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Summary. We give two pathological phenomena for non-separable AF-algebras
which do not occur for separable AF-algebras. One is that non-separable AF-algebras
are not determined by their Bratteli diagrams, and the other is that there exists a
non-separable AF-algebra which is prime but not primitive.

1 Introduction

In this paper, an AF-algebra means a C*-algebra which is an inductive limit
of finite dimensional C*-algebras on any directed set. Equivalently,

Definition 1. A C*-algebra A is called an AF-algebra if it has a directed
family of finite dimensional C*-subalgebras whose union is dense in A.

When an AF-algebra A is separable, we can find an increasing sequence
of finite dimensional C*-subalgebras whose union is dense in A. Thus for
separable C*-algebras, the above definition coincides with the one in many
literatures (for example, [E76]). For separable C*-algebras, there exists one
more equivalent definition of AF-algebras:

Proposition 2 (Theorem 2.2 of [B72]). A separable C*-algebra A is an
AF-algebra if and only if it is a locally finite dimensional C*-algebra, which
means that for any finite subset F of A and any € > 0, we can find a finite
dimensional C*-subalgebra B of A such that dist(z, B) < e for all x € F.

To the best of the author’s knowledge, it is still open that the above lemma
is valid in general.

For each positive integer n € Z,, M,, denotes the C*-algebra of all n x n
matrices. Any finite dimensional C*-algebra A is isomorphic to @5:1 M,,,
for some k € Z; and ‘(ni,...,ny) € ZX. Let B = @f,:l M., be another
finite dimensional C*-algebra. A x-homomorphism ¢: A — B is determined
up to unitary equivalence by the k' x k matrix N whose (j,7)-entry is the
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multiplicity of the composition of the restriction of ¢ to M,,, C Ay and the
natural surjection from B to Mn;_.

Definition 3. Let A be a directed set with an order <. An inductive system
of finite dimensional C*-algebras (Ax, ¢, x) over A consists of a finite dimen-
sional C*-algebra Ay for each A € A, and a *-homomorphism ¢, x: Ay — A,
for each A\, € A with X < p such that ¢, , 0 P\ = Qur for A< p<v.

A Bratteli diagram of (Ax, @ x) is the system (nx,N,) where ny =
H(na)1s .-y (na)gy) € Z{? satisfies Ay = @21 My, and Ny x is kX ky
matriz which indicates the multiplicities of the restrictions of ¢, x as above.

A Bratteli diagram (na, N, ) satisfies Ny, nyn < n, for A < p, and
Ny Ny = Ny for A < p < v. It is not difficult to see that when the directed
set Ais Z,, any system (ny, N, ») satisfying these two conditions can be re-
alized as a Bratteli diagram of some inductive system of finite dimensional
C*-algebras (see 1.8 of [B72]). This does not hold for general directed set:

Ezample J. Let A ={a,b,c,d, e} with an order a = b, ¢ > d,e. Let us define

S R N )
and

Nu=(3). Na=(11) Me=(11). Mas=(60).

31 12
Na,c—(2 2); Nc,d— <O 2)7 Nc,e— (2 1); Na,e—(6 6)
These matrices satisfy N, any =mn, for A, u € A with g > A, and
Na,bNb,d = Na,ch,d = Na,da Na,bNb,e = Na,CNc,e = Na,e~

Thus the system (nyx, N, ) satisfies the two conditions above. However, one
can see that this diagram never be a Bratteli diagram of inductive systems of
finite dimensional C*-algebras.

In 1.8 of [B72], O. Bratteli showed that when the directed set A is Z,
a Bratteli diagram of an inductive system of finite dimensional C*-algebras
determines the inductive limit up to isomorphism. This is no longer true for
general directed set A as the following easy example shows.

Example 5. Let X be an infinite set, and A be the directed set consisting of
all finite subsets of X with inclusion as an order. We consider the following
two inductive systems of finite dimensional C*-algebras.

For each A € A, we define a C*-algebra Ay = K(€*(\)) = My, whose
matrix unit is given by {ezy}zyer. For A, € A with A C p, we define a
*-homomorphism ¢, x: Ax — A, by ¢, r(€z,y) = €xy. It is clear to see that



Non-separable AF-algebras 3

this defines an inductive system of finite dimensional C*-algebras, and the
inductive limit is K(¢?(X)).

For each A € A with n = |\|, we set A\ = M, whose matrix unit is
given by {ei}1<k,1<n- For A\, € A with A C p, we define a *-homomorphism
@t AN — A, by ¢, \(ex1) = exu. It is clear to see that this defines an
inductive system of finite dimensional C*-algebras, and the inductive limit is
K(2(Z4)).

The above two inductive systems give isomorphic Bratteli diagrams, but
the AF-algebras K(¢2(X)) and K(¢%(Z,)) determined by the two inductive
systems are isomorphic only when X is countable.

In a similar way, we can find two inductive systems of finite dimensional
C*-algebras whose Bratteli diagrams are isomorphic, but the inductive limits
are @, ¢ x M and @~ ; My which are not isomorphic when X is uncountable.

By Example 5, we can see that G. A. Elliott’s celebrated theorem of clas-
sifying (separable) AF-algebras using Ky-groups (Theorem 6.4 of [E76]) does
not follow for non-separable AF-algebras, because Ky-groups are determined
by Bratteli diagrams. Example 5 is not so interesting because the inductive
system (A}, ‘PL, ) has many redundancies and does not come from directed
families of finite dimensional C*-subalgebras. More interestingly, we can get
the following whose proof can be found in the next section:

Theorem 6. There exist two non-isomorphic AF-algebras A and B such that
they have directed families of finite dimensional C*-subalgebras which define
isomorphic Bratteli diagrams.

The author could not find such an example in which every finite dimen-
sional C*-subalgebras are isomorphic to full matrix algebras M, (cf. Problem
8.1 of [D67]).

As another pathological fact on non-separable AF-algebras, we prove the
next theorem in Section 3.

Theorem 7. There exists a non-separable AF-algebra which is prime but not
primitive.

It had been a long standing problem whether there exists a C*-algebra
which is prime but not primitive, until N. Weaver found such a C*-algebra in
[WO03]. Note that such a C*-algebra cannot be separable.

Acknowledgments. The author is grateful to the organizers of the Abel
Symposium 2004 for giving him opportunities to talk in the conference and
to contribute in this volume. He is also grateful to George A. Elliott and
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2 Proof of Theorem 6

In this section, we will prove Theorem 6. Let X be an infinite set, and Z be
the set of all subsets z of X with |z| = 2.

For each z € Z, we define a C*-algebra M, by M, = Ms. Elements of the
direct product [],., M. will be considered as norm bounded functions f on
Z such that f(z) € M, for z € Z. For each z € Z, we consider M, C [[,., M.
as a direct summand. We denote by M, the direct sum of M.’s which
is an ideal of [],., M..

2€Z

Definition 8. For each 2 € Z, we fix a matriz unit {e7 ; 22,]‘:1 of M, = M.

For each x € X, we define a projection p, € [],c, M. by
po(z) = { Lo FEe2
0 ifc ¢ 2.
We denote by A the C*-subalgebra of [],., M. generated by @, ., M. and
{px}xeX-
z 2

Definition 9. For each z = {x1,22} € Z, we fix a matriz unit {e; , };
of M, = M. For each x € X, we define a projection q, € [[,c, M. by

(2) = €z ifx €z,
== 0 ifx ¢ z.

We denote by B the C*-subalgebra of ||
{Qm}zeX-

Lz M. generated by @ ., M. and

The following easy lemma illustrates an difference of A and B.

Lemma 10. For z,y € X with x # y, we have pyp, = ei’gﬂl’y} # 0, and
qzqy = 0.
Proof. Straightforward.

Definition 11. Let A be a finite subset of X. We denote by Ay the C*-subal-
gebra of A spanned by @,y M. and {py}zex, and by By the C*-subalgebra
of B spanned by @, M. and {q.}zex,

Lemma 12. There exist isomorphisms
A)\%B)\g@Mg@@c
ZCA TEN

for each finite set A\ C X such that two inclusions Ay C A, and By C B,
have the same multiplicity.
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Proof. For x € A, let us denote pj, € Ay by ply = po — 22,y (2} eﬁ’y}. Then
we have an orthogonal decomposition

Ax=> M.+ Cpl.

ZCA TEA

This proves Ay = @, \ M2 © P, C. Similarly we have By = P, -, M ©
@.c» C. Now it is routine to check the last statement.

Proposition 13. Two C*-algebras A and B are AF-algebras, and the directed
families {Ax} and {B\} of finite dimensional C*-subalgebras give isomorphic
Bratteli diagrams.

Proof. Follows from the facts

U Ax=4, B =8B

ACX ACX

and Lemma 12.

Remark 14. {From Proposition 13, we can show that Ky(A) and Ky(B) are
isomorphic as scaled ordered groups. In fact, they are isomorphic to the sub-
group G of [],., Z generated by @, Z and {g }sex, where g, € [[.c,Z

is defined by
(2) = 1 ifzx ez
Ja\2) = 0 ifxé¢-z.

The order of GG is the natural one, and its scale is
{geG|0<g(z) <2forall z€ Z}.

(From this fact and Elliott’s theorem (Theorem 6.4 of [E76]), we can show
the next lemma, although we give a direct proof here.

Proposition 15. When X is countable, A and B are isomorphic.

Proof. Let us list X = {x1,x2,...}. We define a #-homomorphism ¢: A — B
as follows. For z = {xy, x;}, we define @(efyj) =e? where nqy = k,no =1

T, ;Inj

when k <[ and ny =1,n, = k when k > [. For x;, € X, we set

k—1
P(Doy) = o + Y (el —eliind).
=1

Now it is routine to check that ¢ is an isomorphism from A to B.

Proposition 15 is no longer true for uncountable X. To see this, we need
the following lemma.
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Lemma 16. There exists a surjection ma: A — @, x C defined by ma(M.) =
0 for z € Z and ma(ps) = 0 for x € X. Its kernal is @, M. which coin-
cides with the ideal generated by the all commutators xy —yx of A. The same
1s true for B.

Proof. Let 74 be the quotient map from Ato A/ @, ., M.. Then A/ P, ., M.
is generated by {m4(ps)}zex which is an orthogonal family of non-zero pro-
jections. This proves the first statement. Since @, y C is commutative, the
ideal €@, , M. contains all commutators. Conversely, the ideal generated by
the commutators of A contains ,., M. because My is generated by its
commutators. This shows that .., M. is the ideal generated by the all
commutators of A. The proof goes similarly for B.

Proposition 17. When X is uncountable, A and B are not isomorphic.

Proof. To the contrary, suppose that there exists an isomorphism ¢: A — B.
By Lemma 16, @, , M. is the ideal generated by the all commutators in both
A and B. Hence ¢ preserves this ideal @ M,. Thus we get the following

commutative diagram with exact rows; <7
0 —— @zEZ M A = @xEXC — 0
K Ik |
0 —— @zez M, B —* @xexc — 0.

Since the family of projections {¢, },cx in B is mutually orthogonal, the sur-
jection Tp: B — @, x C has a splitting map op: @,.x C — B defined by
05(0z) = qx- Hence by the diagram above, the surjection m4: A — @, x C
also has a splitting map o4: @,y C — A. Let us set p), = 04(d,) for z € X.
Choose a countable infinite subset Y of X. For each y € Y, the set

Fy={eeX |z #ylp, —r,){zyD)] =1/2}

is finite, because p, — pj, € kerma = P, M. Since X is uncountable, we
can find zg € X with zo ¢ Y U,y F. Since
]:580 = {JZ €X | T 7é Zo, ”(pxo _p;g)({xvx()})” > 1/2}

is finite, we can find yg € Y\ F,,. We set z = {xq,y0}. {From yg ¢ F,,, we have
[(Pzo — D) (2)[| < 1/2, and from zg & Fy,, we have [|(py, — py,)(2)[| < 1/2.
However, pg,(2) = py,(2) = ef ; and Pl (2) is orthogonal to pgo(z). This is a
contradiction. Thus A and B are not isomorphic.

Combining Proposition 13 and Proposition 17, we get Theorem 6.
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3 A prime AF-algebra which is not primitive

In this section, we construct an AF-algebra which is prime but not primitive.
Although we follow the idea of Weaver in [W03], our construction of the C*-
algebra and proof of the main theorem is much easier than the ones there. A
similar construction can be found in [K04], but the proof there uses general
facts of topological graph algebras.

Let X be an uncountable set, and A be the directed set of all finite subsets
of X. For n € N, we set A, = {AC X | [A\[=n}. We get A=]]" An.

Definition 18. Forn € Z, and X € A,,, we define
IA)={t: {1,...,n} = X | t is a bijection}.
For () € A, we define 1(0) = {0}.
Note that |[(A)| = n! for A € A, and n € N.

Definition 19. For n € N and A € A,,, we define M = M, whose matriz
L A
unit is given by {eg,t)}s,tel()\)'

Definition 20. Take A € A, and p € Ay, with AN p = 0. Fort € I(\) and
s €l(p), we define ts € (AU u) by

) (i) fori=1,....n
(ts) (i) =4 -
s(i—n) fori=n+1,....,n+m.
Note that when u = (), we have tf) = ¢.

Definition 21. For A\, € A with A C p, we define a *x-homomorphism
L\t M)\ — M# by

Lux (egj\t)) = Z egﬁi),m for s, t € 1(N).
wel(mN)

Note that ¢ ) is the identity map of My, and that ¢y, x, © ta,, 0 7 trg, A
for \; - Ao - Asz. For A\, Ay € A, and n e A, with A\ 75 Ay and A\ U Ay C I,
the images ¢, x, (M»,) and ¢, x, (M, ) are mutually orthogonal.

Definition 22. For A € A, we define a x-homomorphism vty : M) — HueA M,

by
() ifACop,
@) = {0 otherwise,

for x € My. We set Nx = ux(My) C [],e4 M, and s(é) = L,\(egj\t)) € N, for
s, t €1(N).
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For A € A,,, We have Ny = M, and {fgg,/}:)}s,tel(/\) is a matrix unit of Ny.

Lemma 23. For \,u € A with X C p, s,t € I(A\) and §',t' € l( ), we have

f f(, v = fs(u » when s’ = tu with some w € I(u\ X), and f fs v =20
otherwzse

Proof. Straightforward.

Lemma 24. For A\, € A, we have 0 # N \N,, C N, if A C p, 0 # N\N, C
Ny if AD p, and NyN,, = 0 otherwise.

Proof. If A C u, we have 0 # N)N,, C N, by Lemma 23. Similarly we have
0 # NxN, C Ny if X D u. Otherwise, we can easily see NyN, = 0 from the
definition.

Corollary 25. For each n, the family {Nx}xea, of C*-algebras is mutually
orthogonal.

Corollary 26. Take \, N € A with A C X'. Let px be the unit of Ny. Then
Ny 3 a+— apy € Ny is an injective x-homomorphism.

Definition 27. We define A =3, ., Nx C HﬂeA M,.
Proposition 28. The set A is an AF-algebra.

Proof. For each pe A, A, = ZAC N is a finite dimensional C*-algebra by

Lemma 24. For A\, u € A with A C p1, we have Ay C A,. Hence A = U
is an AF-algebra.

,uGA

Lemma 29. Every non-zero ideal I of A contains Ny for some A € A.

Proof. As in the proof of Proposition 28, we set A, = Z)\C# N,y for p € A.

Since A = UMGA Ay, we have I =J,c,(INA,) for an ideal I of A. Hence
if I is nonzero, we have I N A,, # 0 for some pg € A. Thus we can find a
non-zero element a € I in the form a = Z/\CM ay for ay € Ny. Since a # 0,
we can find Ao € A with Ao C o such that ay, # 0 and ay = 0 for all A C .
Take 29 € X with z¢ & uo. Set A\ = Ao U {xo}. Let p, be the unit of Ny, .
For A C po, axpy, # 0 only when A C Ag. Hence we have apy, = ax,py;-
By Corollary 26, ax,py, is a non-zero element of N,,. Hence we can find a
non-zero element in I N N>\6‘ Since NA;) is simple, we have N% C I. We are
done.

Lemma 30. If an ideal I of A satisfies Ny, C I for some Ay € A, then
Ny C 1 for all X D Xp.

Proof. Clear from Lemma 24 and the simplicity of Ny.

Proposition 31. The C*-algebra is prime but not primitive.
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Proof. Take two non-zero ideals I, I of A. By Lemma 29, we can find A1, Ay €
A such that Ny, C I1 and Ny, C I3. Set A = A\ U A2 € A. By Lemma 30, we
have Ny C Iy N Is. Thus I N I # 0. This shows that A is prime.

To prove that A is not primitive, it suffices to see that for any state ¢ of
A we can find a non-zero ideal I such that o(I) = 0 (see [W03]). Take a state
¢ of A. By Corollary 25, the family {Ny}reca, of C*-algebras is mutually
orthogonal for each n € N. Hence the set

2, = {X € A, | the restriction of ¢ to Ny is non-zero}

is countable for each n € N. Since X is uncountable, we can find zy € X such
that zo ¢ A for all A € U, ey 25 Let I =37, Ny Then [ is an ideal of A
by Lemma 24. Since A 3 z( implies p(Ny) = 0, we have ¢(I) = 0. Therefore
A is not primitive.

This finishes the proof of Theorem 7.

Remark 32. Let (Ax,¢u,2) be an inductive system of finite dimensional C*-
algebras over a directed set A, and A be its inductive limit. It is not hard
to see that the AF-algebra A is prime if and only if the Bratteli diagram of
the inductive system satisfies the analogous condition of (iii) in Corollary 3.9
of [B72]. Hence, the Bratteli diagram of an inductive system of finite dimen-
sional C*-algebras determines the primeness of the inductive limit, although
it does not determine the inductive limit itself. However the primitivity of the
inductive limit is not determined by the Bratteli diagram. In fact, in a similar
way to the construction of Example 5, we can find an inductive system of fi-
nite dimensional C'*-algebras whose Bratteli diagram is isomorphic to the one
coming from the directed family {A,} constructed in the proof of Proposition
28, but the inductive limit is separable. This AF-algebra is primitive because
it is separable and prime (see, for example, Proposition 4.3.6 of [P79]).

References

[B72] Bratteli, O. Inductive limits of finite dimensional C*-algebras. Trans. Amer.
Math. Soc. 171 (1972), 195-234.

[D67] Dixmier, J. On some C*-algebras considered by Glimm. J. Funct. Anal. 1
(1967) 182-203.

[ET6] Elliott, G. A. On the classification of inductive limits of sequences of
semisimple finite-dimensional algebras. J. Algebra 38 (1976), no. 1, 29-44.

[K04] Katsura, T. A class of C*-algebras generalizing both graph algebras
and homeomorphism C*-algebras III, ideal structures. Preprint 2004,
math.OA/0408190.

[P79] Pedersen, G. K. C*-algebras and their automorphism groups. London Math-
ematical Society Monographs, 14. Academic Press, Inc., London-New York,
1979.

[W03] Weaver, N. A prime C*-algebra that is not primitive. J. Funct. Anal. 203
(2003), no. 2, 356-361.



