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1 Introduction.

In 1959, H. Dye ([D1]) introduced the notion of orbit equivalence and proved
that any two ergodic finite measure preserving transformations on a Lebesgue
space are orbit equivalent. In [D2], he had also conjectured that an arbitrary
ergodic action of a discrete amenable group is orbit equivalent to a Z-action.
This conjecture was proved by Ornstein and Weiss in [OW]. The most general
case was proved by Connes, Feldman and Weiss ([CFW]) by establishing that
an amenable non-singular countable equivalence relation R can be generated
by a single transformation, or equivalently, is hyperfinite, i.e., R is up to a
null set, a countable increasing union of finite equivalence relations.

For the Borel case, Weiss ([W]) proved that actions of Zn are (orbit equiv-
alent to) hyperfinite Borel equivalence relations, whose classification was ob-
tained by Dougherty, Jackson and Kechris ([DJK]). It is not yet known if an
arbitrary Borel action of a discrete amenable group is orbit equivalent to a
Z-action.

Our main interest in this report is the case of a free minimal continuous
action ϕ of Z2 on a Cantor set (i.e., a compact totally disconnected metric
space with no isolated points). However, let us begin with a more general
group action and consider a free action ϕ of a countable discrete group on
a compact metric space X (i.e., for every g ∈ G , ϕ(g) ∈ Homeo (X), and
ϕ(g)x = x for some x ∈ X if and only if g = id). Recall that the action ϕ is
minimal if the ϕ-orbit of every point of X is dense in X.
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Given two free group actions (X, G, ϕ) and (Y, H, ψ), an isomorphism
between them is a homeomorphism h : X → Y and a group isomorphism
α : G→ H such that, for all g ∈ G, we have

h ◦ ϕ(g) = ψ(α(g)) ◦ h .

Recall from [GPS2] that, given two free group actions (X, G, ϕ) and
(Y, H, ψ), an orbit equivalence between them is a homeomorphism h : X → Y
such that, for every x ∈ X, we have

h(Oϕ(x)) = Oψ(h(x)) ,

where Oϕ(x) denotes the orbit of the point x ∈ X under the action of ϕ. It is
clear from the definitions that every isomorphism is also an orbit equivalence.

For connected spaces, using a result of Sierpinski (see [K], Thm 6, Ch
V, 47, III), any orbit equivalence is also an isomorphism. Therefore, we will
consider only spaces which are totally disconnected.

2 Étale equivalence relations

Let X be a compact metric space and G be a countable group with the
discrete topology. If ϕ is a free continuous action of G on X, let Rϕ denote
the equivalence relation given by

Rϕ = {(x, ϕ(g)x) ; x ∈ X, g ∈ G } .

With the product topology, X × G is a σ-compact, locally compact space;
then using the bijection from X ×G to Rϕ given by (x, g) 7→ (x, ϕ(g)x), the
equivalence relation Rϕ becomes a topological groupoid. If r and s (for range
and source) denote the two canonical projections from Rϕ to X:

s(x, ϕ(g)x) = ϕ(g)x and r(x, ϕ(g)x) = x ,

then r and s are local homeomorphisms. Moreover as G is countable, each Rϕ

is a countable equivalence relation, i.e. each equivalence class [x]Rϕ = {y ∈
X | (x, y) ∈ Rϕ } is countable for each x ∈ X. Then Rϕ is the motivating
example of an étale equivalence relation, whose precise definition is as follows:

Definition 1. The locally compact groupoid (R, T ), where R is a countable
equivalence relation on a compact metric space X, is étale if the maps r, s :
R → X are local homeomorphisms, i.e. for every (x, y) ∈ R there exists an
open neighborhood U ∈ T of (x, y) so that r(U) and s(U) are open in X
and r : U → r(U) and s : U → s(U) are homeomorphisms. If X is zero-
dimensional, we may clearly choose U to be a clopen set.

We will call (R, T ) an étale equivalence relation on X.
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Remark 2.
a) This definition is equivalent to the various definitions of an étale (or r-
discrete) locally compact groupoid (applied in our setting) that can be found
in the literature (see for example [Pa], [R]).
b) If R is an étale equivalence relation, then its equivalence classes are count-
able. By definition, R can be written as a union of graphs of local homeomor-
phisms of the form s ◦ r−1.
c) The topology T on R is rarely the relative topology from R ⊂ X × X.
Indeed if R is étale and has an infinite equivalence class, then T is not the
relative topology of X ×X.
d) A countable equivalence relation R on X may be given distinct non-
isomorphic topologies T1 and T2 so that (R, T1) and (R, T2) are étale equiva-
lence relations. This contrasts with the situation in the countable (standard)
Borel equivalence relation setting, where the Borel structure is uniquely de-
termined by R ⊂ X ×X.

Generalizing the statement and the proof of Theorem 1 of [FM], we have:

Proposition 3. Let (R, T ) be an étale equivalence relation on the zero-
dimensional space X. There exists a countable group G of homeomorphisms
of X so that R = RG, where RG = {(x, gx) ; x ∈ X, g ∈ G }.
Remark 4. In [HM], Hjorth and Molberg have recently shown that the group
G in Proposition 3 cannot always be chosen acting freely.

There are two natural notions of equivalence between étale equivalence
relations:

Definition 5. (Isomorphism and orbit equivalence) Let (R1, T1) and (R2, T2)
be two étale equivalence relations on X1 and X2 respectively.
1. (R1, T1) and (R2, T2) are orbit equivalent if there exists a homeomorphism

F : X1 → X2 so that

(x, y) ∈ R1 ⇐⇒ (F (x), F (y)) ∈ R2 .

We call such a map F an orbit map.
2. (R1, T1) and (R2, T2) are isomorphic if there is an orbit map F : X1 → X2

so that F × F : (R1, T1) → (R2, T2) is a homeomorphism.

Observe that (R1, T1) is orbit equivalent to (R2, T2), via the orbit map F
if and only if F ([x]R1) = [F (x)]R2 for each x ∈ X1. So F maps equivalence
classes into equivalence classes.

There is a notion, introduced by J. Renault ([R1]), of an invariant prob-
ability measure for an étale equivalence relation R ⊂ X × X. A measure µ
on X is R-invariant if µ(r(U)) = µ(s(U)), for every open set U ⊂ R such
that r : U → r(U) and s : U → s(U) are homeomorphisms. We will denote
by M(X, R) the compact convex cone of R-invariant probability measures on
X. If F : X1 → X2 is an orbit equivalence between two étale equivalence rela-
tions, then F induces a bijection between the two sets of invariant probability
measures M(X1, R1) and M(X2, R2).
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3 Invariants for Cantor étale equivalence relation

To an étale equivalence relation R on the Cantor set X we associate two
ordered groups which are invariants of isomorphism and orbit equivalence of
R.

By an ordered group, we mean a countable abelian group G with a subset
G+, called the positive cone, such that

(i) G+ +G+ ⊂ G+ , (ii) G+ −G+ = G , (iii) G+ ∩ (−G+) = {0} .

By an order unit for (G, G+), we mean an element u ∈ G+ such that for
every a ∈ G+ , nu− a ∈ G+, for some n ≥ 1.

Let C(X, Z) be the abelian group of continuous functions with values in
Z. We denote by B(X,R) the (coboundary) subgroup of C(X, Z) generated
by the functions χr(U) − χs(U), where U is a clopen subset of R on which r
and s are local homeomorphisms.

We define Bm(X, R) to be the subgroup of C(X, Z) of all functions f
such that

∫
X
f dµ = 0 , for all µ ∈M(X,R). Note that if M(X,R) = ∅, then

Bm(X, R) = C(X, Z).

Definition 6. Let R be an étale equivalence relation on the Cantor set X.
We denote by
i) D(X, R) = C(X, Z)/B(X, R) the ordered group whose positive cone and
order unit u are

D(X, R)+ = {[f ] ; f ∈ C(X, Z) , f ≥ 0 } and u = [1] .

ii) Dm(X, R) = C(X, Z)/Bm(X, R) the ordered group whose positive cone
and order unit u are

Dm(X, R)+ = {[f ] ; f ∈ C(X, Z) , f ≥ 0 } and u = [1] .

Remark 7.
i) B(X, R) is a subset of Bm(X, R) and Dm(X, R) is a quotient of D(X, R).
ii) If Rϕ denotes the étale equivalence relation induced by a minimal home-
omorphism ϕ of the Cantor set X, we have:

- By [P], Thm 4.1 and [HPS], Cor. 6.3 , the triple (D(X, Rϕ), D(X, Rϕ)+, [1])
is a simple, acyclic dimension group with (canonical) order unit. Moreover any
simple, acyclic dimension group (G,G+, u) where u is a distinguished order
unit, can be realized as (D(X, Rϕ), D(X, Rϕ)+, [1]) for a Cantor minimal
system (X,ϕ).

-Bm(X, Rϕ)/B(X, Rϕ) is equal to the infinitesimal subgroup Inf(D(X, Rϕ))
ofD(X, Rϕ) andD(X, Rϕ)/Inf(D(X, Rϕ)) is naturally isomorphic toDm(X, Rϕ).

It is then easy to check that:
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Proposition 8. If F : X1 → X2 is an orbit map between two étale equivalence
relations (X1,R1, T1) and (X2,R2, T2), then it induces an order isomorphism
preserving the order units from Dm(X1,R1) to Dm(X2,R2).

Moreover if F implements an isomorphism between (X1,R1, T1) and (X2,R2, T2),
then it induces an order isomorphism preserving the order units from D(X1,R1)
to D(X2,R2).

4 AF-equivalence relations

The AF equivalence relations ([R1], [GPS2]) form one of the most important
classes of étale equivalence relations. The terminology AF comes from C*-
algebra theory and means approximately finite.

Definition 9. An étale equivalence relation R on X is an AF-relation if X
is a totally disconnected compact metrizable space and if there are

R1 ⊂ R2 ⊂ · · ·

such that ∪nRn = R and Rn ⊂ R is a compact open subequivalence relation,
for each n ≥ 1.

Before giving examples of AF-equivalence relations, let us note that:

Proposition 10. ([GPS2], Thm 3.8). Let ϕ be a free action of a countable
group G on a totally disconnected compact metric space X. The relation Rϕ

is an AF-equivalence relation if and only if the group G is locally finite.

Let us describe the fundamental example of an AF-equivalence relation.
We begin with a Bratteli diagram (see [HPS], [Ef]). It is a locally finite, infinite
directed graph which consists of a vertex set V and an edge set E written as
a countable disjoint union of non-empty finite sets:

V = V0 ∪ V1 ∪ V2 ∪ · · · and E = E1 ∪ E2 ∪ E3 ∪ · · ·

Each edge e in En has a source i(e) in Vn−1, and a range f(e) in Vn. For
simplicity we assume that V0 consists of a single vertex and for every other
vertex v, f−1{v} and i−1{v} are non-empty.

The space X = X(V,E) = {e = (e1, e2, · · · ) ; en ∈ En , i(en+1) =
f(en) forn ≥ 1 } is the space of infinite paths in the diagram. It is given
the relative topology of the product space

∏
nEn and is therefore compact

metrizable and zero dimensional. For each N ≥ 0, let

RN = {(e, f) ∈ X ×X ; en = fn for all n > N } .

With the relative topology of the product X×X, then RN is a compact étale
equivalence relation (hence each equivalence class is finite), and RN is an
open subset of RN+1, for all N ≥ 1.
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Let R =
⋃∞
N=0RN , and give R the inductive limit topology. This means

that a sequence {(xn, yn)} in R converges to (x, y) in R if and only if {xn}
converges to x, {yn} converges to y (in X) and, for some N , (xn, yn) is in RN
for all but finitely many n. Then R is easily seen to be an étale equivalence
relation which will be denoted by AF (V,E).

We observe that if (V ′, E′) is a telescope of (V,E) , i.e. (V ′, E′) is obtained
from (V,E) by telescoping (V,E) to certain levels 0 < n1 < n2 < n3 < · · · ,
then AF (V,E) is isomorphic to AF (V ′, E′) . In fact, there is a natural home-
omorphism α : X(V,E) → X(V ′,E′), and α clearly implements the isomorphism,
according to the description we have given of convergence in AF (V,E) , re-
spectively AF (V ′, E′) .

The Bratteli diagram (V,E) is simple if for each n there is an m > n so
that by telescoping the diagram between levels n and m, every vertex v in Vn
is connected to every vertex w in Vm. It is a simple observation that (V,E) is
simple if and only if every AF (V,E)-equivalence class is dense in X(V,E).

The above example is in fact the general case. Indeed, we have:

Theorem 11. Let R be an AF-relation on a totally disconnected compact
metrizable space X. Then there exists a Bratteli diagram (V,E) such that R
is isomorphic to the AF-equivalence relation AF (V,E) associated to (V,E).

Furthermore, (V,E) is simple if and only if R is minimal (i.e. every R-
equivalence class is dense).

5 The classification of AF-equivalence relations

For AF-equivalence relations the invariants introduced in Definition 3.1 have
not only a well-known structure, but they also form complete sets of invariants
of AF-equivalence relations up to isomorphism and in the minimal case up to
orbit equivalence. Indeed we have:

Theorem 12. (see [HPS]) For a Bratteli diagram (V,E) and the associated
AF-equivalence relation AF (V,E), the group D(X(V,E), AF (V,E)) is the di-
mension group of the Bratteli diagram (V,E). It is simple if and only if
AF (V,E) is minimal.

Approximately finite dimensional C*-algebras were classified in 1976 by
G. Elliott. Building on this result, Krieger proved in [Kr] the following:

Theorem 13. For AF-equivalence relations (X,R), the triple formed by the
ordered group (D(X,R), D(X,R)+) and the order unit [1] is a complete in-
variant for isomorphism.

For minimal AF-relations, we then can get:

Theorem 14. For AF-equivalence relations (X,R), the triple formed by the
dimension group (Dm(X,R), Dm(X,R)+) and the order unit [1] is a complete
invariant for orbit equivalence.
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Even if Theorem 5.2 appears in [GPS1] as a corollary of the classification
up to orbit equivalence of minimal Z-actions, a direct proof can be given and
it is in fact more logical to do so. Note that the range of the invariant for
orbit equivalence of AF-equivalence relations is the class of all simple, acyclic
dimension groups whose the infinitesimal subgroup is trivial.

6 The Strategy for Orbit Equivalence Results

Let G be Z or Z2 and ϕ be a minimal, free G-action on the Cantor set X. As
the classification of AF-equivalence relations up to orbit equivalence is known,
it is sufficient to show that such an action is affable (i.e., orbit equivalent to an
AF-equivalence relation). This will be achieved with the following two steps:

(1)

If ϕ and G are as above, construct a minimal AF-subequivalence relation R
of Rϕ, two closed ”small” subsets Y0 and Y1 of X, and a homeomorphism
α : Y0 → Y1 such that the equivalence relation R ∨ Graph (α), generated
by R and the graph of α is equal to Rϕ.

(2)

Prove then that R ∨ Graph (α) is orbit equivalent to R. The second step
means that a minimal AF-relation R can be enlarged ”slightly” and stays
AF, more precisely still be orbit equivalent to R. We will present the precise
statement in the next section.

The first step depends on the group G. We have a complete answer for
G = Z and up to now only a partial one for Z2.

Remark 15. For G = Z, this strategy was used by Dye in the measurable case
using repetitively the Rohlin lemma to get the first step, with the small subsets
Y0 and Y1 having measure zero. This can be extended to include amenable
groups. The second step is then not necessary.

For Borel actions of Zn, Weiss ([W]) used also the same strategy. Contrary
to the (finite invariant measure) measurable case, AF-relations are not unique.
They were classified by Dougherty, Jackson and Kechris ([DJK]) and their
complete invariant up to orbit equivalence is the cardinality of the set of their
finite invariant ergodic measures.

7 The Absorption Theorem

The second step of our strategy for orbit equivalence results will be accom-
plished with Theorem 7.1. This result states precise sufficient conditions under
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which a minimal AF-relation can be enlarged and stay orbit equivalent to it-
self. For an étale equivalence relation R on X, let us recall some terminology:
if Y is a closed subset of X, we say that:

1)

Y is R-étale if R|Y (= R ∩ (Y × Y )), with the relative topology, is an étale
equivalence relation on Y .

2)

Y is a thin subset if µ(Y ) = 0 for every finite R-invariant measure µ.
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Theorem 16. ([GPS2], Thm 4.18). Let R be a minimal AF-equivalence rela-
tion on the Cantor set X and let Y0, Y1 be two closed R-étale and thin subsets
of X. Suppose R ∩ (Y0 × Y1) = ∅ ( and so in particular Y0 × Y1 = ∅), and
let α : Y0 → Y1 be a homeomorphism such that α × α : R|Y0 → R|Y1 is an
isomorphism.
Then the equivalence relation on X

R ∨ {(y, α(y)) ; y ∈ Y0}

generated by R and Graph (α) is orbit equivalent to R and therefore is affable.

8 Classification up to orbit equivalence of minimal
Z-actions

Let ϕ be a Cantor minimal system (i.e. a minimal action of Z on the Cantor
set). The first step of the strategy outlined in section 6, namely to show that
Rϕ is affable is based on the following construction, that we sketch now.

Let (Un)n≥1 be a decreasing sequence of clopen subsets of X, whose inter-
section is a single point y. For n ≥ 1, let Rn denote the equivalence relation
on X generated by {(x, ϕ(x)) | x ∈ X \ Un }. As ϕ is minimal and as the
first return map of ϕ on Un is continuous, we have that Rn is compact and
open. As (Un)n≥1 forms a decreasing sequence of clopen sets, the sequence
of the equivalence relations (Rn)n≥1 is increasing and their union Ry is an
AF-relation. Every Ry -class is also a ϕ-orbit, except for the orbit of the point
y and Rϕ = Ry ∨ {(y, ϕ(y))}. With Y0 = {y}, Y1 = {ϕ(y)} and α = ϕ, we
can apply Theorem 7.1 and we get:

Theorem 17. ([GPS1]). Let ϕ be a Cantor minimal system. Then the equiv-
alence relation Rϕ is orbit equivalent to an AF-relation.

As a consequence of this result and of Theorem 5.2, we have:

Theorem 18. Two Cantor minimal systems ϕ and ψ are orbit equivalent if
and only if (Dm(X,Rϕ), Dm(X,Rϕ)+, [1]) and (Dm(X,Rψ), Dm(X,Rψ)+, [1])
are (order) isomorphic.

Remark 19. a) Let ϕ be a Cantor minimal system and C∗(X,ϕ) be the asso-
ciated C*-crossed product. If µ is any ϕ-invariant probability measure on X,
recall that C∗(X,ϕ) can be realized as the C*-subalgebra of the bounded lin-
ear operator algebra B(L2(X,µ)) generated by C(X) acting as multiplication
operators and the unitary operator u = uϕ, defined by

uξ(x) = ξ(ϕ−1x) , for x ∈ X and ξ ∈ L2(X,µ) .

If Y is a non-empty closed subset of X, let AϕY be the C*-subalgebra of
C∗(X,ϕ) generated by C(X) and uC0(X \ Y ), where C0(X \ Y ) denotes the
continuous functions vanishing on Y .

Let (Un)n≥1 be a decreasing sequence of clopen subsets of X, whose in-
tersection is a single point y. In [P], I. Putnam proved that
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-

Aϕy is an AF algebra which is the closure of the increasing union of the finite
dimensional algebras AϕUn

, for n ≥ 1

-

the inclusion map i : Aϕy → C∗(X,ϕ) induces an isomorphism i∗ : K0(Aϕy ) →
K0(C∗(X,ϕ)) of ordered groups preserving the distinguished order units (the
class of the identity operator).

-

K0(C∗(X,ϕ)) is order isomorphic to D(X,Rϕ) by a map preserving the order
units.

Let C∗(S) denote the reduced C*-algebra associated to an étale equiva-
lence relation S (see [Pa] and [R] for example). If for n ≥ 1, as introduced
above, Rn denotes the equivalence relation generated by {(x, ϕ(x)) | x ∈
X \ Un } and Ry their union, then C∗(Rn ) is isomorphic to AϕUn

and Aϕy to
C∗(Ry ).

If ϕ and ψ are two orbit-equivalent minimal homeomorphisms acting on
the Cantor set X and if F ∈ Homeo (X) is an orbit map between them, recall
that the orbit cocycles m an n associated to F are the integer-valued functions
on X defined for x ∈ X, by

F ◦ ϕ(x) = ψn(x) ◦ F (x) and F ◦ ϕm(x)(x) = ψ ◦ F (x) .

By a theorem of M. Boyle (see [GPS1], Thm 1.4), if one of the orbit cocycles
is continuous, then ϕ and ψ are flip-conjugate (i.e., ϕ is conjugate to either ψ
or ψ−1).

Definition 20. Let ϕ and ψ be two orbit-equivalent minimal homeomorphisms
acting on the Cantor set X. Then ϕ and ψ are strong orbit equivalent if there
exists an orbit map F so that the associated orbit cocycles m,n : X → Z each
have at most one point of discontinuity.

Let us finish this section on the classification of Cantor minimal systems
by stating the following two results:

Theorem 21. Let ϕ and ψ be two minimal homeomorphisms acting on the
Cantor set X. Then the two étale equivalence relations Rϕ and Rψ are iso-
morphic if and only if ϕ and ψ are flip-conjugate.

Theorem 22. Let ϕ and ψ be two minimal homeomorphisms acting on the
Cantor set X. For any two points y1 and y2 of X, the AF-equivalence relations
Rϕ,y1 and Rψ,y2 are isomorphic if and only if ϕ and ψ are strongly orbit
equivalent.
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For the first result, if ϕ and ψ are flip-conjugate, then Rϕ and Rψ are
clearly isomorphic. Conversely, if F is an orbit map such that F × F is a
homeomorphism from Rϕ to Rψ, then it follows that the orbit cocycles are
bounded and by M. Boyle’s theorem ϕ and ψ are flip-conjugate.

The second one follows from [GPS2], Lemma 4.13 and Corollary 1.3, in
combination with Theorem 2.1 of [GPS1].

9 Classification up to orbit equivalence of minimal
Z2-actions

Let ϕ be a minimal free action of Z2 on the Cantor set. To fulfill the second
step of the strategy outlined in section 6, we use cocycles for the action to
create the AF-relation and its extension. The drawback of this method is that
it needs to assume the existence of sufficiently many cocycles with conditions
of positivity and smallness we will define below. Results about the existence
are still partial, although they do exist for several examples of interest.

In [F], Forrest (see also [Ph] for another treatment) produced large AF-
subrelations of the orbit relation Rϕ. Such subrelations also appear implicitly
in works of Bellissard, Benedetti and Gambaudo [BBG] and also in Benedetti
and Gambaudo [BG]. But their methods do not keep track of the difference
between the AF-subrelation and Rϕ and therefore do not allow the use of the
absorption theorem.

9.1 Cocycles and Positive Cocycles

Before stating our main results, we need to recall some basic notions about
cocycles whose basic references are [FM, R].

Definition 23. Let ϕ be a free action of Z2 on a compact space X.
A Z-valued one-cocycle for ϕ is a continuous function θ : X × Z2 → Z

such that , for all x ∈ X and m,n ∈ Z2, we have

θ(x,m+ n) = θ(x,m) + θ(ϕm(x), n) .

If f ∈ C(X,Z), then the function bf(x, n) = f(ϕn(x)) − f(x) is called a
coboundary.

The set Z1(X,ϕ) of all cocycles forms a group under addition, the set
B1(X,ϕ) of all coboundaries a subgroup and we denote by H1(X,ϕ) =
Z1(X,ϕ)/B1(X,ϕ) the first cohomology group. Using the equivalence rela-
tion induced by ϕ on X, cocycles and coboundaries can also be viewed as
continuous homomorphisms from Rϕ to Z. Therefore if θ is a cocycle, its
kernel ker(θ) = {(x, y) ∈ Rϕ | θ(x, y) = 0 } is a closed subequivalence of Rϕ.

We introduce now the notion of strict positivity for cocycles.

Definition 24. Let ϕ be a free action of Z2 on a compact space X and let C
be a subset of Z2. If θ is a cocycle, then it is
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1.

positive with respect to C if θ (X × C) ≥ 0 .

2.

proper with respect to C if the map θ : X×C → Z is proper (i.e., the pre-image
of any finite set is compact).

3.

strictly positive with respect to C if it is proper and positive with respect to C.

Condition (2) of this definition is the key property we use to produce
compact open subequivalence of Rϕ. Indeed we have:

Proposition 25. ([GPS3], Prop. 5.12) Let (X,ϕ) be as in 9.2, ξ and η be
cocycles for (X,ϕ) and let C,C ′ ⊂ Z2. If ξ is proper on C and η is proper on
C ′ and

C ∪ (−C) ∪ C ′ ∪ (−C ′) = Z2 ,

then ker (ξ)∩ker (η) = {(x, y) ∈ Rϕ | ξ(x, y) = η(x, y) = 0 } is a compact open
subequivalence relation of Rϕ.

The sets C and C ′ we will need have the following special form:

Definition 26. For 0 ≤ r, r′ ≤ ∞, we define

C(r, r′) = {(i, j) ∈ Z2 | j ≤ ri , j ≤ r′i } .

with the convention 0 · ∞ = 0.

In addition to the notion of positive cocycle, we use the notion of small
cocycle as follows.

Definition 27. Let θ be a cocycle for (X,ϕ) and let M be a positive integer.
Then θ is smaller or equal to M−1 if |θ(X,n)| ≤ 1 for all x ∈ X and

n = (n1, n2) ∈ Z2 with ||n||∞ = max {|n1|, |n2|} ≤ M and we say that θ is
small if θ ≤ 1

2 .

If ϕ is a free minimal action of Z2 on a Cantor set X, finding small, positive
cocycles reduces to finding clopen with the following properties.

Theorem 28. Let ϕ be a free minimal action of Z2 on a Cantor set X. Let
a, b be generators for Z2. Suppose that for any N ≥ 1, there are clopen sets
A and B such that
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1.

A ∩ ϕ−a(B) = ϕ−b(A) ∩B = ∅, 2. A ∪ ϕ−a(B) = ϕ−b(A) ∪B,

3.

the sets ϕi (a+b)(A ∪ ϕ−a(B)) are disjoint for 0 ≤ i ≤ N .
Then for any M ≥ 1, there exists a cocycle θ which is strictly positive on

C = {ia+ jb | i, j ≥ 0 } and θ ≤M−1 .

The preceding theorem is the result we use to find small strictly positive
cocycles. for the following two classes of minimal free Z2-actions on the Cantor
set.

Remark that any extension of a free minimal Z2-Cantor system with small
strictly positive cocycles has the same property.

Example 29. Rotations of the group of p-adic integers.
Let p be a prime number and X =

∏∞
k=0 Z/pZ be the abelian group of

p-adic integers. If α , β are two Z-linearly independent elements of X such
that either α0 or β0 is non-zero, then the action ϕ given for all x ∈ X and
(i, j) ∈ Z2 by

ϕ(i,j)(x) = x− iα− jβ , for x ∈ X and (i, j) ∈ Z2 ,

is minimal and free.
As the subgroup of X generated by either α or β is dense, we can assume

that one of the generator, α for example, is (1, 0, 0, · · · , 0, · · · ). Let C(0,m)
denote the cyclinder set {x ∈ X | x0 = x1 = · · · = xm = 0} and k(m) the
smallest positive integer such that

β(C(0,m)) = {x+ β ∈ X | x0 = · · · = xm = 0} = αk(m)(C(0,m)) .

Then the pair of clopen sets A = C(0,m) and B =
∐k(m)
l=0 αl(C(0,m)) satisfies

the first two conditions of Theorem 9.6 and therefore defines a strictly positive
cocycle. A much finer construction is necessary to get a small, strictly positive
cocycle.

Notice that in this example there is a short exact sequence

0 → Z → H1(X,ϕ) → Z[1/p] → 0 .

Example 30. Rotations of a disconnected circle.
Let 0 < α, β < 1

2 be two real numbers such that {1, α, β} is Q-linearly
independent and let us consider the action of Z2-action on the circle R/Z, by
rotating by α and β. We then disconnect the circle along an orbit replacing
each point by two separated ones and obtain a copy of the Cantor set. More
precisely, if Cut ⊂ R denotes the subgroup {k + nα+mβ | k, n,m ∈ Z }, we
define a linear order on X̃ = R∪{a′ | a ∈ Cut } by setting a′ < b, a < b′, a′ <
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b′ if a < b and a < a′ for all a ∈ R and consider the order topology on X̃. The
action by translation of Z + αZ + β Z on X̃ induces then a (minimal, free)
action ϕ of αZ + β Z on the Cantor set X = X̃/Z.

For any pair of generators a, b ∈ αZ + β Z, the homeomorphisms ϕa and
ϕb are again rotations of the cut-up circle X. Let N be a positive integer. By
minimality of the rotation Ra ×Rb on R2/Z2, there exist a positive integer q
and integers i and j such that

0 < qa− i <
1

2N
, 0 < qb− j <

1
2N

.

Then for 0 ≤ m,n < N and k ∈ Z, we have

k

q
≤ k − im− jn

q
+ma+ nb ≤ k + 1

q
.

For each 0 ≤ k < q, we can approximate k
q by an element xk ∈ Cut such that

for 0 ≤ m,n < N ,

xk < xk−im−jn +ma+ nb < xk+1 .

Then the pair of clopen sets of X

A = ∪q−1
k=0[xk, xk−i + a) , B = ∪q−1

k=0[xk, xk−j + b)

with k− i and k−j interpreted modulo q, satisfy the assumptions of Theorem
9.6. and therefore defines a small stictly positive cocycle.

Notice that the first cohomology group of this example was computed by
Forrest and Hunton in [FH] and is equal to Z3.

Remark 31. If ϕ is a minimal Z2-action on the Cantor set, its first cohomology
group H1(X,ϕ) always contains Z2 as a subgroup. There exists an example
of such an action such that H1(X,ϕ) = Z2. But this action is not free. It is
not known if the first cohomology group of a free, minimal Z2-action on the
Cantor set has always Z2 as a proper subgroup.

9.2 The main results of [GPS3].

Our main result, Theorem 32, whose proof is very long, states that if a free,
minimal action ϕ of Z2 on the Cantor set possesses arbitrary small, strictly
positive cocycles for sufficiently many cones, then the induced étale equiva-
lence relation Rϕ is affable.

Theorem 32. Let (X,ϕ) be a free, minimal action of Z2 on the Cantor set.
Suppose that there are positive numbers r∞, s∞ with s−1

∞ − r−1
∞ ≥ 1 satisfying

the following: For every ε > 0, there are positive real numbers r∞ + ε > r >
r′ > r∞ so that for every M ≥ 1, there is a cocycle θ on (X,ϕ) such that
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1. θ is strictly positive on C(r, r′), and 2. θ ≤M−1 .

Similarly, for every ε > 0, there are positive real numbers s∞ − ε < r <
r′ < s∞ such that for every M ≥ 1, there is a cocycle θ on (X,ϕ) satisfying
conditions 1 and 2.

Then the étale equivalence relation Rϕ is affable.

The examples 9.7 and 9.8 described above satisfy the following stronger
hypotheses.

Corollary 33. Let (X,ϕ) be a free, minimal action of Z2 on the Cantor set.
Suppose that for every a, b ∈ Z2 which generates Z2 as a group and for every
M ≥ 1, there is a cocycle θ on (X,ϕ) such that

1. θ is strictly positive on {ia+ jb | i, j ≥ 0}, and 2. θ ≤M−1 .

Then the étale equivalence relation Rϕ is affable.

As a consequence of Theorem 8.1, 9.10, and 5.2, we then get:

Theorem 34. For i = 1, 2, let (Xi,Ri) be étale equivalence relations where,
for each i, Xi is totally disconnected and (Xi,Ri) is minimal and one of the
following conditions are satisfied:

1. Ri is an AF-relation,
2. Ri arises from a free action of Z, or
3. Ri arises from a free action of Z2 satisfying the hypotheses of 9.10.

Then the two equivalence relations are orbit equivalent if and only if there
is an order isomorphism from Dm(X1,R1) to Dm(X2,R2) preserving the dis-
tinguished order units.

10 Further developments

Let (X, ϕ) be a Cantor minimal Z2-system conjugated to the product of two
Cantor minimal Z-systems (X1, ϕ1) and (X2, ϕ2). By Theorem 8.1, we have
that Rϕ1 and Rϕ2 are orbit equivalent to two AF-relations R1 and R2. As
the product of two AF-equivalence relations is also AF, we have that Rϕ is
also affable.

If (Y, ψ) is an extension of the product Cantor system (X1 × X2, ϕ1 ×
ϕ2), it is not necessarily a product. Therefore the above argument cannot be
used to show the affability of (Y, ψ). In [M1], H. Matui constructs an AF-
subequivalence of Rψ satisfying the assumptions of the absorption theorem
to prove the following:

Theorem 35. ([H1]). Let π : (Y, ψ) → (X, ϕ) be an extension between Can-
tor minimal Z2-systems. If (X, ϕ) is conjugate to a product of two Cantor
minimal Z-systems, then Rψ is affable.
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Recall (see for example [KP], p. 180) that a tiling T in R2 gives rise to an an
action of R2 on its continuous hull ΩT . If T has finite local complexity and is
strongly aperiodic, the hull ΩT is compact and does not contain any periodic
tilings. If moreover T is repetitive, then the dynamical system (ΩT , R2) is
minimal.

For each tile type (or labeled tile type) t in T , let us choose a point x(t),
called a puncture, in the interior of t. Now each tile t ∈ T is given a puncture
x(t) such that if t1 and t2 are two tiles with t2 = t1 +x for some x ∈ R2, then
x(t2) = x(t1) + x.

The set of all the tilings T ′ ∈ ΩT such that the origin is a puncture of some
tiles t in T ′ is called the discrete hull Ωpunc of T . With the above conditions
on the tiling, Ωpunc is a Cantor set and is a transversal to the R2-action.

An equivalence relation Rpunc is defined on Ωpunc as follows:

Rpunc = {(T1, T2) |Ti ∈ Ωpunc and ∃x ∈ R2 : T1 = T2 + x } .

Then Rpunc is the restriction to Ωpunc of the equivalence relation induced by
the R2-action on the continuous hull ΩT .

Provided with the following topology: a sequence (Tn, Tn + xn) in Rpunc

converges to (T, T + x) if and only if Tn → T and xn → x, Rpunc is an étale
equivalence relation.

In [M2], H. Matui studies the equivalence relation Rpunc associated to a
substitution tiling. Recall that a substitution tiling system in R2 consists of a
pair (V, ω) where V is a finite collection of polygons in R2, the prototiles, and
ω is a substitution rule. We also have an inflation constant λ > 1 such that
for every p ∈ V, w(p) is a finite collection of tiles (a tile is a translate of one
prototile) with pairwise disjoint interiors and their union is λp = {λv | v ∈ p}.
The Penrose tiling is an example of a substitution tiling.

For a substitution tiling system which is primitive, aperiodic and satis-
fies the finite pattern condition, I. Putnam constructs in [P1] a minimal AF
subequivalence relation R of Rpunc. The equivalence relation R is too large
to apply the Absorption Theorem 7.1. In [H2], Matui constructs a smaller
AF-subequivalence relation R′ ⊂ R satisfying the conditions of Theorem 7.1
and obtains:

Theorem 36. ([H2]). Let (V, ω) be a substitution tiling system in R2 as above.
Then the equivalence relation Rpunc on Ωpunc is affable.

In a work in progress, Giordano, Matui, Putnam and Skau have generalized
the Absorption Theorem presented in Section 7. With this gneralization, the
first step of the strategy presented in Section 6 is now easier to implement.
In particular for a minimal free action of Z2 on the Cantor set, we are now
able to construct a minimal AF-subequivalence relation of Rϕ satisfying the
assumptions of the new absorption theorem without having to use cocycles.
Theorem 9.12 can therefore be extended to cover all free minimal action of
Z2 on the Cantor set.
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