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1 Flows

By a flow α on a C∗-algebra A we mean a homomorphism α : R→Aut(A) such that t 7→ αt(x) is
continuous for each x ∈ A, where Aut(A) is the automorphism group of A. When α is a flow, we denote
by δα the generator of α, which is a closed derivation in A, i.e., δα is a closed linear map defined on a
dense ∗-subalgebra D(δα) of A into A such that δα(x)∗ = δα(x∗) and

δα(xy) = δα(x)y + xδα(y)

for x, y ∈ D(δα). See [3, 4, 1, 23] for characterizations of generators and more.
Given h ∈ Asa, δα+ad ih is again a generator. We denote by α(h) the flow generated by δα+ad ih. We

call α(h) an inner perturbation of α. More generally, if u is an α-cocycle, i.e., u : R→U(A) is continuous
such that usαs(ut) = us+t, s, t ∈ R, then t 7→ Adutαt is a flow, called a cocycle perturbation of α.
Note that an inner perturbation is a cocycle perturbation; α(h) is obtained as Aduα, where u is the
(differentiable) α-cocycle defined by dut/dt = utαt(ih). In general a cocycle perturbation of α is given
as t 7→ Ad vα

(h)
t Ad v∗ for some v ∈ U(A) and h ∈ Asa.

A (non-degenerate) representation π of the system (A,α) is called covariant if there is a unitary flow
U on the Hilbert space Hπ such that AdUtπ = παt, t ∈ R. In general we do not seem to know a good
characterization for existence of covariant irreducible representations, but in the following discussions
this will be a standing assumption. (There is an obstruction for the flow α to have a faithful family of
covariant irreducible representations, i.e., for some t > 0 there is a u ∈ U(A) such that αt = Adu and u
is not left invariant under α.)

The following is an adaptation of Glimm’s theorem (see [21] for the Connes spectrum).

Theorem 1.1 [12] Let A be a separable prime C∗-algebra and let α be a flow on A with the Connes
spectrum R(α) 6= {0}. Then the following conditions are equivalent:

1. There exists a faithful family of covariant irreducible representations of (A,α).

2. There exists a faithful covariant irreducible representation of (A,α) which induces a representation
of the crossed product A×α R (on Hπ), whose kernel is left invariant under α̂|R(α).

3. For any UHF algebra D and any UHF flow γ on D (i.e., γt =
⊗∞

n=1 Ad eithn on D =
⊗∞

n=1 Mkn

with hn = h∗n ∈ Mkn
) such that Sp(γ) ⊂ R(α), and ε > 0, there is a C∗-subalgebra B of A, an

h ∈ Asa, and a closed projection q ∈ A∗∗ such that

‖h‖ < ε,

α
(h)
t (B) = B,

(α(h)
t )∗∗(q) = q,

qAq = Bq,

(Bq, α(h)|Bq) ∼= (D, γ),

and if c(q) denotes the central support of q in A∗∗, x = 0 iff xc(q) = 0 for any x ∈ A.
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There is a similar result in the case R(α) = {0}, where the condition 3 should be modified. Thus the
above result tells us that if there is a faithful family of covariant irreducible representations, then there
are all sorts of covariant representations (via such representations of UHF flows).

Given a flow α we denote by Gα the group of automorphisms γ with the property that γαγ−1 is a
cocycle perturbation of α, which is regarded as a largest possible symmetry group for α.

In [20] it is shown that if π1 and π2 are irreducible representations of A with Ker(π1) = Ker(π2), then
there is an asymptotically inner automorphism γ such that π1γ is equivalent to π2. The following is an
adaptation to covariant irreducible representations.

Theorem 1.2 [18] Let A be a separable prime C∗-algebra and let α be a flow on A with non-trivial
Connes spectrum. If (π1, U1) and (π2, U2) are covariant irreducible representations of (A,α) such that
Ker(π1 × U1) = Ker(π2 × U2), then there is a γ ∈ Gα such that π1γ is equivalent to π2.

The above γ is actually asymptotically inner and extends to an automorphism γ of the crossed product
A×α R such that (π1 × U1)γ = π2 × U2.

2 Approximately inner flows

If the C∗-algebra A is not commutative, there is always a non-trivial flow; choose a self-adjoint h ∈ A
such that h 6∈ A ∩A′ and set αt = Ad eith, which defines an inner flow α.

If (αn) is a sequence of flows and α is a flow such that for every x ∈ A (αn
t (x)) converges to αt(x),

uniformly in t on every bounded set, as n→∞, we say that (αn) converges to α. (This convergence
can be expressed in terms of generators; δα is the graph limit of (δαn).) If all αn’s are inner, we call α
approximately inner (or AI). If α is uniformly continuous, then it is known that α is AI. Furthermore
if α is almost uniformly continuous (or α∗ is strongly continuous on A∗), then α is AI. The class of AI
flows is certainly much wider.

Proposition 2.1 Let A be a C∗-algebra of real rank zero and α an AI flow. Then there exists a faithful
family of covariant irreducible representations for (A,α).

The following shows the existence of non-trivial AI flows.

Theorem 2.2 [13] Let A be a separable antiliminary C∗-algebra. Then there is a AI flow α on A whose
Connes spectrum is full. Moreover if S is a countable set of irreducible representations of A, there is
such a flow α with the property that α is covariant in every π ∈ S. (We may replace the condition of full
Connes spectrum by the property that for any non-empty open set O ⊂ R there is a central sequence (zn)
in the spectral subspace Aα(O) such that limn ‖xzn‖ = 0 implies x = 0 for any x ∈ A.)

We prove this as follows. We fix a sequence (πi) of irreducible representations of A such that⋂
Ker(πi) = {0}. We will define α as

αt = lim
n

Ad eit(h1+h2+···+hn)

where a sequence (hn) in Asa is bounded and sufficiently central such that πi(eit(h1+···+hn)) converges
strongly as n→∞. We construct such (hn) so that there is a central sequence (wn) with αt(wn) ≈ eitpnwn

for a prescribed (pn) and (πi(wn)) is non-trivial for each i (wn would almost commute with hm, m 6= n).
For the construction of the central sequences we use the main idea of [20].

If α is an (non uniformly continuous) AI flow on A, there are at least two equivalent classes of covariant
irreducible representations; representations corresponding to ground states and ceiling states. We do not
know if there are infinitely many or not in general. On the other hand we know that there are uncountably
many equivalent classes of irreducible representations which are not covariant.
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Theorem 2.3 [13] Let α be an AI flow on a separable C∗-algebra A and let (π,U) be a covariant type I
representation of (A,α) on a separable Hilbert space, i.e., AdUtπ = παt. Then there is a sequence (hn)
in Asa such that (Ad eithn) converges to α and eitπ(hn) strongly converges to Ut uniformly in t on every
bounded set.

This is not entirely trivial. With (hn) as given in the definition of AI, we have to replace it in general
by (un(hn + zn)u∗n) to meet the required condition, where (zn) is a sequence in Asa sufficiently central
and (un) is a sequence in U(A) with ‖un − 1‖→0.

3 AF flows

If A is an AF algebra and a flow α on A has an increasing sequence (An) of α-invariant finite-dimensional
C∗-subalgebras of A with dense union, then we call α an AF flow. In this case since there is an hn ∈ (An)sa

such that αt|An = Ad eithn |An, α is AI. There are example of non-AI flows on some AF algebra [14] (cf.
[22]).

An AF flow can be constructed in an inductive way. The set of KMS states for an AF flow is calculable
in a sense and seems to be full of variety [23, 10].

When B and C are C∗-subalgebras of A, we write B
δ
⊂ C if for any x ∈ B there is y ∈ C such that

‖x− y‖ ≤ δ‖x‖. We define the distance of B and C by

dist(B,C) = inf{δ > 0 | B
δ
⊂ C, C

δ
⊂ B}.

If α is an AF flow, then a cocycle perturbation α′ of α may not be an AF flow but an approximate AF
flow in the sense that supt∈[0,1] dist(α′t(An), An)→0, where the sequence (An) is chosen for α as above.

Theorem 3.1 Let α be a flow on a unital AF algebra A. Then the following conditions are equivalent:

1. α is a cocycle perturbation of an AF flow.

2. α is an approximate AF flow, i.e., there is an increasing sequence (An) of finite-dimensional C∗-
subalgebras of A such that

⋃
n An is dense in A and

sup
t∈[0,1]

dist(αt(An), An)→0

as n→∞.

The proof of this result must use a result of Christensen [5].
For a C∗-algebra A we denote by `∞(A) the C∗-algebra of bounded sequences in A and by c0(A)

the ideal of `∞(A) consisting of x = (xn) for which limn→∞ ‖xn‖ = 0 and let A∞ = `∞(A)/c0(A). We
embed A into A∞ by regarding each x ∈ A as the constant sequence (x, x, . . .). Given a flow α on A we
denote by `∞α (A) the C∗-algebra of x = (xn) ∈ `∞(A) for which t 7→ αt(x) = (αt(xn)) is norm-continuous
and define A∞

α as its image in A∞. We naturally have the flow α on A∞
α induced by α. We will also

denote by α the restriction of α to A′ ∩A∞
α .

The following properties shared by AF flows and their cocycle perturbations could be used to distin-
guish them from other flows [11, 2].

Proposition 3.2 Let A be a unital AF algebra and let α be a cocycle perturbation of an AF flow on A.
Then (A∞

α ∩ A′)α has real rank zero and has trivial K1. Moreover (A∞
α )α has real rank zero and trivial

K1.
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There are some examples of AI flows on an AF algebra without the above types of properties (see
Section 3 of [11] and 3.11 of [2], where only the properties for (A∞

α )α are explicitly mentioned). Those
examples are of the following type. Let C be a maximal abelian C∗-subalgebra (masa) of A and choose
a sequence (hn) in Csa such that the graph limit δ of (ad ihn) is densely-defined and hence generates a
flow [3, 23]. This is what we have as the examples and might be called a quasi AF flow. Note that the
domain D(δ) of δ contains the masa C (which is actually a Cartan masa in our examples); but depending
on (hn) it may contain another masa. (We know of no example of a generator whose domain does not
contain a masa.)

Theorem 3.3 Let α be an AF flow on a unital simple AF algebra A. Then α is a cocycle perturbation of
an AF flow if and only if the domain D(δα) contains a canonical AF masa of A, where C is a canonical
AF masa if there is an increasing sequence (An) of finite-dimensional C∗-subalgebras of A with dense
union such that C is the closure of

⋃
n C ∩An ∩A′

n−1 with A0 = 0.

We note the following uniqueness result for canonical AF masas.

Proposition 3.4 The canonical AF masas of an AF algebra are unique up to automorphism, i.e., if A
be an AF algebra and C1 and C2 are canonical AF masas of A, then there is an automorphism φ of A
such that φ(C1) = C2.

4 Rohlin flows

So far we have dealt with approximately inner (AI) flows. Here we deal with an extreme opposite.

Definition 4.1 Let A be a C∗-algebra and α a flow on A. The flow α is said to have the Rohlin property
if for any p ∈ R there is a sequence (un) in U(M(A)) such that ‖αt(un)− eiptun‖→0 uniformly in t on
every compact subset of R and ‖[un, x]‖→0 for any x ∈ A.

In the case A is unital and hence M(A) = A, we have the following consequence:

Lemma 4.2 [8] Let α be a Rohlin flow on a unital C∗-algebra A and L > 0. Let γ denote the flow on
C(R/LZ) by translations. There exists a sequence (φn) of linear maps of A⊗C(R/LZ) into A such that
φn(a ⊗ 1) = a, a ∈ A, (φn) is an approximate homomorphism, and ‖φn(αt ⊗ γt)(x) − αtφn(x)‖→0 for
x ∈ A⊗ C(R/LZ).

By using this fact we show that if α has the Rohlin property, then it has the one-cocycle property;
i.e., if u : R→U(A′ ∩ A∞

α ) is an α-cocycle, then there is a v ∈ U(A′ ∩ A∞
α ) such that ut = vαt(v∗). This

is the property we actually need. If A is non-unital, we still use the above lemma. This means we have
to find out an approximate unit (en) consisting of projections such that δα(en)→0; we can achieve this
only for special cases.

Examples of Rohlin flows are given for unital simple AT algebras of real rank zero [9] and also for
Cuntz algebras [15, 19]. (But there are no Rohlin flows for unital AF algebras.)

Let On denote the Cuntz algebra generated by n isometries s1, . . . , sn with 2 ≤ n < ∞. Given a finite
sequence (p1, . . . , pn) in R we define a flow α, called a quasi-free flow, on On by

αt(sk) = eipktsk, k = 1, 2, . . . , n.

Note that then δα vanishes on the masa Cn of On generated by si1si2 · · · sim
s∗im

· · · s∗i1 for all finite
sequences (i1, i2, . . . , im) and that Cn is a Cartan AF masa of On.

Theorem 4.3 Let α be the quasi-free flow corresponding to p1, . . . , pn as above. Then the following
conditions are equivalent:
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1. α has the Rohlin property.

2. The crossed product On ×α R is purely infinite and simple.

3. p1, . . . , pn generate R as a closed subsemigroup.

The hardest part of the proof lies in (3)⇒(1). When (3) is satisfied, we show for any p ∈ R there is a
sequence (un) in U(On) such that ‖αt(un)− eiptun‖→0. This can be shown by combinatorial arguments.
To find a central sequence with this property, we find a sequence (φk) of endomorphisms of On such
that φkαt = αtφk and (φk(x)) belongs to A′ ∩ A∞

α for x ∈ A. (As a matter of fact φk is an inner
automorphism.) This follows from the following one-cocycle property for a shift.

Lemma 4.4 [19] Let B =
⊗

Z Mn and σ be the shift automorphism of B and define an action γ of Tn−1

on B by γz =
⊗

Z Ad(1 ⊕ z1 ⊕ z2 ⊕ · · · ⊕ zn−1) for z = (z1, . . . , zn−1), which commutes with σ. Let
A = Bγ be the fixed point algebra under γ. Then σ|A has the one-cocycle property, i.e., for any unitary
u = (un) ∈ B′∩A∞ with φi(u) = limn φi(un) = 1 there is a v ∈ U(B′∩A∞) such that u = vσ(v∗), where
φ1, . . . , φn are the characters of A.

Any quasi-free flows with the Rohlin property are cocycle-conjugate with each other. The following
is a generalization:

Proposition 4.5 Let α and β be Rohlin flows on On. If D(δ2
α) and D(δ2

β) contain Cn, then they are
cocycle-conjugate.

We prove this as follows: We first show that there is an h ∈ On such that h = h∗ and δα|Cn = ad ih.
Thus we may just assume that δα|Cn = 0 = δβ |Cn, which means that α and β are not far from quasi-free
or can be described in a rather explicit way. We use this fact to prove the claim.

Definition 4.6 Let A be a C∗-algebra and α a flow on A. Then αt is said to be α-invariantly approxi-
mately inner if there is a sequence (un) in U(A) such that αt = lim Adun and ‖αs(un)− un‖ converges
to zero uniformly in s on every compact subset.

For a free ultrfilter ω on N, we define cω(A) to be the ideal of `∞(A) consisting of x = (xn) satisfying
limn→ω ‖xn‖ = 0 and set Aω = `∞(A)/cω(A). In the following theorem we use the classification theory
of unital separable nuclear purely infinite simple C∗-algebras satisfying UCT and the fact that Aω ∩ A′

is purely infinite, due to Kirchberg and Phillips [6, 7].

Theorem 4.7 [16, 17] Let A be a unital separable nuclear purely infinite simple C∗-algebra satisfying
UCT and let α be a flow on A. Then the following conditions are equivalent.

1. α has the Rohlin property.

2. (A′ ∩Aω
α)α is purely infinite and simple, K0((A′ ∩Aω

α)α) ∼= K0(A′ ∩Aω) induced by the embedding,
and Sp(α|A′ ∩Aω

α) = R.

3. The crossed product A ×α R is purely infinite and simple and the dual action α̂ has the Rohlin
property.

4. The crossed product A×αR is purely infinite and simple and each αt is α-invariantly approximately
inner.

If the above conditions are satisfied, it also follows that K1((A′ ∩Aω
α)α) ∼= K1(A′ ∩Aω), which is induced

by the embedding.

In the course of the proof we can prove the following, which might be interesting on its own. (We do
not know about the K1 version of it.)
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Proposition 4.8 Let A,A′∩Aω as above. Let e0, e1 be projections in A′∩Aω and let (eσ,n) be a sequence
of projections in A representing eσ. Then e0 and e1 are equivalent in A′ ∩ Aω iff for any finite subsets
P ⊂ P(A) and U ⊂ U(A) there is an Ω ∈ ω such that for any n ∈ Ω, it follows that [eσ,n, p] ≈ 0,
[eσ, u] ≈ 0, and

[e0,np]0 = [e1,np]0, [e0,nu]1 = [e1,nu]1

for all p ∈ P and u ∈ U .
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