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Summary. If x is a self-adjoint element in a unital C∗−algebra A, and if pδ and
qδ denote the spectral projections of x corresponding to the intervals ]δ,∞[ and
]−∞,−δ[, we show that there is a projection p in A such that pδ ≤ p ≤ 1− qδ, pro-
vided that δ > dist {x, A−1

sa }. This result extends to unbounded operators affiliated
with a C∗−algebra, and has applications to certain other distance functions.

1 Introduction

1.1

Let x be an operator on a Hilbert space H with polar decomposition x = v|x|,
and for each δ ≥ 0 let eδ and fδ denote the spectral projections of |x| and
|x∗|, respectively, corresponding to the interval ]δ,∞[. Practically the first
observation to be made in single operator theory is that eδ and fδ are Murray–
von Neumann equivalent; in fact, veδv

∗ = fδ. The second observation is that
1 − eδ and 1 − fδ need not be equivalent if H is infinite dimensional; in
fact, (1 − e0)H = ker x and (1 − f0)H = ker x∗, and these spaces may have
widely different dimensions. If, however, 1− eδ = w∗w and 1− fδ = ww∗ for
some partial isometry w, then u = w + veδ is a unitary conjugating eδ to fδ.
Equivalently phrased, the operator xeδ can now be written xeδ = u|xeδ| with
a unitary u.
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If x belongs to an algebra A of operators on H the questions above can
all be reformulated, asking now whether the unitary u can be chosen in A. In
the case of a von Neumann algebra A this question was solved by C.L. Olsen
in [Ols89], using the distance to the set A−1 of invertible elements,

α(x) = dist {x,A−1}.

The answer is that xeδ = u|xeδ| for some unitary u in A when δ > α(x).
If A is only a C∗−algebra (always assumed unital in this paper unless

otherwise specified) some care must be taken to formulate the question, be-
cause the spectral projections of an element do not (necessarily) belong to
the algebra. However, if x = v|x| is the polar decomposition then the element
xf = vf(|x|) ∈ A for every continuous function f vanishing at zero. We can
therefore ask whether xf = u|xf | for some unitary u in A, provided that f
vanishes on some interval [0, δ]. In fact, this is equivalent to the demand that
ueδ = veδ (whence also fδu = fδv), so that the partial isometry veδ has a
unitary extension u in A. Combining a couple of highly technical lemmas this
problem was solved in [Ror88, Theorem 2.2] and [Ped87, Theorem 5] with the
same answer as in the von Neumann algebra case: If δ > α(x) then for any
continuous function f vanishing on [0, δ] we have xf = u|xf | for some unitary
u in A. If δ < α(x) no extension is possible.

The limit case δ = α(x) is left undecided: Sometimes a unitary extension
exists, sometimes not. For von Neumann algebras the index of x is a natural
obstruction, but in general the situation is more subtle. Closer investigation
shows that (outside finite AW ∗−algebras) it is very unlikely that every x in
the closure of the invertible elements in some C∗−algebra can be written in
the form x = u|x| with a unitary u in A, cf. [HR93] and [Ped89].

1.2

If A−1
l denotes the set of left invertible elements in a C∗−algebra A we can

define the function
αl(x) = dist {x,A−1

l }.

It was shown in [Ped91, Theorem 7.1] that if δ > αl(x) then any element
xf = vf(|x|) can be written as xf = u|xf | for some isometry u in A, provided
that f vanishes on [0, δ]. The proof, however, is not very illuminating, since it
quickly reduces to the regular case. Evidently there is also a symmetric result
for the set A−1

r of right invertible elements and co-isometries in A, using the
function x → αl(x∗).

A much more serious approach was needed to handle the set A−1
q of quasi-

invertible elements. Recall from [BP95] that a ∈ A−1
q if (1− ba)A(1−ab) = 0

for some b in A. If we can choose b = a∗ then a is an extreme point in the
unit ball of A and may be regarded as a partial isometry which is “maximally
extended”. A general quasi-invertible element always has the form a = xuy
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with x, y in A−1 and u an extreme partial isometry, cf. [BP95, Theorem 1.1].
Now define

αq(x) = dist {x,A−1
q }.

By [BP95, Theorem 2.2] we can then find an extreme partial isometry u in A
such that xf = u|xf |, whenever xf = vf(|x|) and f is a continuous function
vanishing on an interval [0, δ] with δ > αq(x). Equivalently, ueδ = veδ and
fδu = fδv if δ > αq(x).

1.3

Corresponding to the three distance functions mentioned above we have
three classes of C∗−algebras, characterized by the norm density of the
three subsets A−1, A−1

l ∪ A−1
r and A−1

q . These are known, respectively, as
C∗−algebras of stable rank one, isometrically rich C∗−algebras and extremally
rich C∗−algebras. In such an algebra the polar decomposition of any element
xf = vf(|x|) can be “upgraded”, i.e. v can be replaced by a unitary, an isom-
etry or a co-isometry, or an extreme partial isometry, if only f vanishes in
some (small) neighbourhood of zero.

In [BP91] we introduced the class of C∗−algebras of real rank zero as those
C∗−algebras A for which the set A−1

sa of invertible self-adjoint elements in the
algebra was dense in Asa. (As for the other classes, a non-unital C∗−algebra
has real rank zero if the unitized algebra fulfills the criterion.) Over the years
a considerable theory has been developed for these classes of C∗−algebras,
the real rank zero being the most “AF−like,” the stable rank one algebras
the most “finite.”

One of the surprising phenomena (and the guiding principle in [BPa] and
[BPb]) has been the patent, albeit subtle, similarity between C∗−algebras of
stable rank one and C∗−algebras of real rank zero. For example, a theorem in
K−theory that is valid for one class stands a very good chance also of being
valid for the other class, but with a change of degree from Kn(A) to Kn+1(A).
Related to this is the extension theory for the two classes. In both cases there
is a known obstruction for an extension to be in the same class as the ideal
and the quotient. For stable rank one algebras it is the lifting of unitaries
from the quotient, for real rank zero the lifting of projections (equivalently,
the lifting of self-adjoint unitaries).

The distance function

αr(x) = dist {x,A−1
sa }

provides another parallel case. Thus we show in [BPa, Theorem 2.2] for a
general (unital) C∗−algebra A that the self-adjoint part of the largest ideal
IRR0(A) of A of real rank zero consists precisely of elements x in Asa such that
αr(x + y) = αr(y) for every y in Asa. This should be compared to Rørdam’s
characterization in [Ror88, Propositions 4.1 & 4.2] of the largest ideal Isr1(A)
of stable rank one in A, as consisting precisely of those elements x in A such
that α(x + y) = α(y) for every y in A.
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1.4

The main result in this paper, Theorem 3, is the exact analogue of the three
polar decomposition results mentioned above, but now for self-adjoint ele-
ments only. This may at first seem odd, because x = x∗ implies that eδ = fδ

for all δ, and if x = v|x| then v = v∗, so that v = p−q for a pair of orthogonal
projections. But if A is only a C∗−algebra it is still meaningful and interesting
to ask whether v can be extended to a self-adjoint unitary, i.e. a symmetry
in the algebra. Evidently this is so if zero is an isolated point in sp(x), but
there are many other cases. For von Neumann algebras there is no problem;
but then von Neumann algebras all have real rank zero. For C∗−algebras not
of real rank zero there may not be very many projections around, hence also
not very many symmetries. Our result may serve to locate these projections
and control their behaviour.

Our result can also be interpreted as an interpolation, and we shall most
often phrase it as such: If pδ and qδ denote the spectral projections of x
corresponding to the intervals ]δ,∞[ and ]−∞,−δ[ (so that pδ + qδ = eδ in
the previous terminology), we show that there is a projection p in the algebra
such that

pδ ≤ p ≤ 1− qδ,

provided that δ > αr(x). For C∗−algebras of real rank zero, where αr(x) = 0
for every x, this result was obtained in [Bro91]. In fact it was proved in [Bro91,
Theorem 1] that A has real rank zero (in the sense that it satisfies one of the
equivalent conditions HP or FS from [BP91]) if and only if it has interpolation
of projections, IP, in the sense that whenever p is a compact and p◦ an open
projection in A∗∗ with p ≤ p◦, then p ≤ p ≤ p◦ for some projection p in A.

2 Main results

Lemma 1. Let x be a self-adjoint operator on a Hilbert space H and for δ > 0
define the continuous functions

cδ(t) = t, dδ(t) = (δ2 − t2)1/2 for |t| ≤ δ, (1)
cδ(t) = δ sign t, dδ(t) = 0 for |t| ≥ δ. (2)

Then sp(a) ∩ ]− δ, δ[ = ∅, where a is the operator matrix

a =
(

cδ(x) dδ(x)
dδ(x) −x

)
.

Proof. If λ ∈ sp(a) then for some t in sp(x) we have

(cδ(t)− λ)(−t− λ)− dδ(t)2 = 0.

If δ ≤ |t| this equation simply becomes (δ sign t − λ)(t + λ) = 0, with the
solutions λ = δ sign t and λ = −t. It follows that |λ| ≥ δ.
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If |t| ≤ δ we obtain the equation (t − λ)(−t − λ) − (δ2 − t2) = 0, or
λ2 − δ2 = 0, with the solutions λ = ±δ; so that again |λ| ≥ δ. ut

Definition 2. As usual, cf. [BP95, Section 1], given a self-adjoint element x
in a C∗−algebra A on a Hilbert space H we define the constant

m(x) = sup {ε ≥ 0 | ]− ε, ε[ ∩ sp(x) = ∅}
= inf {‖xξ‖ | ξ ∈ H : ‖ξ‖ = 1}
= dist {x,

(
Asa \A−1

sa

)
}.

Note that m(x) = m(|x|), so that for a general (non self-adjoint) element
x in A we can define m(x) = m(|x|). Alternatively, we can use the second
expression, which makes sense for all operators. It is an easy consequence of
the open mapping theorem that x is invertible if and only if m(x) > 0 and
m(x∗) > 0 [since then ker x = 0 and x(H) = H].

Theorem 3. Let x be a self-adjoint element in a unital C∗–algebra A, and for
δ ≥ 0 denote by pδ and qδ the spectral projections of x (in A∗∗) corresponding
to the intervals ]δ,∞[ and ]− ∞,−δ[, respectively. If δ > αr(x) there is a
projection p in A such that

pδ ≤ p ≤ 1− qδ.

Equivalently, for any continuous function f vanishing on the interval [−δ, δ]
and such that f(t) sign t ≥ 0 for all t we have f(x) = (2p− 1)|f(x)| in A.

If δ < αr(x) there are no projections p in A such that pδ ≤ p ≤ 1 − qδ,
and no symmetries u in A such that f(x) = u|f(x)| if we choose f(t) =
sign t (|t| − δ)+.

Proof. By assumption we can find y in A−1
sa with ‖x − y‖ < δ. With cδ and

dδ as in Lemma 1 this means that the operator matrix

b =
(

cδ(x) dδ(x)
dδ(x) −y

)
is still invertible (in M2(A)), because m(b) ≥ δ−‖x−y‖ > 0, cf. Definition 2.
Consequently also the matrix(

1 dδ(x)y−1

0 1

)
b

(
1 0

y−1dδ(x) 1

)
=

(
cδ(x) + dδ(x)y−1dδ(x) 0

0 −y

)
is invertible in M2(A), from which we conclude that the self-adjoint element

z = cδ(x) + dδ(x)y−1dδ(x)

is invertible in A.
By construction we have
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pδdδ(x) = qδdδ(x) = 0, pδcδ(x) = δpδ, qδcδ(x) = −δqδ.

Therefore pδz = δpδ and qδz = −δqδ. If p denotes the spectral projection of
z corresponding to the interval ]0,∞[, then p ∈ A since 0 /∈ sp(z). From the
equations above we see that pδp = pδ and qδp = 0, whence pδ ≤ p ≤ 1− qδ.

If f is a continuous function vanishing on [−δ, δ] such that f(t) sign t ≥ 0
for all t, then by spectral theory

f(x) = (pδ + qδ)f(x) = (pδ − qδ)|f(x)|
= (2p− 1)(pδ + qδ)|f(x)| = (2p− 1)|f(x)|.

Assume now that for some δ we have a projection p in A such that pδ ≤
p ≤ 1−qδ. Put u = 2p−1. Then with f(t) = sign t (|t|−δ)+ and ε > 0 consider
the element y = u ((|x| − δ)+ + ε1). Evidently y ∈ A−1

sa and ‖f(x) − y‖ ≤ ε.
Consequently

‖x− y‖ ≤ ‖x− f(x)‖+ ε ≤ δ + ε.

Since ε is arbitrary we conclude that αr(x) ≤ δ. This proves the last statement
in the theorem.

Corollary 4. For every self-adjoint element x in a unital C∗−algebra A put
α = αr(x) and define xα = cα(x), where cα(t) = sign t (|t|∧α) as in Lemma 1.
Then x− xα ∈ (A−1

sa )=, ‖x− xα‖ = ‖x‖ − α and ‖xα‖ = α = αr(xα). ut

Example 5. It is easy to find examples where no projections exist in the limit
δ = αr(x). If Ω = [−1, 1] ∪ {1 + 1/n | n ∈ N} ∪ {−1 − 1/n | n ∈ N}
and A = C(Ω), then with x = id we obtain a self-adjoint element with
αr(x) = 1 (but ‖x‖ = 2). The spectral projections p1 and q1 correspond to the
characteristic functions for the sets {1+1/n | n ∈ N} and {−1−1/n | n ∈ N},
respectively, so there is no projection p in A such that p1 ≤ p ≤ 1− q1.

Definition 6 (Unbounded Operators). Let x be an unbounded self-adjoint
operator in a Hilbert space H.We say that x is affiliated with a non-unital
C∗−algebra A ⊂ B(H) if (x − λ1)−1 ∈ A for every λ outside sp(x). Equiv-
alently, (x − it1)−1 ∈ A whenever t 6= 0. It follows that f(x) ∈ A for every
f in C0(R). In addition we demand that the subalgebra {f(x) | f ∈ C0(R)}
contain an approximate unit for A, which is equivalent to the demand that
(1 + x2)−1 be a strictly positive element in A. From this extra condition we
conclude that the multiplier algebra M(A) of A contains every element of the
form f(x) where f ∈ Cb(R).

The set Aaff of affiliated operators is not an algebra (in general), not even
a vector space, but x− a ∈ Aaff for every x in Aaff and a in M(A)sa. To see
this we take |t| > ‖a‖. Then

(x− a− it1)−1 =
(
(x− it1)(1− (x− it1)−1a)

)−1

=
∞∑

n=0

(
(x− it1)−1a

)n
(x− it1)−1 ∈ A.
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On the other hand, if (x− a− it1)−1 ∈ A for some t then also

(x− a− is1)−1 =
(
(x− a− it1)(1− (x− a− it1)−1)i(s− t)

)−1 ∈ A

for |s − t| < |t|, since ‖(x − a − it1)−1‖ ≤ |t|−1. Taken together this means
that (x− a− it1)−1 ∈ A for all t 6= 0, whence x− a ∈ Aaff .

For each x affiliated with A and every γ > 0 we define the cut-down
operator xγ = cγ(x) in M(A), where cγ(t) = sign t (|t| ∧ γ) as in Lemma 1
and Corollary 4. On these operators we apply the function αr(·) relative to
the unital C∗−algebra M(A).

Lemma 7. If αr(xγ) < γ for some γ > 0 then αr(xβ) = αr(xγ) for all β > γ.

Proof. By assumption we can find δ such that αr(xγ) < δ < γ, and then
consider the spectral projections pδ and qδ of x. However, pδ and qδ can also
be regarded as spectral projections of xγ and of xβ , still corresponding to the
intervals ]δ,∞[ and ]−∞,−δ[.

It is therefore easy to deduce the result from Theorem 3. ut

Definition 8. If x is a self-adjoint operator affiliated with a non-unital C∗−al-
gebra A we define αr(x) to be the infimum of numbers ‖a‖, where a ∈ M(A)sa
such that x − a is invertible (whence (x − a)−1 ∈ A). If no such a exists we
set αr(x) = ∞. Loosely speaking we may refer to αr(x) as the distance be-
tween x and the invertible operators affiliated with A. At least we see that
αr(x + b) ≤ αr(x) + αr(b) for every x in Aaff and b in M(A)sa.

Theorem 9. Let x be a self-adjoint operator affiliated with a non-unital
C∗−algebra A. For every δ > αr(x) there is then a projection p in M(A)
interpolating the spectral projections pδ and 1− qδ of x. Moreover,

αr(x) = inf {γ > 0 | αr(xγ) < γ}.

Proof. If αr(x) < δ < ∞ we can find a in M(A)sa with ‖a‖ < δ such that
y = x−a is invertible (and y−1 ∈ A). With cδ and dδ as in Lemma 1 we obtain
an operator matrix, where now the (2, 2)−corner is unbounded; but it is still
true that the spectrum of the matrix misses the open interval ]− δ, δ[. This
means that when in the proof of Theorem 3 we define the operator matrix b,
where the (2, 2)− corner is −y, we have an unbounded, but invertible operator.
The element z = cδ(x) + dδ(x)y−1dδ(x) is therefore again invertible, but also
bounded, and z ∈ M(A). The rest of the proof proceeds as before to prove
that there is a projection p in M(A) interpolating the spectral projections pδ

and 1− qδ of x.
Since the projection p found above also interpolates the spectral projec-

tions of the cut-down elements xγ when γ > δ, it follows that αr(xγ) ≤ δ < γ.
As δ can be chosen arbitrarily close to αr(x) this implies that inf {γ > 0 |
αr(xγ) < γ} ≤ αr(x).
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To prove the reverse inequality we note that if for some γ we have αr(xγ) <
β < γ for some β, then pβ ≤ p ≤ 1− qβ by Theorem 3, with p a projection in
M(A). Consequently x−xβ = f(x) = (2p−1)|f(x)|, where f(t) = sign t (|t|−
β)+, and the self-adjoint element (2p− 1)(|f(x)|+ ε1) is invertible for every
ε > 0 and affiliated with A. Since ‖xβ‖ ≤ β it follows that αr(x) ≤ β + ε,
whence in the limit αr(x) ≤ γ. ut

Remarks

The problems encountered when trying to remove zero from the spectrum of
certain differential (Dirac) operators are well documented in the literature,
see e.g. [LL, LP98, LP02, LLP99, Lot96]. We hope that our result can be of
some use in this context.

Clearly we do not need the whole multiplier algebra to formulate the results
in Theorem 9. What is required is a unital C∗−algebra B such that f(x) ∈ B
for each f in C(R∪±∞) (the two-point compactification of R), but also such
that f(x + b) ∈ B if b ∈ Bsa.

On the other hand we see from the proof of Theorem 9 that if y = x − a
is an invertible bounded perturbation of x (so that a ∈ M(A)sa) then the
invertible element z = xδ + dδ(x)y−1dδ(x) is an A−perturbation of xδ, so
that we can assert that xδ is invertible in the corona algebra M(A)/A.

3 Some applications

3.1 Distance to the Symmetries

The formula for the distance between an element x in a C∗−algebra A and the
group U(A) of unitaries was proved in [Ror88, Theorem 2.7], see also [Ped87,
Theorem 10], in complete analogy with the formula for the von Neumann
algebra case found by C.L. Olsen in [Ols89]. The same formula, but with
αq(·) replacing α(·), describes the distance to the set E(A) of extreme partial
isometries in A by [BP97, Theorem 3.1]. We show below that the exact same
formula – but now with αr(·) replacing α(·) – describes the distance between
a self-adjoint element x and the set S(A) of symmetries in A. As for unitaries
in C∗−algebras one can not in general hope to find an approximant to x in
S(A), Example 5 provides a case in point, but in special cases they exist, cf.
Corollary 11 and Proposition 12.

Proposition 10. Let x be a non-invertible self-adjoint element in a uni-
tal C∗−algebra A and let S(A) denote the set of symmetries in A. Then
[−αr(x), αr(x)] ⊂ sp(ux) for every u in S(A). Moreover,

dist {x,S(A)} = max {‖x‖ − 1, αr(x) + 1}.
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Proof. If u ∈ S(A) and λ /∈ sp(ux) for some real number λ, then λ 6= 0 and
λ1−ux ∈ A−1, whence λu−x ∈ A−1

sa . Therefore |λ| = ‖λu‖ ≥ αr(x), proving
the first statement.

We see from above that

‖x− u‖ = ‖1− ux‖ ≥ ρ(1− ux) ≥ 1 + αr(x);

and evidently ‖x− u‖ ≥ ‖x‖ − 1, so that we have the inequality

dist {x,S(A)} ≥ max {‖x‖ − 1, αr(x) + 1}.

To prove the reverse inequality we take δ > αr(x) and find a projection p
in A with pδ ≤ p ≤ 1− qδ using Theorem 3. Then with u = 2p− 1 we have

‖x− u‖ = ‖(x− u)(pδ + qδ + (1− pδ − qδ))‖
= max {‖(x− u)pδ‖, ‖(x− u)qδ‖, ‖(x− u)(1− pδ − qδ)‖}
≤ max {‖x+‖ − 1, 1− δ, ‖x−‖ − 1, 1 + δ}.

Since δ can be chosen arbitrarily near αr(x) the result follows. ut

Corollary 11. If αr(x) < ‖x‖ − 2 there is a symmetry u in A such that

‖x− u‖ = dist {x,S(A)} = ‖x‖ − 1

Proof. By assumption we can find δ such that αr(x) < δ < ‖x‖− 2. Choosing
the symmetry u as in Proposition 10 this means that ‖x − u‖ = ‖x‖ − 1, as
desired. ut

Proposition 12. Let x be self-adjoint and invertible in a unital C∗−algebra
A with polar decomposition x = u|x|. Then with m(x) as in Definition 2 we
have

dist {x, S(A)} = max {‖x‖ − 1, 1−m(x)} = ‖x− u‖.

Proof. If w ∈ S(A) then evidently ‖x − w‖ ≥ ‖x‖ − 1. Moreover, for each
unit vector ξ we have ‖x − w‖ ≥ ‖w(ξ)‖ − ‖x(ξ)‖ = 1 − ‖x(ξ)‖, proving the
inequality

dist {x, S(A)} ≥ max {‖x‖ − 1, 1−m(x)}.

On the other hand, with x = u|x| we have by spectral theory that

‖x− u‖ = sup {|t− sign t| | t ∈ sp(x)} = max {‖x‖ − 1, 1−m(x)},

as desired. ut
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3.2 The λ−Function

For every element x in the unit ball A1 of a unital C∗−algebra A the number
λ(x) is defined as the supremum of all λ in [0, 1] such that x = λu+(1−λ)y for
some extreme point u in A1 and some arbitrary y in A1. This λ−function on
A1 was completely determined in [BP97, Theorem 3.7] in terms of the num-
bers αq(x) and mq(x). In particular it was shown that A has the λ−property
(λ(x) > 0 for every x in A1) if and only if λ(x) ≥ 1/2 for every x, which
happens precisely when A is extremally rich, cf. Section 1.3.

The simpler cases of unitaries or isometries were solved earlier in [Ped91,
Theorems 5.1, 5.4 & 8.1] with formulae resembling the case above. The rel-
evant function here is the unitary λ−function, λu(x), defined on A1 as the
supremum of all λ in [0, 1] such that x = λu + (1− λ)y for some unitary u in
A and y in A1. We found that λ(x) > 0 for every x in A1 precisely when A
has stable rank one, in which case actually λu(x) ≥ 1/2.

We now define the real λ−function λr(x) on A1
sa to be the supremum of

all λ in [0, 1] such that x = λu + (1− λ)y for some symmetry u in S(A) and
y in A1

sa. As we shall see, the form of this function is completely analogous to
the classical λ−function, with αr(·) and m(·) replacing αq(·) and mq(·); and
a C∗−algebra A has the real λ−property (λr(x) > 0 for every x in A1

sa) if
and only if λr(x) ≥ 1/2 for every x, which happens precisely when A has real
rank zero.

Proposition 13. The real λ−function on the self-adjoint part of the unit ball
A1

sa of a unital C∗−algebra A is given by the following formulae:

λr(x) = 1
2 (1 + m(x)) if x ∈ A−1

sa (3)

λr(x) = 1
2 (1− αr(x)) if x /∈ A−1

sa . (4)

Proof. If x ∈ A−1
sa with polar decomposition x = u|x| then with λ = (1 +

m(x))/2 we define the element y = (1−λ)−1(x−λu) in Asa. Using Definition 2
it follows by easy computations in spectral theory that ‖y‖ ≤ 1. Thus x =
λu + (1− λy) in A1

sa, whence λr(x) ≥ (1 + m(x))/2.
Conversely, if x = λw + (1−λ)z for some w in S(A) and z in A1

sa then by
Proposition 12

1−m(x) ≤ ‖w − x‖ = ‖(1− λ)(w − z)‖ ≤ 2(1− λ),

whence λ ≤ (1 + m(x))/2, as desired.
If x /∈ A−1

sa and x = λw + (1− λ)z for some w in S(A) and z in A1
sa then

by Proposition 10

1 + αr(x) ≤ ‖w − x‖ = ‖(1− λ)(w − z)‖ ≤ 2(1− λ),

whence λ ≤ (1− αr(x))/2, which is therefore an upper bound for λr(x).
On the other hand, if αr(x) 6= 1 and αr(x) < δ < 1 we can by Theorem 3

find a projection p inA with pδ ≤ p ≤ 1−qδ. With u = 2p−1 and λ = (1−δ)/2
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we claim that the element y = (1 − λ)−1(x − λu) has norm at most one. To
prove this we compute

‖ypδ‖ = ‖(1− λ)−1(x− λ)pδ‖ ≤ 1.

Similarly ‖yqδ‖ ≤ 1. Finally,

‖y(1− pδ − qδ)‖ ≤ ‖(1− λ)−1(δ + λ)‖ ≤ 1.

Consequently ‖y‖ ≤ 1. Since x = λu + (1− λ)y by construction, we see that
λr(x) ≥ λ, whence in the limit as δ → αr(x) we obtain the desired estimate
λr(x) ≥ (1− αr(x))/2. ut

Remark 14. We see from the formulae in Proposition 13 that if λr(x) > 0
for every x in A1

sa then αr(x) < 1 for every x. But if αr(x) > 0 for some
element x in A1

sa then by Corollary 4 we have a non-zero element xα in Asa

with ‖xα‖ = αr(xα). Thus the element y = ‖xα‖−1xα will violate the real
λ−condition (λr(y) = 0). The only way to avoid this situation is to demand
that αr(x) = 0 for all x, so that A has real rank zero. In this case, of course,
λr(x) ≥ 1/2 for every x in A1

sa.

3.3 Projectionless C*–Algebras

It is well known that there are C∗−algebras, even simple ones, that contain no
non-trivial projections. Such algebras may be regarded as opposite to the real
rank zero C∗−algebras. Theorem 3 allows us to reformulate this property in
terms of the distance from the invertible self-adjoint elements in the algebra.

Proposition 15. In a unital C∗−algebra A the following conditions are equiv-
alent:

(i) A has no non-trivial projections.
(ii)αr(x) = min {‖x+‖, ‖x−‖} for every element x in Asa.
(iii)A−1

sa ⊂ −A+ ∪ A+.

Proof. (i) =⇒ (ii) If we can find δ such that αr(x) < δ < min {‖x+‖, ‖x−‖}
for some x in Asa, then the spectral projections pδ and qδ are both non-
zero (in A∗∗). Applying Theorem 3 we obtain a projection p in A such that
pδ ≤ p ≤ 1− qδ, which means that p is non-trivial.

(ii) =⇒ (iii) We always have −A+ ∪ A+ ⊂ (A−1
sa )= and αr(x) ≤

min {‖x+‖, ‖x−‖}. If now x ∈ (A−1
sa )= \ (−A+ ∪ A+) then αr(x) = 0, but

min {‖x+‖, ‖x−‖} > 0.
(iii) =⇒ (i) If p is a non-trivial projection in A then 2p − 1 ∈

A−1
sa \ (−A+ ∪ A+). ut
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3.4 The Unitary Case Revisited

It is well worth noticing that the method from Theorem 3 also can be used
to give a short and transparent proof of the result mentioned in 1.1 about
unitary polar decomposition of arbitrary elements in a C∗−algebra A. With
some more work it will even give the corresponding result in [BP95, Theorem
2.2] for quasi-invertible elements, but we shall here only show the former.

If x ∈ A with polar decomposition x = v|x| we define the operator matrix

a =
(

vcδ(|x|) dδ(|x∗|)
dδ(|x|) −x∗

)
with cδ and dδ as in Lemma 1. The observant reader will notice the similarity
between a and the standard unitary dilation of a contraction x. Straightfor-
ward computations show that

a∗a =
(

δ21 0
0 δ21 ∨ xx∗

)
and aa∗ =

(
δ21 0
0 δ21 ∨ x∗x

)
,

so that m(a) ≥ δ and m(a∗) ≥ δ. If therefore α(x) < δ, so that we can find y
in A−1 with ‖x∗ − y‖ < δ, then the matrix

b =
(

vcδ(|x|) dδ(|x∗|)
dδ(|x|) −y

)
is invertible (in M2(A)), since both m(b) > 0 and m(b∗) > 0, cf. Definition 2.
As in the proof of Theorem 3 this implies that also the element z = vcδ(|x|)+
dδ(|x∗|)y−1dδ(|x|) is invertible (in A). Since zeδ = δveδ and fδz = δfδv by
construction, it follows that if z = u|z| is the polar decomposition of z then
u is a unitary in A such that ueδ = veδ and fδu = fδv. We have reproved
[Ror88, Theorem 2.2] and [Ped87, Theorem 5]

Theorem 16. If x = v|x| is the polar decomposition of an element in a unital
C∗−algebra A then for each δ > α(x) there is a unitary u in A such that
ueδ = veδ. Equivalently, for every continuous function f vanishing on [0, δ]
we have vf(|x|) = uf(|x|). ut
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