ∈ `∞(A)
and Tn ∈ Xn for all n ∈ N.

Lemma A.3 Suppose that C ⊂ Aω is a separable subset, 0 < γ < ∞ and
Xn ⊂ L(A) are subsets with ‖T‖ ≤ γ for all T ∈ Xn and n = 1, 2, . . . .

Then the set of restricted maps Tω|C : C → Aω with Tω ∈
∏

ω{X1, X2, . . .}
is point-norm closed.

Proof. Let S : C → Aω a map with the property that for every finite se-
quence c(1), . . . , c(m) ∈ C and ε > 0 there is Tω ∈

∏
ω{X1, X2, . . .} with

‖S(c(j))− Tω(c(j))‖ < ε

for j = 1, . . . ,m. We get that S has Lipschitz constant < 2γ.
Let c(1), c(2), . . . a dense sequence in C, and (a(j)

1 , a
(j)
2 , . . .) ∈ `∞(A),

(b(j)1 , b
(j)
2 , . . .) ∈ `∞(A) representing sequences for c(j) respectively S(c(j)),

j = 1, 2, . . .. Then the functions f (j)
n (T ) := ‖b(j)n − T (a(j)

n ) ‖ on Xn satisfy the
assumptions of Lemma A.1. Thus, there are Sn ∈ Xn with Sω(c(j)) = S(c(j))
for all j ∈ N. Since Sω and S are Lipschitz, it follows that S = Sω|C. ut

Proposition A.4 Suppose that B is a C ∗–algebra and J a closed ideal of
B, that P1, P2, . . . is a sequence of polynomials in in non-commuting variables
x, x∗ with coefficients in Bω, that Vn ⊂ L(B) are subsets of linear operators
of norm ≤ γ <∞, and that C ⊂ Bω is a separable subset.

If for each n ∈ N, ε > 0 and every finite subset Y ⊂ C, there is a contrac-
tion a ∈ Jω with ‖Pk(a, a∗)‖ < ε for k = 1, . . . , n, and ‖Sω(y)−a∗ya‖ < ε·‖y‖
for suitable Sn ∈ Vn and all y ∈ Y .

Then there exist Tn ∈ Vn (n = 1, 2, . . .) and a contraction x0 ∈ Jω with
Pk(x0, x

∗
0) = 0 for all k ∈ N and Tω(c) = x∗0cx0 for all c ∈ C.
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Suppose that, in addition, A ⊂ Bω is σ-unital (respectively is separable)
and a ∈ Ann(A) ∩ Jω (respectively a ∈ (A,B)c ∩ Jω = A′ ∩ Jω) then there is
x0 ∈ Ann(A)∩ Jω (respectively x0 ∈ (A,B)c ∩ Jω) with Pk(x0, x

∗
0) = 0 for all

k ∈ N.

If one takes as Vn the set of maps b 7→ d∗bd with a contraction d ∈ B
(respectively J = B), then the assumption on Vn and a (respectively on
J and a) are trivially satisfied if maxk≤n ‖Pk(a∗, a)‖ < ε.
Proof. The linear operators Sω : Bω → Bω for Sω := (S1, S2, . . .)ω with
Sn ∈ Vn have norm < 2γ. Let c(1), c(2), . . . a dense sequence in C. We find
representing sequences c(k)

1 , c
(k)
2 , . . . ∈ B for c(k) with ‖c(k)

n ‖ ≤ ‖c(k)‖, k, n ∈ N.
Pk(x∗, x) is the sum of products of d(k,j) ∈ Bω, x and x∗. j = 1, . . . , `k.

There are representing sequences d(k,j)
1 , d

(k,j)
2 , . . . ∈ B of d(k,j) with norms

≤ ‖d(k,j)‖. The corresponding non-commutative polynomials P (k)
n (x∗, x) with

coefficients in B have the property that supn ‖P
(k)
n (b∗n, bn)‖ < ∞ for every

(b1, b2, . . .) ∈ `∞(B) and satisfy

πω(P (k)
1 (b∗1, b1), P

(k)
2 (b∗2, b2), . . .) = Pk(b∗ω, bω) .

Let Xn = Vn × {b ∈ J ; ‖b‖ ≤ 1} for n ∈ N. We define

f (k)
n (T, b) := ‖T (c(k)

n )− b∗c(k)
n b‖+ ‖P (k)

n (b∗, b)‖

for (T, b) ∈ Xn and k = 1, 2, . . ..
Then (Xn, f

(1)
n , f

(2)
n , . . .) (n = 1, 2, . . .) satisfies the assumptions of Lemma

A.1.
Thus there exists t = ((T1, b1), (T2, b2), . . .) ∈ X1 × X2 × · · · with

ω- limn f
(k)
n (Tn, bn) = 0. Then Tω = (T1, T2, . . .)ω and x0 := πω(b1, b2, . . .)

are as desired.
To get x0 in Ann(A,B)∩Jω or in (A,B)c we have to add to the polynomials

P1, P2, . . . the polynomials Q1(x, x∗) = xa0 and Q2(x, x∗) = a0x respectively
Qn(x, x∗) = xan − anx, where a0 ∈ A is a strictly positive contraction and
a1, a2, . . . is dense in the unit ball of A. ut

Lemma A.5 If T1, T2, . . . ∈ L(B,B) is a bounded sequence of positive
maps and A ⊂ Bω is a σ-unital C ∗–subalgebra. Then there are contrac-
tions b1, b2, . . . ∈ B+ such that ‖Sn‖ ≤ ‖Tω|A‖ and Sω|A = Tω|A for
Sn := Tn(bn(.)bn).

Proof. Let d ∈ A+ a strictly positive contraction for A and let e =
(e1, e2, . . .) ∈ `∞(B) a positive contraction with πω(e) = d. Then ‖Tω(d1/k)‖ ≤
‖Tω|A‖ =: γ for all k ∈ N.

Let Xn := {te1/j
n ; j ∈ N, 0 < t ≤ 1} and consider the functions f (k)

n (b) :=
max(‖e1/k

n − be
1/k
n ‖, ‖Tn(b2)‖ − γ) on Xn ⊂ B.

Then (Xn, f
(1)
n , f

(2)
n , . . .) (n = 1, 2, . . .) satisfy the assumptions Lemma

A.1, because ‖e1/je1/k − e1/k‖ ≤ k/j and ‖Tω(e2/j)‖ ≤ γ for j ∈ N.
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By Lemma A.1, there is a positive contraction g = (g1, g2, . . .) ∈ `∞(A)
with gn ∈ Xn such that πω(g)d = d and ‖Tn(g2

n)‖ ≤ 1. Thus, Sω|D = Tω|D
for D := dAωd ⊃ A and Sn := Tn(gn(·)gn). ut

B Proofs of results in Section 1.

Proof of Proposition 1.3:
Let a1, a2, . . . ∈ A+ a sequence that is dense in the set of positive contrac-

tions in A.
Consider the non-commutative polynomials P1(x, x∗) := x∗ − x,

P2(x, x∗) := a − x∗xa, P3(x, x∗) := (b + c)x∗x, P3+n(x, x∗) := anx − xan

for n = 1, 2, . . .. An approximate zero for the polynomials Pk(x, x∗) is given
by xn = a1/n: Pk(xn, x

∗
n) = 0 for k 6= 2 and ‖P2(xn, x

∗
n)‖ ≤ 2/n. Thus, by

Proposition A.4, there is a self-adjoint contraction e′ ∈ A′∩Bω with a = e′e′a
and (b + c)e′ = 0. Thus e := e′e′ ∈ (A,B)c is a positive contraction with
ea = a and eb = ec = 0.

If z ∈ A+ is a strictly positive element ofA, then almost the same argument
shows that there is a positive contraction p ∈ Bω with p(z + b) = z + b, i.e.
py = yp = y for all y ∈ C∗(A, b).

Let I a closed ideal of B with b ∈ Iω, and let S1, S2, . . . ∈ V with Sω(c) =
bcb. Consider the non-commutative polynomials Q1 := P1, Q2(x, x∗) := b −
x∗xb, Q3(x, x∗) = (e+ c)x∗x Q3+n := P3+n for n = 1, 2, . . ..

We show below that the sequence of polynomials (Q1, Q2, . . .) have con-
tractive approximate solutions xn ∈ Iω such that for every n ∈ N there is
a sequence S(n)

1 , S
(n)
2 , . . . of contractions in V with x∗nyxn = S

(n)
ω (y) for all

y ∈ A.
By Proposition A.4, there exist contractions Tn ∈ V (n = 1, 2, . . .) and a

contraction f ′ ∈ Iω with Pk(f ′, (f ′)∗) = 0 for all k ∈ N and Tω(c) = (f ′)∗cf ′

for all c ∈ A. Thus (f ′)∗ = f ′ ∈ (A,B)c, and f := f ′f ′ ∈ (A,B)c is a positive
contraction in A′∩Iω with fe = fc = 0 = b−fb and Tω(c) = cf for all c ∈ A.
In particular, fa = fea = 0.

Let E := C∗(A, b), K := span(EbE). Then K is a closed ideal of E,
E = A + K, K ⊂ Iω and K is the closed span of

⋃
n(bA + bAb + Ab)n. It

follows that every element d ∈ K is the limit of finite sums dn =
∑

n unbvn

with un ∈ A ∪ {p} and vn ∈ E ⊂ Bω. Furthermore, bEe = {0} = bEc,
because b(A+Cb)ne = {0} and b(A+Cb)nc = {0} for n ∈ N. Thus (e+c)K =
K(e+c) = {0}. Since E is separable, K contains a strictly positive contraction
h ∈ K+.

We find in C∗(h)+ ⊂ K+ a sequence of positive contractions x1, x2, . . .
with xnxn+1 = xn, ‖h − xnh‖ < 1/n and limn→∞ ‖xnc − cxn‖ = 0 for all
c ∈ E, cf. [29, thm. 3.12.14]. Note that xn(e + h) = 0 for all n ∈ N, that
lim ‖b− x∗nxnb‖ = 0 and xn ∈ Iω.
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We show that for every d ∈ K there is a sequence R1, R2, . . . ∈ V with
supn ‖Rn‖ ≤ ‖d‖2 and Rω(y) = d∗yd: By assumption there is a bounded
sequence S1, S2, . . . ∈ V with Sω(y) = b∗yb for all y ∈ A. Let (first) d be
a finite sum d =

∑
n unbvn with un ∈ A ∪ {p} and vn ∈ E ⊂ Bω, and let

(u(n)
1 , u

(n)
2 , . . .) and (v(n)

1 , v
(n)
2 , . . .) in `∞(B) be representing sequences for un

respectively vn, with ‖v(n)
k ‖ ≤ ‖vn‖ and ‖u(n)

k ‖ ≤ ‖un‖. Then the map Rk,
defined by

Rk(y) :=
∑
m,n

(v(m)
k )∗Sk((u(m)

k )∗yu(n)
k )v(n)

k ,

is in V, ‖Rk‖ ≤ ‖Sk‖(
∑

n ‖vn‖)2(
∑

n ‖un‖)2 and

Rω(y) =
∑
m,n

(vm)∗Sω((um)∗yun)vn .

Since py = yp = y for y ∈ A, we get Rω(y) = d∗yd for y ∈ A.
By Lemma A.5 we find another sequence R′1, R

′
2, . . . ∈ V with R′ω(y) =

d∗yd for y ∈ A and ‖R′n‖ ≤ ‖d‖2. This happens for every d ∈ K by Lemma
A.3, because every d ∈ K can be approximated in norm by finite sums∑

n unbvn of the above considered type. Thus, Proposition A.4 applies to
Q1, Q2, . . ., Vn := V, γ = 1 and I (in place of J there).

Now we can repeat the above arguments with c, J, e + f, CB(B,B) and
c−x∗xc, (f + e)x∗x in place of b, I, e+ c,V and Q2, Q3 . We get a self-adjoint
contraction g′ ∈ A′ ∩ Jω, such that with g := g′g′ ∈ (A,B)c, g ∈ Jω, gc = c,
ge = gf = 0. Then e, f, g are as stipulated. ut

Proof of Proposition 1.6: Suppose that A is a separable C ∗–subalgebra
of C. The set of all positive elements in A′ ∩ I of norm < 1 build an an
approximate unit for I by Definition 1.5.

Let b ∈ C+ with πI(b) ∈ πI(A)′ ∩ C/I. Then ab − ba ∈ I for all a ∈ A.
[b, A] is contained in a separable C ∗–subalgebra D of I. Let d ∈ D+ strictly
positive. Since I is a σ-ideal of C there exists a positive contraction e ∈ A′∩ I
with ed = d. Then c := (1− e)b(1− e) satisfies c ∈ A′ ∩C and πI(c) = πI(b).
Thus

0 → A′ ∩ I → A′ ∩ C → πI(A)′ ∩ (C/I) → 0

is short exact.
Let D ⊂ πI(A)′ ∩ (C/I) a separable C ∗–subalgebra and B ⊂ A′ ∩ C a

separable C ∗–algebra with πI(B) = D. If d denotes a strictly positive element
of B ∩ I, then there is a positive contraction e ∈ C∗(A ∪B)′ ∩ I with ed = d.

There is a *-morphism λ : C0(0, 1]⊗B → A′∩C with λ(fn
0 ⊗b) = (1−e)nb

for b ∈ B and n ∈ N. It follows λ(C0(0, 1] ⊗ (B ∩ I)) = {0} and πI(λ(f)) =
πI(f(1)) for f ∈ C0((0, 1], B) ∼= C0(0, 1] ⊗ B. Thus there is a *-morphism
ψ : C0((0, 1] ⊗ D) → A′ ∩ C with ψ(f0 ⊗ h) = λ(f0 ⊗ b) for b ∈ B with
πI(b) = h. ψ satisfies πI ◦ ψ(f0 ⊗ h) = h for h ∈ D.

Since Ann(πI(A), C/I) ⊂ πI(A)′ ∩ (C/I), for every positive f ∈
Ann(πI(A), C/I) there is a positive element b ∈ A′ ∩ C with πI(b) = f . Let
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a0 ∈ A+ a strictly positive element of A. Then ba0 ∈ I. There is a positive
contraction e ∈ C∗(b)′ ∩ I with eba0 = ba0. It follows that c := b(1− e) ∈ C+

satisfies ca0 = 0 and πI(c) = f . ut

Lemma B.1 Suppose that A is a σ-unital non-degenerate C ∗-subalgebra of
a C ∗–algebra D, that E ⊂ A is a full and hereditary σ-unital C ∗–subalgebra
of A, and let DE := EDE. Then the natural map from A′ ∩ M(D) into
E′ ∩M(DE) is a *-isomorphism (onto E′ ∩M(DE)).

Proof. The natural *-morphism is given by ι(T )c = Tc for T ∈ A′ ∩M(D)
and c ∈ DE . TDE ⊂ DE , because T commutes with E ⊂ A. If ι(T ) = 0, then
TAEA = ATEA = {0} because T commutes with A. It follows TA = {0} and
T = 0, because span(AEA) is dense in A and span(AD) is dense in D. Thus
ι is a *-monomorphism from A′ ∩M(D) into E′ ∩M(DE), and it suffices to
construct a *-morphism κ : E′ ∩M(DE) → A′ ∩M(D) with ι ◦ κ = id.

One can see, that (A⊗K)′∩M(D⊗K) = (A′∩M(D))⊗1 and A′∩M(D) =
M(A)′ ∩M(D) for all non-degenerate pairs A ⊂ D.

There is an element g ∈ A⊗K such that g∗g is a strictly positive element of
A⊗K and gg∗ is a strictly positive element of E⊗K, cf. [7]. The polar decom-
position g = v(g∗g)1/2 = (gg∗)1/2v of g in (A⊗K)∗∗ defines an isomorphism ψ
from E⊗K onto A⊗K by ψ(e) := v∗ev. Clearly, ψ extends to an isomorphism
fromM(DE⊗K) ontoM(D⊗K) such that ψ(T ) = v∗Tv in (D⊗K)∗∗. It maps
to M(D⊗K) because ψ(T )x = limn(g∗g+1/n)−1/2g∗Tg(g∗g+1/n)−1/2x for
x ∈ D ⊗K.

If T ∈M(DE⊗K) commutes with E⊗K, then ψ(T ) commutes with A⊗K
and ψ(T )y = Ty for all y ∈ DE ⊗K, because Tg(g∗g + 1/n)−1/2(gg∗)1/ky =
g(g∗g + 1/n)−1/2(gg∗)1/kTy for all y ∈ DE ⊗K.

Thus, there is a *-morphism κ from E′ ∩M(DE) into A′ ∩M(D) with
κ(S)⊗1 = ψ(S⊗1). We have ι(κ(S))(c)⊗p = ψ(S⊗1)(c⊗p) = (S⊗1)(c⊗p)
for c ∈ DE and p ∈ K. Hence ι ◦ κ = id. ut

Proof of Proposition 1.9: (1) is obvious.
(2)+(3): Let Y = {y1, y2, . . .} ⊂ Bω, a0 ∈ A+ a strictly positive element of

A, and c := (1 + ‖d‖)−1d with d := a0 +
∑

n 2−n(1 + ‖yn‖2)−1(yny
∗
n + y∗nyn).

By Corollary 1.7 there exists a positive contraction e ∈ Bω with ec = c. Thus
ea0 = a0 = a0e and ey = y = ye for all y ∈ Y .

If e ∈ Bω is any positive contraction with ea0 = a0 then ea = a = ae for
all a ∈ DA,B ⊃ A. In particular, e ∈ (A,B)c. If b ∈ (A,B)c ⊂ {a0}′∩Bω, then
(eb−b) and (be−b) are in Ann(a0, Bω) = Ann(A,Bω). Thus e+Ann(A,Bω) =
1 in F (A,B).

(4): The natural *-morphism is given by

b ∈ N (DA,B) 7→ Lb ∈M(DA,B) ⊂ L(DA,B) ,

where Lb(a) := ba for a ∈ DA,B , and involution on M(DA,B) is defined by
t∗(a) := t(a∗)∗ for a ∈ DA,B and t ∈M(DA,B). Clearly, this is a *-morphism
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with kernel Ann(A,Bω). DA,B embeds naturally into M(DA,B) by b 7→ Lb

for b ∈ DA,B .
Let t ∈ M(DA,B)+ and let a0 ∈ A a strictly positive contraction. Then

cn := a
1/n
0 ta

1/n
0 ∈ DA,B converges to t in the strict topology. In particular,

Lcn : C∗(a0) → Bω converges in point-norm topology to t|C∗(a0).
Let S denote the set of maps Lb : B → B with b ∈ B+ and ‖b‖ ≤ 1. Then

Lcn ∈ Sω for every n ∈ N. By Lemma A.3 (or by [22, proof of lem. 2.13])
there exists a sequence Lbn ∈ S with t|C∗(a0) = (Lb1 , Lb2 , . . .)ω|C∗(a0). Thus,
b := πω(b1, b2, . . .) ∈ Bω satisfies b ≥ 0 and ba

1/n
0 = t(a1/n

0 ) for n ∈ N. Since,
a0 is a strictly positive element of DA,B , it follows that b ∈ N (DA,B) and
Lb = t.

(5): Since Ann(A,Bω) = Ann(DA,B , Bω), the kernel is Ann(A,Bω) ⊂
(A,B)c. Clearly, the image of (A,B)c in M(DA,B) commutes with A. If c ∈
M(DA,B) commutes with A and is the image of b ∈ N (DA,B), then [b, A] ⊂
Ann(A,Bω). Thus [b, a1a2] = 0 for a1, a2 ∈ A. Since A = A · A, it follows
b ∈ (A,B)c. Hence the natural epimorphism from N (DA,B) onto M(DA,B)
defines a *-isomorphism η from F (A,B) = (A,B)c/Ann(A,Bω) onto A′ ∩
M(DA,B) with ρA,B(g ⊗ a) = η(g)a for g ∈ F (A,B) and a ∈ A.

(6): If e = e2 ≥ 0 is the unit of (A,B)c, and b ∈ Bω is a positive contraction
with be = 0, then e+Ann(A,Bω) is the unit of F (A,B) and ba = bρA(1⊗a) =
bea = 0 for a ∈ A, i.e. b ∈ Ann(A,Bω). Since Ann(A,Bω) a closed ideal of
(A,B)c, it follows b = 0. Thus e is the unit of Bω.

If f is the unit element of Bω and (f1, f2, . . .) ∈ `∞(B) is a representing
sequence of positive contractions for f , then g :=

∑
n 2−nfn satisfies ‖g‖ ≤ 1

and fn ≤ 21/ng1/n2
. Hence f = h for h := πω(g1/4, g1/9, . . .). It follows that

zero can not be in the spectrum of g, i.e. that B is unital.
The other implications are obvious.
(7): Clearly, if B is unital and 1B ∈ A, then Ann(A,Bω) = {0}.
If Ann(A,Bω) = {0} then (A,B)c ∼= F (A,B). Thus (A,B)c and B are

unital by parts (1) and (6). Let a0 ∈ A is a strictly positive contraction for
A, then 1B ∈ DA,B = a0Bωa0 by Remark 2.7. It follows that a0 is invertible
in Bω, i.e. 1B ∈ A.

(8): Let E := dAd. Then E is a full σ-unital hereditary C ∗–subalgebra of
A and dDA,Bd = DE,B = EDA,BE.

A natural *-morphism ι from A′ ∩M(DA,B) into E′ ∩M(DE,B) is given
by ι(T )c := Tc for T ∈ A′ ∩M(DA,B) and c ∈ DE,B . It is a *-isomorphism
from A′ ∩M(DA,B) onto E′ ∩M(DE,B) by Lemma B.1, because A is a σ-
unital non-degenerate subalgebra of DA,B , E ⊂ A is a full hereditary σ-unital
C ∗-subalgebra of A, and DE,B = EDA,BE.

Let η1 : F (A,B) → A′∩M(DA,B) and η2 : F (E,B) → E′∩M(DE,B) the
isomorphisms from part (5), then ψ := η−1

2 ◦ ι ◦ η1 is a *-isomorphism from
F (A,B) onto F (E,B) with ρE,B(ψ(g)⊗ a) = ρA,B(g⊗ a) for a ∈ E ⊂ A and
g ∈ F (A,B).



50 Eberhard Kirchberg

(9): Suppose that C ⊂ B is a hereditary C ∗–subalgebra with A ⊂ Cω ⊂
Bω. Then DA,C = DA,B ⊂ Cω. Since A is σ–unital, the natural *-morphisms
N (DA,C) →M(DA,C) and N (DA,B) →M(DA,C) are epimorphisms by part
(4), and map (A,C)c respectively (A,B)c onto A′∩M(DA,C). Thus (A,B)c =
(A,C)c + Ann(A,Bω). Because Ann(A,Cω) = Ann(A,Bω) ∩ Cω, it follows
F (A,B) ∼= F (A,C). ut

Proof of Proposition 1.12:
Let H∞ denote the free semi-group on countably many generators X :=
{x1, x2, . . .} with involution given by (y1 ·y2 · · · yn)∗ := yn · · · y2 ·y1 for yi ∈ X,
and let C∗(H∞) be the full C ∗–hull C∗(`1(H∞)) of the Banach *-algebra
`1(H∞). C∗(H∞) is projective in the category of all C ∗–algebras.

Since (C∗(A,B), B)c ⊂ (A,B)c and Ann(C∗(A,B), Bω) ⊂ Ann(A,Bω), it
suffices to consider the case where B ⊂ A to get (1) also for general separable
A ⊂ Bω. So we proof the strong result (2) in case B ⊂ A.

Let a0 ∈ A+ a strictly positive contraction for A with ‖a0‖ = 1. b1 :=
a0, b2, . . . ∈ A+, d1 := 1, d2, . . . ∈ D+ sequences that are dense in the set of
positive contractions of norm one in A respectively in D, and let f0 ∈ B+

denote a strictly positive contraction for B. For each n ∈ N there are

(1) a sequence c(n)
1 , c

(n)
2 , . . . ∈ B+ with πω(c(n)

1 , c
(n)
2 , . . .) = bn and ‖c(n)

k ‖ = 1,
(2) a sequence e(n)

1 , e
(n)
2 , . . . ∈ B+ with en := πω(e(n)

1 , e
(n)
2 , . . .) ∈ Bc, ‖e(n)

k ‖ =
1, and en + Ann(B) = dn, and

(3) a sequence µ
(n)
1 , µ

(n)
2 , . . . ∈ B∗ of pure states on B with µ

(n)
ω (f0en) =

‖f0en‖ = ‖ρB(dn ⊗ f0)‖.

For k ∈ N, we define *-morphisms θk : C∗(H∞) → B by θk(xn) := e
(n)
k

for the generators {x1, x2, . . .} of H∞. Further let G := C∗(e1, e2, . . .), and
Yn := {c(j)k ; k, j ≤ n}.

θω = (θ1, θ2, . . .)ω : h ∈ C∗(H∞) 7→ πω(θ1(h), θ2(h), . . .) ∈ G ⊂ Bc ⊂ Bω

is an epimorphism from C∗(H∞) onto G.
Let h1 a strictly positive contraction for (θω)−1(G ∩ Ann(B)) and h2 a

strictly positive contraction for C∗(H∞) with θω(h2) + Ann(B) = 1 in F (B).
Below we select sub-sequences (θkm

)m∈N and (µ(n)
km

)m∈N of (θk)k∈N respec-

tively (µ(n)
k )k∈N (for n = 1, 2, . . .) such that the morphism ϕ := (θk1 , θk2 , . . .)ω

from C∗(H∞) ⊂ C∗(H∞)ω into (A,B)c = A′ ∩ Bω satisfies ϕ(h1)a0 = 0,
ϕ(h2)a0 = a0 and λ(ϕ(xn)f0) = ‖ρB(dn ⊗ f0)‖ for λ := (µk1 , µk2 , . . .)ω, i.e.

lim
m→ω

µ
(n)
km

(θkm(xn)f0) = ‖ρB(dn ⊗ f0)‖ .

Indeed, we define for each m ∈ N the subsets Qm, Rm, Sm, Tm ⊂ N as the
set of k ∈ N with ‖θk(xj)y − yθk(xj)‖ < 1/m for all y ∈ Ym and j ≤ m,
|µ(j)

k (θk(xj)f0) − ‖ejf0‖| < 1/m for j ≤ m, ‖θk(h1)b
(1)
j ‖ < 1/m for j ≤ m,
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respectively ‖b(1)j − θk(h2)b
(1)
j ‖ < 1/m for j ≤ m. Then Qm, Rm, Sm, Tm ∈ ω

and, hence, Wm := Qm ∩ Rm ∩ Sm ∩ Tm ∈ ω. In particular, Wm is infinite.
Since W1 ⊃ W2 ⊃ W3 ⊃ · · · and Wm is not finite, we find km ∈ Wm such
that k1 < k2 < · · · . The sub-sequence k1, k2, . . . is as desired.

The above defined map h ∈ C∗(H∞) 7→ ϕ(h)+Ann(A,B) ∈ F (A,B) maps
h2 to the unit of F (B) and h1 to zero. Thus it defines a unital *-morphism
γ1 : D → F (A,B) with

γ1(θω(h) + Ann(B)) = ϕ(h) + Ann(A,B)

for h ∈ C∗(H∞). Since Ann(B) is an ideal of Bc ⊃ (A,B)c and contains
Ann(A,Bω) we can compose γ1 with the morphism F (A,B) → F (B) and get
γ2 : D → F (B) with

γ2(θω(h) + Ann(B)) = ϕ(h) + Ann(B) .

Then ‖ρB(γ2(dn)⊗ f0)‖ = ‖ϕ(xn)f0‖ ≥ ‖ρB(dn⊗ f0)‖ for n = 1, 2, . . .. Thus,
‖ρB(γ2(d)⊗ f0‖ ≥ ‖ρB(d⊗ f0)‖ > 0 for all d ∈ D+ \ {0}, i.e. γ2 : D → F (B)
is faithful.

By Corollary 1.8 there exists a *-morphism ψ : C0((0, 1], D) → (A,B)c

with ψ(f) + Ann(A,B∞) = γ2(f(1)) for f ∈ C0((0, 1], D). ψ is as desired. ut

Proof of Corollary 1.13: If A is separable and C,B1, B2, . . . ⊂ F (A)
are separable unital C ∗-subalgebras, then we get by induction unital sepa-
rable C ∗–subalgebras C1 := C ⊂ C2 ⊂ . . . ⊂ F (A) and unital *-morphisms
ψn : Cn ⊗max Bn → F (A) with ψn|1 ⊗ Bn faithful and ψn|Cn = id. Here we
let Cn+1 := ψn(Cn ⊗max Bn). This follows from Corollary 1.8 and part (2)
of Proposition 1.12 (with B,A and D replaced by A, C∗(λ(C∗((0, 1], Cn)), A)
and Dn respectively).

Note that C ⊂ C2 ⊂ C3 ⊂ . . . and that there is a natural unital *-
homomorphism ψ from C⊗maxB1⊗maxB2⊗max. . . onto the closure of

⋃
n Cn ⊂

F (A) with the properties as stipulated. ut

Proof of Proposition 1.14: Let C∗(H∞) as in the proof of Propo-
sition 1.12, and let ak ∈ Ak a strictly positive contraction of Ak with
‖(1 − ak)ak−1‖ < 2−k−1, and a0 :=

∑
k∈N 2−kak ∈ A+. There are *-

morphisms ϕk : C∗(H∞) → Ac
k ⊂ (Ak, A)c such that the morphisms ψk(h) :=

ϕ(h) + Ann(Ak) ∈ F (Ak) have the property that

ψω : C∗(H∞) →
∏
ω

{F (A1), F (A2), . . .}

maps C∗(H∞) onto A. Let h1 ∈ C∗(H∞)+ a strictly positive element of the
kernel of ψω, and let h2 ∈ C∗(H∞)+ a strictly positive contraction for C∗(H∞)
with ψω(h2) = 1.

Since C∗(H∞) is projective, there are *-morphisms ϕ(k)
n : C∗(H∞) → A

with (ϕ(k)
1 , ϕ

(k)
2 , . . .)ω = ϕk. It turns out that for suitable λm = ϕ

(km)
`m

holds:
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λ := (λ1, λ2, . . .)ω : C∗(Hω) → Aω

has the properties λ(C∗(Hω)) ⊂ Ac, λ(h1)a0 = 0 and λ(h2)a0 = a0. Indeed:
apply Remark A.2 with X = {ϕk

n ; n, k ∈ N} ⊂ L(C∗(Hω), A) and functions
fk : X → [0, 2] given by

fk(ϕ) := max{‖ϕ(h1)a0‖, ‖ϕ(h2)a0 − a0‖, ‖[ϕ(xj), bi]‖ ; i, j ≤ k} ,

where b1, b2, . . . is a dense sequence in the unit ball of A. ut

Proof of Corollary 1.16: Clearly, Jω is an essential ideal of Bω if J is
an essential ideal of B. Since (A, J)c = Jω ∩ (A,B)c is a σ-ideal of (A,B)c (cf.
Corollary 1.7), we get from Proposition 1.6 that (A, J)c is a non-degenerate
C ∗–subalgebra of Jω. If the image d+Ann(A,Bω) in F (A,B) of d ∈ (A,B)c

+

is orthogonal to F (A, J), then (A, J)cd ⊂ Ann(A,Bω).
Let a0 ∈ A+ a strictly positive element of A. We have Jωda0 = {0},

because (A, J)c is non-degenerate. Thus da0 = 0 and d ∈ Ann(A,Bω). Hence
F (A, J) is an essential ideal of F (A,B). ut

Proof of Proposition 1.17: Note that E(D0, D1) is naturally isomorphic
to the quotient of cone(D0)⊗max cone(D1) by the ideal generated by

((f0 ⊗ 1D0)⊗ 1) + (1⊗ (f0 ⊗ 1D1))− 1 .

Here, cone(D0) ⊂ C([0, 1], D0) means the unitization of C0((0, 1], D0). We
denote the natural epimorphism from cone(D0)⊗maxcone(D1) onto E(D0, D1)
by η.

Let π := (πJ)ω : Bω → (B/J)ω denote the the ultrapower of the epimor-
phism πJ from B onto B/J . (The kernel of π is Jω and π(Bω) = (B/J)ω.)

Let A1 := C∗(A + J). Note that π(A1) = π(A) ⊂ (B/J)ω, (A1, B)c ⊂
(A,B)c, and that π : (A1, B)c → (B/J)ω maps F (A1, B) = (A1, B)c onto
(π(A), B/J)c = F (π(A), B/J) (cf. Remark 1.15). Thus, we can suppose, that
J ⊂ A ⊂ Bω.

It suffices to find a unital *-morphismH from cone(D0)⊗maxcone(D1) into
(A,B)c = A′∩Bω withH((f0⊗1)⊗1)+H(1⊗(f0⊗1)) = 1 . Below we construct
*-homomorphisms h1 : C0((0, 1], D1) → (A,B)c and h0 : C0((0, 1], D0) →
(A,B)c with commuting images, such that h0(f0 ⊗ 1) + h1(f0 ⊗ 1) = 1 and
π(h1(f)) = f(1) for all f ∈ C0((0, 1], D1). There is a unique unital *-morphism

H : cone(D0)⊗max cone(D1) → (A,B)c

with H(g⊗ 1) = h0(g) for all g ∈ C0((0, 1], D0) and H(1⊗ f) = h1(f) for f ∈
C0((0, 1], D0). Then H has the desired property and π(H(1⊗f)) = f(1) ∈ D1

for f ∈ cone(D1). The unital *-morphism h : E(D0, D1) → (A,B)c = F (A,B)
with h ◦ η = H satisfies π(h(f)) = f(1) for f ∈ cone(D1).

Jω ∩ (A,B)c is a σ-ideal of (A,B)c (cf. Corollary 1.7) and

0 → A′ ∩ Jω → (A,B)c → (π(A), B/J)c
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is short-exact and strongly locally liftable (cf. Remark 1.15). By Proposition
1.6, there exists a *-morphism ϕ : C0((0, 1], D1) → (A,B)c with π(ϕ(f)) =
f(1) ∈ D1 for f ∈ C0((0, 1], D1). In particular, 1 − ϕ(f0 ⊗ 1) ∈ Jω. Let
D2 := ϕ(C0((0, 1], D1)). Then ϕ(C0((0, 1), D1)) = Jω ∩ D2 ⊂ Jω ∩ (A,B)c.
The unital C ∗–subalgebra G := C∗(A,D2) of Bω is separable. Jω∩G contains
1 − ϕ(f0 ⊗ 1), J , and ϕ((0, 1), D1) = Jω ∩ D2. Let g0 a strictly positive
element of Jω ∩ G. Since Jω is a σ-ideal of Bω (by Corollary 1.7), there is
a positive contraction e ∈ G′ ∩ Jω with eg0 = g0. Then eb = be for all
b ∈ G ⊃ A and ej = j for all j ∈ Jω ∩G ⊃ J . In particular, e ∈ (A,B)c and
(1 − e)(1 − ϕ(f0 ⊗ 1)) = 0. Since e commutes element-wise with D2, we can
modify ϕ as follows:
There is a unique *-morphism h1 : C0((0, 1], D1) → Bω with

h1(fn
0 ⊗ d) = (1− e)nϕ(fn

0 ⊗ d)

for d ∈ D1 and n ∈ N. The *-morphism h1 maps C0((0, 1], D1) into (A,B)c and
π(h1(f)) = f(1) ∈ D1 for f ∈ C0((0, 1], D1). Note that h1(f0 ⊗ 1) = (1 − e).
Now let G1 := C∗(eG, e) ⊂ Jω. Then e is a strictly positive element of G1

and is in the center of G1, because e ∈ (G, J)c.
By Proposition 1.12 there exists a *-morphism ψ from C0((0, 1], D0) into

(G1, J)c = G′1 ∩ Jω with ψ(f0 ⊗ 1)b = b for all b ∈ G1, i.e.

θ : d ∈ D0 7→ ψ(f0 ⊗ d) + Ann(G1, Jω) ∈ F (G1, J)

is a unital *-morphism from D0 into F (G1, J). Since e ∈ G1 commutes with
the image of ψ we can modify ψ as follows:
There is a unique *-morphism h0 : C0((0, 1], D0) → Bω with

h0(fn
0 ⊗ d) = enψ(fn

0 ⊗ d) = ρG1(θ(d)⊗ en)

for d ∈ D0 and n ∈ N.
Let b ∈ G and d ∈ D0, then

benh2(fn
0 ⊗ d) = h2(fn

0 ⊗ d)ben = enψ(fn
0 ⊗ d)b

for all b ∈ G, n ∈ N. Thus, h0 maps C0((0, 1] ⊗ D0) into G′ ∩ Bω, i.e. the
image of h0 is in (A,B)c and commutes element-wise with the image of h1.
Furthermore, h0(f0⊗1) = ψ(f0⊗1)e = e because e ∈ G1. Hence, h1, h0 define
h (via H) with the stipulated properties. ut

C Some calculations with KTP

For convenience of the reader we add here some calculations that help to verify
some of the remarks in Section 4.
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Proof of Remark 4.6: Suppose that D is self-absorbing. By Proposition
4.4, D is simple, is nuclear, has a unique tracial state or is purely infinite, and
D ⊂ F (D).

If [1] = 0 in K0(D) then D can not have a tracial state. Thus D is purely
infinite and O2 is unitally contained in D ⊂ F (D). Hence, D ∼= O2 by [23] (or
[20, p. 135]).

If D is tensorially self-absorbing, then D⊗O∞ is tensorially self-absorbing
simple p.i.s.u.n. algebra with K∗(D ⊗O∞) = K∗(D).

Suppose that K0(D) 6= 0, that D is a p.i.s.u.n. algebra and that D satisfies
the KTP, i.e. that with A = B = D there are (unnaturally) splitting short-
exact sequences

0 → Tens(A,B, α) → Kα(A⊗B) → Tor(A,B, α) → 0

for A = B = D and α ∈ {0, 1}. Here

Tens(A,B, α) := (Kα(A)⊗K0(B))⊕ (K1−α(A)⊗K1(B))

and,

Tor(A,B, α) := Tor(K0(A),K1−α(B))⊕ Tor(K1(A),Kα(B)).

The monomorphism Kα(D)⊗K0(D) → Kα(D⊗D) is induced by [x]α⊗[p]0 7→
[x⊗ p]α for projections p ∈ D and projections or unitaries in D.

The isomorphisms Kα(D) ⊗ [1D]K0
∼= Kα(D ⊗ D) imply that K1(D) ⊗

K1(D) = 0, and that Tor(Kα(D),Kα(D)) = 0 for α = 0, 1. Thus K0(D) and
K1(D) are torsion-free (because all Abelian groups with a non-zero torsion
element have some Zp or some p-Prüfer-group Z[ 1p ]/Z as direct summand, cf.
[16, cor. 27.3]). Therefore, K1(D)⊗K1(D) = 0 implies K1(D) = 0. The flip on
D⊗D induces the flip onK0(D)⊗K0(D) ∼= K0(D⊗D), i.e. [1]⊗Zx = x⊗Z [1] in
K0(D)⊗K0(D) for x ∈ K0(D). This means that there are non-zero m,n ∈ Z
with m[1] = nx. Thus K0(D) is a unital subring of the rational numbers Q (if
K0(D) 6= 0).
If we now suppose in addition that D satisfies the UCT, then the classification
of simple p.i.s.u.n. algebras yields D = O∞ if K0(D) ∼= Z, and

D = O∞ ⊗ (
⊗
p∈X

Mp∞) ,

where X is the set of prime numbers with 1/p ∈ K0(D) ⊂ Q if D 6∼= O2,O∞.
If D is not purely infinite, then D has a unique tracial state τ , and

τ defines an order preserving isomorphism from K0(D) onto the subring
τ(K0(D)) of the rational numbers. It is an order isomorphism if and only
if (K0(D),K0(D)+) is weakly unperforated.

Thus, the given list of algebras exhausts all possible Elliott invariants that
could appear for the algebras D ⊗Z in the UCT-class. ut
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Proof of Remarks 4.3: (1): The Cuntz algebra O2 is isomorphic to
D := D ⊗ D ⊗ . . ., because O2 is unitally contained in F (D) (cf. proof of
Remark 2.17). Since O2

∼= O2 ⊗ D, η1 and η2 map D into (different) unital
copies of of O2 in D ⊗D. Thus [η1] = 0 = [η2] in KK(D,D ⊗D). It implies
that η1 and η2 are approximately unitarily equivalent (they even are unitarily
homotopic by a basic result of classification).

(2): a) P∞ ⊗ P∞ is stably isomorphic to to O∞ (by the classification
theorem for simple p.i.s.u.n. algebras in the UCT-class and by the KTP).

b) The unit of O∞ is Murray–von-Neumann equivalent to the the Bott
projection p(U ⊗ 1, 1 ⊗ U) ∈ M2(P∞ ⊗ P∞) (defined below) from a unitary
U ∈ P∞ such that [U ] = 1 in Z ∼= K1(P∞). This follows from the KTP and
the definition of the isomorphism K1(P∞)⊗K1(P∞) ∼= K0(P∞⊗P∞) in the
KTP.

c) The K0-class of a Bott projection p(V,W ) for commuting unitaries V,W
reverses its sign if V and W will be interchanged:
Let V,W commuting unitaries in a unital algebra B, and let hV,W denote
the *-morphism from C(S1) ⊗ C(S1) into B with hV,W (u0 ⊗ 1) = V and
hV,W (1 ⊗ u0) = W . The Bott projection p(V,W ) ∈ M2(B) is the image
hV,W ⊗ id2(pBott) ∈M2(C∗(V,W )) ⊂M2(B) of the canonical Bott projection
pBott ∈M2(C(S1)⊗ C(S1)).

pBott is contained in the unital subalgebra (C0(R)⊗C0(R))+C ·1 ∼= C(S2)
of (C0(R) + C1) ⊗ (C0(R) + C1) ∼= C(S1) ⊗ C(S1) and [pBott] − [1 ⊗ e1,1]
generates K0(C0(R2)) ∼= Z. Let D := {z ∈ C ; |z| ≤ 1} the closed unit disk in
C, S1 = ∂D its boundary and ψ : z = x+ iy ∈ C ∼= R2 7→ (1+ |z|2)−1/2z ∈ D
the natural homeomorphism from R2 onto D \ S1. The 6-term exact K∗-
sequence of the corresponding exact sequence

0 → C0(R)⊗ C0(R) → C(D) → C(S1) → 0

defines a boundary isomorphism ∂ from K1(C(S1)) onto K0(C0(R)⊗C0(R)).
This isomorphism is functorial with respect to *-morphisms χ̂ of C(S1) re-
spectively of C0(R) ⊗ C0(R) that are induced by continuous maps χ from
(D,S1) into (D,S1).

The flip (x, y) ∈ R2 7→ (y, x) ∈ R2 is induced by ψ−1(χ(ψ(x + iy))),
where χ is the homeomorphism of D given by χ(w) := iw for w ∈ D. The
homeomorphism χ|S1 reverses the orientation of S1, hence

K1(χ̂|S1) : K1(C(S1)) → K1(C(S1))

is the isomorphism n 7→ −n of K1(C(S1)) ∼= Z. Therefore, the flip automor-
phism of C0(R) ⊗ C0(R) defines the automorphism of K0(C0(R2)) ∼= Z that
changes signs. The restriction of hV,W to C0(R)⊗C0(R) defines a group mor-
phism µV,W from Z ∼= K0(C0(R2)) to K0(C∗(V,W )) (and then to K0(B) for
commuting unitaries V,W ∈ B) with µV,W (1) = [pV,W ]− [1⊗ e1,1].

d) By a) and c), the flip map on P∞ ⊗P∞ ∼= (O∞)st defines an automor-
phism of O∞ ⊗K of order 2 that reverses the sign of elements K0(O∞) ∼= Z.
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In particular, the flip of P∞ ⊗ P∞ is not approximately inner.
(3): The examples of Rørdam are not stably finite. ut

Proof of Remark 4.2 Let δn(d) :=
∑

1≤j≤n sjds
∗
j for d ∈ On and the

canonical generators s1, . . . , sn of On. Since δn : On → On, is unital and is
homotopic to id, δn is approximately unitarily equivalent to id (by classifi-
cation theory). Thus, On is unitally contained in F (On). By Corollary 1.13
this implies that D := On ⊗ On ⊗ · · · is unitally contained in F (On). Since
On 6∼= O2 we get that O2 is not unitally contained in D, i.e. 0 6= [1] ∈ K0(D)
(cf. proof of 2.17). Moreover, D is a p.i.s.u.n. algebra in the UCT-class and
(n− 1)K∗(D) = {0}, because On is a p.i.s.u.n. algebra in the UCT class and
D ∼= On ⊗D.

Suppose that η1,∞ and η2,∞ are approximately unitarily equivalent in D.
Then D is self-absorbing by Corollary 4.12. Since (n−1)K∗(D) = {0}, Remark
4.6 implies that K∗(D) ∼= 0, which contradicts 0 6= [1] ∈ K0(D). ut
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