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Abstract. If A is a separable unital C∗–algebra and if the relative commutant
Ac := A′ ∩Aω is simple, then either Ac = C · 1A and A ∼= Mn, or A and Ac are both
simple and purely infinite. In particular, A ∼= A⊗O∞ if Ac is simple and Ac 6= C ·1A.
A version of this result for non-unital A is given if Ac/Ann(A,Aω) is simple.

The converse holds in the nuclear case: If A is simple, purely infinite, separable,
nuclear and unital, then Ac is simple (and purely infinite).

We show that Qc = C · 1 for the Calkin algebra Q := L/K, in contrast to the
separable case.

We introduce an invariant cov(B) ∈ N ∪ {∞} of unital C∗–algebras B with
cov(B) ≤ cov(C) if there is a unital *-homomorphism from C into B.

If B is nuclear and has no finite-dimensional quotient then cov(B) ≤ dr(B) + 1
for the decomposition rank dr(B) of B. In particular, cov(Z) = 2 for the Jian–Su
algebra Z, because dr(Z) = 1.

It is shown for (non-simple) separable C∗–algebras A that A is strongly purely
infinite in the sense of [12] if A does not admit a non-trivial lower semi-continuous
2-quasi-trace, cov(Ac/Ann(Aω, A)) < ∞ and if there is an image of C∗((0, 1],M2)
that generates a full hereditary C∗-subalgebra of Ac/Ann(Aω, A)).

It follows that A is strongly purely infinite if Ac/Ann(A) contains a simple C∗–
algebra B unitally such that cov(B) < ∞. In particular, A ⊗ Z is strongly purely
infinite if A+ admits no non-trivial lower semi-continuous 2-quasi-trace.

1. The case of simple Ac/Ann(A)

We suppose that A is a separable C∗–algebra. Let ω a free ultra-filter on N. We

also denote by ω the related character on `∞(N) with ω(c0(N)) = {0}. Recall that

limω αn means the complex number ω(α1, α2, . . .) for (α1, α2, . . .) ∈ `∞(N). Then

Aω := `∞(A)/cω(A) with cω(A) := {(a1, a2, . . .) ∈ `∞(A) ; , limω ‖an‖ = 0}. The

natural epimorphism from `∞(A) onto Aω is denoted by πω. Sometimes we say that

(a1, a2, . . .) ∈ `∞(A) is a representing sequence for b ∈ Aω if πω(a1, a2, . . .) = b. We

consider A as a C∗–subalgebra of Aω by the diagonal embedding

a 7→ πω(a, a, . . .) = (a, a, . . .) + cω(A),
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and let Ac := A′ ∩ Aω the algebra of (ω–) central sequences in A. The (two-sided)

annihilator

Ann(A) := Ann(A,Aω) := {b ∈ Aω ; bA = {0} = Ab}
of A in Aω is contained in Ac, but Ann(A) does not carry much information about A.

The below mentioned (or later needed) basic facts on Ac are proved in Section 3

(Appendix). Ann(A) is a closed ideal of Ac, and Ac/Ann(A) is a unital C∗-algebra.

Ann(A) = {0} if and only if A is unital. There is a natural *-homomorphism

ρ : (Ac/Ann(A))⊗max A→ Aω

given by ρ((d + Ann(A)) ⊗ b) := db for d ∈ Ac and b ∈ A. It holds ρ(1 ⊗ b) = b for

b ∈ A (cf. (A.1)).

Let K denote the compact operators on `2(N). Kc is huge, but Kc/Ann(K) ∼= C =

Cω. More generally, if p is a full projection of A then Ac/Ann(A) is naturally isomorphic

to (pAp)c ⊂ (pAp)ω
∼= p(Aω)p (cf. (A.1) of the Appendix.).

A is simple if Ac/Ann(A) is simple. A is simple and unital if Ac is simple, cf. (A.2).

To get the main result Theorem 1.8 of this section, we have to improve here (in the case

where A is simple) some of the general results on Ac and Ac/Ann(A) in the Appendix.

Remark 1.1. Let A a σ-unital C∗–algebra. The closed ideal JA of Aω generated by

A is simple, if and only if, either A is simple and purely infinite or A is isomorphic

to the compact operators K(H) on some Hilbert space H. If A 6∼= K(H), then Aω

and is simple and purely infinite. If A ∼= K(H), then JA
∼= K(Hω) (and JA 6= Aω if

Dim(H) = ∞).

Proof. It is easy to see (with help of representing sequences) that for b, c ∈ (Aω)+

there is a contraction d ∈ (Aω)+ with ‖c‖d∗bd = ‖b‖c if A is simple and purely infinite.

Conversely, suppose that JA is simple. Clearly, A is simple. Suppose that A 6∼= K(H)

for any Hilbert space H, i.e. that A is antiliminary. Let b, c ∈ (JA)+ with ‖b‖ = ‖c‖.
Since A is antiliminary, by (A.10) there exists a *-monomorphism ψ : C0((0, 1],K) ↪→
Aω with bψ(f) = f for every f ∈ C0((0, 1],K). Let D denote the hereditary C∗–

subalgebra of Aω generated by the image of ψ. D is non-zero, stable and satisfies

bg = g = gb for all g ∈ D. In particular, D ⊂ JA. Since JA is simple and D is stable,

there is d ∈ JA with d∗d = c and dd∗ ∈ D. Thus d∗bd = d∗d = c. It follows that

A is purely infinite, because we can take b, c ∈ A and find a representing sequence

(d1, d2, . . .) ∈ `∞(A) for d with d∗bd = c in Aω. �

Lemma 1.2. Suppose that A is a separable unital C∗–algebra, such that 1A is properly

infinite. Then Aω contains a non-zero C∗-subalgebra D such that AD +DA ⊂ D and

A ∩D = {0}.
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In particular, Ac 6= C · 1A.

Proof. We find a faithful unital *-representation ϕ : A → L(H) over a separable

Hilbert space H and a faithful normal state µ on L(H).

By assumption, there are isometries s1, s2 ∈ A with s∗1s2 = 0. Let a1, a2, . . . a

sequence that is dense in the positive contractions of A and c1 :=
∑

n≥1(s2)
ns1ans

∗
1(s

∗
2)

n.

Then A is generated (as a C∗–algebra) by the five self-adjoint elements

c1, c2 := (s∗1 + s1)/2, c3 := (s∗1 − s1)/2i, c4 := (s∗2 + s2)/2, c5 := (s∗2 − s2)/2i

of norm ≤ 1, and there is a unital *-epimorphism h : C∗(F5) → A given by h(gj) := eicj .

Here F5 denotes the free group on 5 generators g1, . . . , g5, and C∗(F5) the full C∗–group

algebra.

Let l(w) ∈ N denote the reduced word-length of an element w ∈ F5. Then (obviously)

l(w1w2) ≤ l(w1)+ l(w2) and one can easily see that R(n) := ]{w ∈ F5 ; l(w) = n} tends

to ∞ for n→∞ and R(n) ≤ 10n. Thus

0 < γ :=
∑
w∈F5

20−l(w) =
∞∑

n=0

20−nR(n) <∞

and ν(a) := γ−1
∑

w∈F5
20−l(w)µ ◦ ϕ(h(w−1)ah(w)) is a faithful state on A. ν satisfies

ν(h(v)∗ah(v)) ≤ 20l(v)ν(a) for all a ∈ A+ and all v ∈ F5.

We define a state νω on Aω by νω(b) := ω − limn ν(bn) for b ∈ Aω and (b1, b2, . . .) ∈
`∞(A) with πω(b1, b2, . . .) = b. Let L ⊂ Aω the closed left ideal of elements b ∈ Aω

with νω(b∗b) = 0. Since νω(h(v)∗b∗bh(v)) ≤ (20)l(v)νω(b∗b), we get Lh(v) ⊂ L for

all v ∈ F5. It follows that LA ⊂ A. Thus D := L∗ ∩ L satisfies AD + DA ⊂ D.

A ∩D ⊂ A ∩ L = {0}, because 0 = νω(a∗a) = ν(a∗a) implies a = 0.

By (A.6) and (A.5), there exists a non-scalar positive element in Ac. �

Lemma 1.3. If A is separable (and non-zero) and Ac/Ann(A) ∼= C then A⊗K ∼= K.

Proof. A is simple by (A.2) and the closed ideal JA of Aω generated by A must be

simple by (A.6). By Remark 1.1, either A⊗K ∼= K or A is purely infinite.

Suppose that A is purely infinite, then A contains a non-zero projection p ∈ A and

p is properly infinite, i.e. the unital algebra pAp has a properly infinite unit element.

By (A.1), (pAp)c ∼= Ac/Ann(A) ∼= C, which contradicts that (pAp)c is not isomorphic

to C by Lemma 1.2. �

Lemma 1.4. Suppose that A is simple.

(i) Then for every non-zero positive contraction b ∈ Ac/Ann(A) there is a positive

contraction d ∈ Ac/Ann(A) with ‖d‖ = 1 and db = bd = ‖b‖d.
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(ii) If e ∈ (Ac/Ann(A))+ is not invertible, then there exists non-zero d ∈
(Ac/Ann(A))+ with de = 0.

(iii) Every maximal family of orthogonal positive contractions in Ac/Ann(A) is ei-

ther un-countable, or is finite and has a invertible sum.

Proof. Ad(i): We can suppose that ‖b‖ = 1. Then there is a contraction c ∈ Ac
+ with

b = c+ Ann(A). Let a ∈ A+ a strictly positive contraction with ‖a‖ = 1.

By (A.1), ρ : (Ac/Ann(A))⊗maxA→ Aω induces an isomorphism from C∗(1, b)⊗minA

onto C∗(A, cA) ⊂ Aω with ρ(b ⊗ a) = ca, because A is simple, C∗(1, b) ⊂ Ac/Ann(A)

is nuclear and ρ(u⊗ v) = 0 implies u = 0 or v = 0. In particular, ‖ca‖ = ‖b⊗ a‖ = 1.

Thus, there is a character µ on C∗(a, can ; n = 1, 2, . . .) with µ(ca) = 1.

By (A.3) there exists g ∈ (Aω)+ with ‖g‖ = 1 and cag = g. It follows cg = g and

ag = g = ga, because ca ≤ c ≤ 1 and ca ≤ a ≤ 1. In particular, Ann(A)g = {0}.
By (A.8) there is a positive contraction d1 ∈ Ac with d1c = d1 and d1g = g. Thus

d := d1 + Ann(A) ∈ Ac/Ann(A) satisfies db = d, ρ(d⊗ a)g = d1ag = g and 1 ≥ ‖d‖ ≥
‖ρ(d⊗ a)‖ ≥ 1.

Ad(ii): Then b := 1 − ‖e‖−1e has norm ‖b‖ = 1. By (i), there is positive d ∈
Ac/Ann(A) with ‖d‖ = 1 and db = d. d is orthogonal to e.

Ad(iii): If e1, e2, . . . ∈ Ac/Ann(A) is a sequence of pairwise orthogonal positive

contractions, and e :=
∑

2−nen. If e is invertible, then en = 0 for n ≤ n0. If e is not

invertible, then there exists non-zero d ∈ (Ac/Ann(A))+ with ed = 0 by (ii). Thus

end = 0 for all n ∈ N. �

Lemma 1.5. If Ac/Ann(A) is simple and stably finite, then Ac/Ann(A) = C · 1 and

A⊗K ∼= K.

Proof. A is simple by (A.2) and the unital simple C∗–algebra Ac/Ann(A) has a non-

zero finite 2-quasi-trace that is necessarily faithful.

If A is simple and Ac/Ann(A) admits a faithful bounded quasi-trace, then every

maximal family of non-zero mutually orthogonal positive contractions in Ac/Ann(A) is

finite by Lemma 1.4(iii). It follows that every (maximal) commutative C∗-subalgebra

of Ac/Ann(A) must be of finite dimension. Thus Ac/Ann(A) is of finite dimension (≤
square of the dimension of any maximal commutative C∗–subalgebra).

Hence Ac/Ann(A) ∼= Mn for some n ∈ N. By (A.9) holds Mn ⊗Mn ⊂ Ac. Thus,

n = 1.

A⊗K ∼= K follows from Ac/Ann(A) ∼= C by Lemma 1.3. �
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Lemma 1.6. If Ac/Ann(A) is simple and is not stably finite, then A is simple and

purely infinite.

Proof. Then there is n ∈ N such that Mn(Ac/Ann(A)) contains a copy of O∞ unitally,

because Ac/Ann(A) is unital and simple. It implies that the ultrapower Dω ⊂ Aω

contains a properly infinite projection p ∈ ρ(O∞ ⊗min E) ⊂ Dω for every “n-stable”

hereditary C∗–subalgebra D ∼= Mn ⊗ E of A. Here we naturally embed O∞ ⊗min E

into (Ac/Ann(A)) ⊗max (Mn ⊗ E), and use that (Ac/Ann(A)) ⊗max D is a subalgebra

of (Ac/Ann(A))⊗max A.

By the semi-projectivity of the relations for infinite projections, D contains a copy

of O∞ (non-unitally). Since every non-zero hereditary C∗–subalgebra of A contains a

non-zero n-homogenous element, A is purely infinite. �

Lemma 1.7. If Ac/Ann(A) is simple and is not stably finite, then Ac/Ann(A) is purely

infinite and A ∼= A⊗O∞.

Proof. We split the proof into steps (α)–(ε):

(α) If Ac/Ann(A) is simple, 6= C · 1A and B is a separable C∗–subalgebra of

Ac/Ann(A), then the commutant B′ ∩ Ac/Ann(A) is not sub-homogenous, because it

contains a copy of every separable simple unital C∗-subalgebra of Ac/Ann(A) unitally

by (A.9).

(β) If Ac/Ann(A) is simple and is not stably finite, then there is n ∈ N such that

Mn(Ac/Ann(A)) contains a copy of O∞ unitally, and, for every a ∈ (Ac/Ann(A))+\{0}
there exists m(a) ∈ N such that Mm(a)(a(Ac/Ann(A))a) contains a copy of O∞ (non-

unitally).

(γ) Let a ∈ (Ac/Ann(A))+ \{0}. We find a unital simple separable C∗–subalgebra B

of Ac/Ann(A) such that B contains a and the matrix-entries of the generators of O∞ in

Mm(a)(a(Ac/Ann(A))a). It follows, that the image of every non-zero *-homomorphism

from C0((0, 1],Mm(a))⊗aBa into Ac/Ann(A) contains a non-zero stable C∗-subalgebra

of Ac/Ann(A).

(δ) Since B′ ∩ Ac/Ann(A) is not sub-homogenous, by the Glimm halving lemma

[15, lem. 6.7.1] there is a non-zero *-homomorphism h0 from C0((0, 1],Mm(a)) into

B′ ∩ Ac/Ann(A).

Then the natural *-homomorphism h : C0((0, 1],Mm(a)) ⊗ B → Ac/Ann(A) with

h(f ⊗ b) = h0(f)b is non-zero, because 1 ∈ B. Since B is simple, the restriction of h

to C0((0, 1],Mm(a)) ⊗ aBa is also non-zero. The image is contained in the hereditary

C∗-subalgebra of Ac/Ann(A) generated a. Thus, Ac/Ann(A) is locally purely infinite

by (γ).
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Hence Ac/Ann(A) is purely infinite. In particular, its unit element is properly infi-

nite, i.e. there is a copy of O∞ unitally contained in Ac/Ann(A).

(ε) A is simple and purely infinite by Lemma 1.6. So A is unital or it contains a

non-zero projection p such that A ∼= (pAp)⊗K by Zhang dichotomy for simple σ-unital

purely infinite C∗–algebras.

Let p ∈ A a non-zero projection (it should be the unit element of A in the case where

A is unital). Then

b ∈ Ac/Ann(A) 7→ ρ(b⊗ p) ∈ p(Aω)p ∼= (pAp)ω

is a unital *-homomorphism from Ac/Ann(A) into (pAp)c. Thus (pAp)c contains a

unital copy of O∞. It implies pAp ∼= pAp ⊗ O∞ by [12], because pAp is separable.

Thus A⊗O∞ ∼= A. �

Theorem 1.8. Suppose that A is a separable C∗–algebra. Then Ac/Ann(A) is unital

and A is unital if Ann(A) = {0}.

If Ac/Ann(A) is simple, then, either Ac/Ann(A) ∼= C and A is stably isomorphic

to K(`2(N)), or Ac/Ann(A) is purely infinite. If Ac/Ann(A) is purely infinite, then

A ∼= A⊗O∞ and Aω is simple and purely infinite.

Note that A is simple and purely infinite if Aω is simple by Remark 1.1.

Proof. Ac/Ann(A) is unital by (A.1). If Ann(A) = {0}, then A is unital by (A.1).

If Ac/Ann(A) is simple and stably finite, then Ac/Ann(A) = C · 1 by Lemma 1.5. It

is the case if and only if A⊗K ∼= K by Lemma 1.3.

Thus, if Ac/Ann(A) is simple and A is not stably isomorphic to K(`2), then A is not

stably finite. It follows that Ac/Ann(A) is purely infinite and A ∼= O∞⊗A by Lemma

1.7.

A is simple (and purely infinite) by Lemma 1.6. Aω is simple and purely infinite by

Remark 1.1, if A is purely infinite. �

Now we consider the nuclear case. It suffices to consider the unital case because

a simple and purely infinite C∗–algebra A contains a non-zero projection p ∈ A and

Ac/Ann(A) ∼= (pAp)c by (A.1).

Proposition 1.9. Ac is simple and purely infinite if A is simple, purely infinite, sep-

arable, unital and nuclear.

Proof. If separable unital A is purely infinite, simple and nuclear, then, for b ∈ Ac

with 0 ≤ b ≤ 1, ‖b‖ = 1, there is an isometry S ∈ Aω with S∗bS = 1 and S∗aS = a for
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all a ∈ A. To get S, recall that the nuclear c.p. map f → f(1) from C0(Spec(b), A) ∼=
C∗(b, 1) ⊗ A ∼= C∗(b, A) into A ⊂ Aω is approximately one-step inner (in Aω). Then

use (A.4).

It follows SS∗ ∈ Ac and S ∈ Ac.

Ac 6∼= C by Lemma 1.2.

�

Question 1.10. Let A a simple, purely infinite, unital, exact and separable C∗–algebra.

Is Ac simple if A ∼= A⊗O2 ?

Let A denote the reduced free product C∗-algebra considered in [6]. A is unital,

simple and purely infinite, but Ac does not contain O∞. Thus Ac can not be simple.

There are unital non-separable purely infinite C∗–algebras (e.g. the Calkin algebra)

A with Ac ∼= C by Corollary 1.13. This comes from the following Lemma and from

Voiculescu’s description of the neutral element of Ext(B) for separable B (cf. proof of

Proposition 1.12).

Lemma 1.11. Let B a separable unital C∗-algebra. There exist a unital C∗-algebra D,

a unital *-monomorphism η : B → D and a projection p ∈ D such that

‖(1− p)η(b)p‖ = ‖pη(b)− η(b)p‖ = dist(b,C · 1)

for every b ∈ B.

Proof. Let D := B ∗ E the unital full free C∗–algebra product of B and of E :=

C∗(1, p = p2 = p∗) ∼= C ⊕ C. Then η : b 7→ b ∗ 1 and θ : e → 1 ∗ e are unital *-

monomorphisms from B (respectively from E) into D. We identify e ∈ E with θ(e).

Note that, for all b ∈ B,

max(‖(1− p)η(b)p‖, ‖pη(b)(1− p)‖) = ‖pη(b)− η(b)p‖ ≤ dist(b,C · 1).

Let b ∈ B \ C · 1, i.e. dist(b,C · 1) > 0. Since |z| ≤ ‖b− z1‖+ ‖b‖, there exists z0 ∈ C
with |z0| ≤ 2‖b‖ such that ‖b−z01‖ = dist(b,C ·1). dist(b,C ·1) is the norm of b+C ·1
in B/C · 1. Thus, there exists a linear functional ϕ on B with ϕ(1) = 0, ‖ϕ‖ = 1

and ϕ(b− z01) = ‖b− z01‖. With help of the polar-decomposition ϕ = |ϕ|(u·) of ϕ in

B∗ = (B∗∗)∗, cf. [15, prop. 3.6.7], we can see that there are a unital *-representation

λ : B → L(H) and vectors x, y ∈ H with ‖x‖ = ‖y‖ = 1 such that ϕ(c) = 〈λ(c)x, y〉
for all c ∈ B. It follows x ⊥ y and λ(b− z01)x = ‖b− z01‖y. Let q ∈ L(H) denote the

orthogonal projection onto Cx. Then (1− q)λ(b)qx = ‖b− z01‖y. Thus

dist(b,C · 1) ≤ ‖(1− q)λ(b)q‖ ≤ ‖(1− p)η(b)p‖
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because there is a unital *-homomorphism κ : D → L(H) with κ(p) = q and κ(η(b)) =

λ(b). �

Proposition 1.12. For every separable unital C∗–subalgebra B of the Calkin algebra

Q = L(H)/K(H) (on H ∼= `2(N)) there is a projection P ∈ Q with ‖Pb − bP‖ =

dist(b,C · 1) for all b ∈ B.

Proof. Let D, η : B → D and p ∈ D as Lemma 1.11. D can be unitally and faithfully

represented on H := `2(N) such that D ∩ K = {0}. Let s1, s2 ∈ L(H) two isometries

with s1s1 ∗ +s2s
∗
2 = 1, π : t ∈ L(H) 7→ t + K ∈ Q denotes the quotient map. There is

a unitary U ∈ Q with U∗bU = π(s1)bπ(s1)
∗ + π(s2η(b)s

∗
2) for b ∈ B, by the general-

ized Weyl–von-Neumann theorem of Voiculescu, cf. [1]. Thus P := Uπ(s2ps
∗
2)U

∗ is a

projection in Q that satisfies ‖Pb− bP‖ = dist(b,C · 1) for all b ∈ B. �

Proposition 1.12 implies:

Corollary 1.13. Qc = C · 1.

Proof. Let b = πω(b1, b2, . . .) ∈ Qω for (b1, b2, . . .) ∈ `∞(Q), B the unital C∗–

subalgebra generated by b1, b2, . . . and P ∈ Q as in Proposition 1.12. Then Pb− bP =

πω(Pb1 − b1P, Pb2 − b2P, . . .) and ‖Pb − bP‖ = ω − limn dist(bn,C · 1). It follows

b ∈ C · 1 ∼= (C · 1)ω if Pb = bP . �

2. Other properties of Ac and its implications

We consider separable C∗–algebras A (not necessarily simple or unital). The really

interesting case seems to be where Ac/Ann(A) contains a full simple C∗–algebra B of

dimension Dim(B) > 1. We show below that in this case A is strongly purely infinite if

A is weakly purely infinite, and we study a condition on Ac/Ann(A) that implies weak

pure infiniteness if A has no non-trivial lower semi-continuous 2-quasi-trace.

The next considerations are concerned with a sufficient condition on Ac/Ann(A)

that allows to derive that A is weakly purely infinite if every lower semi-continuous

2-quasi-trace on A+ takes only the values 0 and ∞ (cf. 2.5).

Definition 2.1. X ⊂ B+ is full if the ideal of B generated by X is dense in B. We

say: a ∈ B+ is full if X := {a} is full. A *-homomorphism h : C → B is full if h(C+)

is full in B.

An element a ∈ B+ is k-homogenous if there is a *-homomorphism h : C0((0, 1]) ⊗
Mk → B such that h(f0 ⊗ 1k) = a. Here f0(t) := t for t ∈ (0, 1]. (0 is k-homogenous

for every k ∈ N by definition.)
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We define for a unital C∗–algebra B a number cov(B,m) as the minimum in N ∪
{+∞} of the numbers n ∈ N such that there are a1, . . . , an ∈ B+ and d1, . . . , dn ∈ B

such that
∑

j d
∗
jajdj = 1 and aj is the sum aj =

∑lj
i=1 aj,i of mutually orthogonal kj,i-

homogenous elements aj,i ∈ B+ with kj,i ≥ m for j = 1, . . . , n and i = 1, . . . , lj.

(The minimum of an empty subset of N is considered as +∞.) In other words:

cov(B,m) ≤ n <∞, if and only if, there are finite-dimensional C∗–algebras F1, . . . , Fn,

*-homomorphisms hj : C0((0, 1]) ⊗ Fj → B and d1, . . . , dj such that every irreducible

representation of Fj is of dimension ≥ m and 1 =
∑

j d
∗
jhj(f0 ⊗ 1)dj for j = 1, . . . , n.

We define cov(B) := supm cov(B,m).

Remark 2.2. It follows easily from the definitions that for unital B holds:

(i) cov(B,m) ≤ cov(B,m+ 1),

(ii) cov(C,m) ≤ cov(B,m) if there exist a unital *-homomorphism from B into C,

in particular cov(O2,m) = 1 for all m ∈ N.

(iii) cov(B,m) = infn cov(Bn,m) if B is an inductive limit of unital C∗-algebras

B1, B2, . . ., because C0((0, 1], F ) is projective for C∗–algebras F of finite dimen-

sion.

(iv) It follows cov(B) = supm infn cov(Bn,m).

(v) If 1B is finite, then cov(B) = 1 if and only if there are for every m ∈ N a C∗–

algebra Am of finite dimension and a unital *-homomorphism hm : Am → B,

such that every irreducible representation of Am has dimension ≥ m.

(vi) cov(O∞) = 1 because cov(O2) = 1. Thus cov(B) = 1 if 1B is properly infinite.

Proposition 2.3. If a unital nuclear separable C∗–algebra B has decomposition rank

dr(B) < ∞ (cf. [13, def. 3.1]) and if B has no irreducible representation of finite

dimension, then cov(B) ≤ dr(B) + 1.

Proof. This follows easily from the definition of the decomposition rank [13, def. 3.1]

by [13, prop. 5.1], which implies that the c.p. contractions ϕri
: Mri

→ B of strict order

zero arising in n-decomposable c.p. approximations ϕ :
⊕s

i=1Mri
→ B and ψ : B →⊕s

i=1Mri
of [13, def. 3.1] can be chosen such that (eventually) min r1, . . . , rs ≥ q if

ψ ◦ϕ→ idB (in point-norm) and B has no irreducible representation of dimension ≤ q.

Indeed, suppose that ϕn : Cn ⊕ Dn → B and ψn : B → Cn ⊕ Dn are completely

positive contractions with suitable C∗-algebras Cn and Dn such that ϕn ◦ ψn tends

to idB in point-norm, the curvatures ‖ψn(b∗b) − ψn(b∗)ψn(b)‖ tend to zero for every

b ∈ B, ψn is unital and every irreducible representation of Cn has dimension ≤ q. Then

the ultrapower C :=
∏

ω{C1, C2, . . .} has only irreducible representations of dimension

≤ q and the restriction to B of the ultrapower U : Bω → C of the completely positive
9



contractions p1 ◦ ψn : B → Cn is a unital *-homomorphism from B into C. The latter

contradicts that B has no irreducible representation of dimension ≤ q. �

Remark 2.4. A quasi-trace τ : A+ → [0,∞] is called trivial if it takes only the values

0 and +∞. Suppose that every lower semi-continuous 2-quasi-trace on A+ is trivial.

Then, for every n ∈ N, a ∈ A+ \ {0} and ε > 0 there exists k0 ∈ N such that for every

k ≥ k0 there are d1, . . . , dn in Mk ⊗ A such that d∗i (1k ⊗ a)dj = δi,j(1k ⊗ (a− ε)+).

(The latter is a reformulation of [11, prop. 5.7].)

Proposition 2.5. If cov(Ac/Ann(A)) < ∞ and if every lower semi-continuous 2-

quasi-trace on A+ is trivial, then A is weakly purely infinite.

Proof. Let m := cov(Ac/Ann(A)) and n := 2n. Below we show that, for a ∈ A+

and ε > 0, there exists a matrix V = [vj,q]m,n ∈ Mm,n(Aω) such that V ∗(a ⊗ 1m)V =

(a− ε)+ ⊗ 1n. It follows that A is pi-m in the sense of [12, def. 4.3] (use representing

sequences and Mm,n(Aω) ∼= (Mm,n(A))ω). Thus A is weakly purely infinite.

Let k0 ∈ N as in Remark 2.4 for a ∈ A+ and ε > 0. We find finite-dimensional C∗-

algebras F1, . . . , Fm, *-homomorphisms hj : C0((0, 1])⊗Fj) → Ac/Ann(A) and elements

gj ∈ Ac/Ann(A) such that
∑

j g
∗
j bjgj = 1 for bj := hj(f0 ⊗ 1Fj

), and that Fj has only

irreducible representations of dimension ≥ k0 for j = 1, . . . ,m. (We allow bj = 0 for

cov(Ac/Ann(A), k0) ≤ j ≤ m, to simplify notation.)

For every j = 1, . . . ,m we find by Remark 2.4 dj,1, . . . , dj,n ∈ Fj ⊗ A such that, for

1 ≤ j ≤ m and 1 ≤ p, q ≤ n

d∗j,p(1Fj
⊗ a)dj,q = δp,q(1Fj

⊗ (a− ε)+) .

We define, for j = 1, . . . ,m and q = 1, . . . , n = 2m,

vj,q := ρ(hj ⊗ idA(f0 ⊗ dj,q)(gj ⊗ 1))

(Note here that gj ⊗ 1 is a multiplier of (Ac/Ann(A))⊗ A.)

A straight calculation shows that V := [vj,q]m,n is as desired, because

v∗j,pavj,q = δp,qρ
(
g∗j bjgj ⊗ (a− ε)+

)
.

�

Now we study situations where we can deduce strong pure infiniteness from weak

pure infiniteness.

Lemma 2.6. If A is purely infinite and Ac/Ann(Aω, A)) contains two orthogonal full

hereditary C∗-subalgebras, then A is strongly purely infinite.
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Proof. Let a, b ∈ A+ and ε > 0, δ := ε/2. If E1, E2 ⊂ Ac/Ann(A) are orthogonal

full hereditary C∗–subalgebras, there are ei ∈ (Ei)+ and gj, hk ∈ Ac/Ann(A) (i = 1, 2,

j = 1, . . . ,m, k = 1, . . . , n) such that 1 =
∑

j g
∗
j (e1)

2gj and 1 =
∑

k h
∗
k(e2)

2hk. Thus,

a2 = ρ(1⊗a2) (respectively b2) is in the ideal of Aω generated by ρ(e1⊗a) (respectively

ρ(e2 ⊗ b)), because, e.g. 1 ⊗ a2 is in the ideal of (Ac/Ann(A)) ⊗max A generated by

e1 ⊗ a. Let ui ∈ (Ac)+ ⊂ Aω with ei = ui + Ann(A). Then u1abu2 = ρ(e1e2 ⊗ ab) = 0

and a2 (respectively b2) is in the closed ideal of Aω generated by u1a
2u1 = ρ((e1)

2⊗a2)

(respectively u2b
2u2).

Since A is purely infinite, Aω is again purely infinite, cf. [11].

It follows that there are f1, f2 ∈ Aω such that f1u1a
2u1f1 = (a2 − δ)+ and

f2u2b
2u2f2 = (b2 − δ)+.

With vi := fiui holds ‖v∗1a2v1 − a2‖ < ε, ‖v∗2b2v2 − b2‖ < ε and v∗1abv2 = 0 in Aω.

With help of representing sequences for v1 and v2 in `∞(A) we find d1, d2 ∈ A with

‖d∗1a2d1 − a2‖ < ε, ‖d∗2b2d2 − b2‖ < ε and ‖d∗1abd2‖ < ε. This means that A is strongly

purely infinite, cf. [3], [12]. �

Lemma 2.7. If Ac/Ann(A) contains a full 2-homogenous element, then A has the

global Glimm halving property of [2] (cf. also [3]).

If, in addition, A is weakly purely infinite, then A is strongly purely infinite.

Proof. Let a ∈ A+, ε ∈ (0, 1), δ := ε2/2 and D := aAa. By assumption, there exists

b ∈ Ac/Ann(A) and d1, . . . , dn ∈ Ac/Ann(A) with b2 = 0 and
∑

j d
∗
jb
∗bdj = 1.

Let ej := ρ(dj ⊗ a1/2), c ∈ Ac with b = c+ Ann(A) and f := ca = ρ(b⊗ a1/2). Then

f 2 = 0 and a2 =
∑

j ejf
∗fej. f and e1, . . . , en are in the hereditary C∗–subalgebra

of Aω generated by a, in particular they are in Dω. Let h = (h1, h2, . . .) ∈ `∞(D)

self-adjoint with πω(h) = f ∗f − ff ∗, g = (g1, g2, . . .) ∈ `∞(D) with πω(g) = f , and let

uk := (hk)
1/k
− gk(hk)

1/k
+ for k := 1, 2, . . ..

Then uk ∈ D, u2
k = 0 and πω(u1, u2, . . .) = f .

With help of representing sequences in `∞(D) for e1, . . . , en ∈ Dω one can see that

there exists k ∈ N and v1, . . . , vn ∈ D such that ‖a2 −
∑

j v
∗
ju
∗
kukukvj‖ < δ.

By [12, lem. 2.2] there is a contraction z ∈ A such that
∑

j w
∗
ju
∗
kukwj = (a− ε)+ for

wj := vjzh(a) with h(t) := max(0, t− ε)1/2/max(0, t2 − δ)1/2 on [0,∞].

It follows that (a−ε)+ is in the ideal generated by uk. Thus A has the global Glimm

halving property of [2].

By [3] (and [2]) A is purely infinite if and only if A is weakly purely infinite and has

the global Glimm halving property.
11



Thus, A is strongly purely infinite, because Lemma 2.6 applies. �

Theorem 2.8. If A has no non-trivial lower semi-continuous 2-quasi-trace and if

Ac/Ann(A) contains a simple C∗-subalgebra B with 1 ∈ B and

cov(B ⊗max B ⊗max · · · ) <∞,

then A is strongly purely infinite.

Proof. Since cov(B⊗maxB⊗max · · · ) <∞, it follows B 6= C and, by (A.9) and Remark

2.2(ii), that and cov(Ac/Ann(A)) <∞. Thus Proposition 2.5 applies and A is weakly

purely infinite. By the Glimm halving lemma (cf. [15, lem. 6.7.1]), Lemma 2.7 applies

and A is strongly purely infinite. �

Lemma 2.9. cov(I(m,n),min(n,m)) ≤ 2, and cov(Z) = 2 for the Jian–Su algebra

Z.

Here I(m,n) ⊂ C([0, 1],Mmn) denotes the dimension-drop algebra given by the sub-

algebra of continuous functions f : [0, 1] →Mm⊗Mn with f(0) ∈Mm⊗ 1n and f(1) ∈
1m⊗Mn. One can use Proposition 2.3 for a proof because dr(I(m,n),min(n,m)) ≤ 2,

but we give an independent proof.

Proof. Let a ∈ C([0, 1],Mmn)+ the contraction given by a(t) = t1mn. Then a ∈
I(m,n), a1/3 is n-homogenous and (1 − a)1/3 is m-homogenous in I(m,n). 1 =

d∗1a
1/3d1 + d∗2(1− a)d2 for d1 = a1/3 and d2 = (1− a)1/3.

If k ≤ n,m ∈ N and n,m are relative prime, then I(m,n) ⊂ Z (unitally) and

cov(I(m,n), k) ≤ 2. Thus cov(Z, k) ≤ 2 for all k ∈ N. cov(Z, 2) > 1, because 1Z is

finite and is not 2-homogenous. Hence cov(Z, k) = 2 for k = 2, 3, . . .. �

Corollary 2.10. A⊗Z is strongly purely infinite if A has no non-trivial lower semi-

continuous 2-quasi-trace.

Proof. Since Z ∼= Z⊗Z⊗· · · , (A⊗Z)c/Ann(A⊗Z) contains a copy of Z unitally. �

Corollary 2.11. If A is simple, and is neither stably finite nor purely infinite, then

Ac can not contain a sequence of unital copies of I(mk, nk) for min(mk, nk) →∞.

Proof. Follows from cov(I(mk, nk), n) ≤ 2 for n ≤ min(mk, nk). �

Remarks 2.12. Let D 6∼= C a unital separable C∗–algebra such that η1 : d ∈ D 7→
d ⊗ 1 ∈ D ⊗min D and η2 : d ∈ D 7→ 1 ⊗ d ∈ D ⊗min D are approximately unitarily

equivalent in D ⊗min D. (We use here only the minimal C∗-tensor product. It would

be enough that η1 and η2 are equivalent in D := D⊗∞ := D ⊗ D ⊗min · · · for our

considerations. Even that is not trivial for the algebras listed in (iv).)
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(i) D is simple, nuclear and has at most one tracial state (by an observation of E. Effros

and J. Rosenberg).

(ii) D := D⊗∞ is a unital simple nuclear C∗–algebra such that η1 : a ∈ D 7→ a ⊗ 1 ∈
D ⊗D is approximately unitarily equivalent to a *-isomorphism from D onto D ⊗D.

(iii) Conversely, if D is a separable unital C∗-algebra such that η1 : a ∈ D 7→ a ⊗ 1 ∈
D ⊗ D is approximately unitarily equivalent to a *-isomorphism from D onto D ⊗ D,

then (using an observation of G. Elliott) even η1,∞ : a ∈ D 7→ a ⊗ 1 ⊗ · · · ∈ D⊗∞ is

approximately unitarily equivalent to a *-isomorphism from D onto D⊗∞.

It follows immediately that every unital *-endomorphism of D is approximately inner.

In particular, the flip automorphism of D ⊗D is approximately inner.

(iv) Examples of D in (iii) are O2, O∞, Mp∞ , Z and (infinite) tensor products D1 ⊗
D2⊗. . .. Up to tensoring with O∞ this list exhausts all D in the UCT class (see below).

An example of D with D 6∼= D is D = P∞ the unique p.i.s.u.n. algebra in the UCT

class with K0(P∞) = 0 and K1(P∞) ∼= Z. It holds D = D⊗∞ ∼= O2. More generally,

let D any separable simple C∗–algebra that contains a copy of O2 unitally, then η1 and

η2 are approximately unitarily equivalent in D ⊗ D (M. Rørdam gave an example of

a simple nuclear C∗–algebra D that contains a copy of O2 unitally and is not purely

infinite.)

(v) With the methods of [9] one can show that A ∼= D ⊗ A if and only if M(A)

and Ac/Ann(A) contain copies of D unitally. It follows (essentially by applications of

(A.1),(A.3) and (A.9)) that the property A⊗minK ∼= D⊗minA⊗K has nice permanence

properties as e.g. invariance under extensions, inductive limits, passage to hereditary

subalgebras, quotients, and tensor products.

(vi) If, in addition, u∗ ⊗ u ∈ U0(D ⊗ D) for every unitary u ∈ U(D) (equivalently:

uvu∗v∗ ∈ U0(D) for all u, v ∈ U(D))), then the technics of [8] applies, and one can

show that A ∼= A ⊗ D, if and only if, the quotient of A′ ∩ Cb(R+, A)/C0(R+, A) by

the annihilator of A in Cb(R+, A)/C0(R+, A) contains D unitally. (The point is to

construct a continuous path in End(D) from η1 to η2.)

It follows, e.g. (if one let A = D) that every unital endomorphism of D is unitarily

homotopic to the identity map on D, and that, for general separable A, A ⊗min K ∼=
D ⊗min A ⊗ K implies A ∼= D ⊗min A. (The latter result and the permanences of (v)

have been also obtained recently by W. Winter and A. Toms under the assumption

that U(D) = U0(D) and with different methods.)

(vii) Let D purely infinite (=not stably finite here). Since U(D)/U0(D) → K1(D) is

an isomorphism (cf. [5]), we get that uvu∗v∗ ∈ U0(D) for all u, v ∈ U(D). Thus every

unital *-endomorphism of D is unitarily homotopic to the identity of D. It allows
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to define a natural isomorphism from K0(D) into KK(D,D) such that the class of a

*-morphism ψ : D ⊗K → D ⊗K corresponds to [ψ(1⊗ p1,1)] ∈ K0(D).

IfD is in the UCT class, then this implies that L ∈ EndZ(K∗(D)) must be the identity

of K∗(D) if L([1D]) = [1D]. This implies that K1(D) must be zero, and EndZ(K0(D))

is a commutative ring with additive group isomorphic to K0(D).

From K1(D) = K1(D⊗D) = 0 we get by Künneth theorem on tensor products that

that Tor(K0(D), K0(D)) = 0. Thus K0(D) is torsion-free. The natural isomorphism

K0(D)⊗ZK0(D) ∼= K0(D⊗D) ∼= K0(D) defines a unital ring with unit [1D] that is the

same as the ring induced by the additive isomorphism from K0(D) onto KK(D,D).

In particular, every group endomorphism (i.e. Z-module endomorphism) is also a ring

endomorphism of the commutative ring. Moreover K0(D⊗M2⊗M3⊗· · · ) ∼= K0(D)⊗Q
has the same properties, because D⊗M2⊗M3⊗· · · satisfies also the condition in (iii).

Thus the Q-vector space K0(D)⊗Q is one-dimensional (over Q), i.e. there is a natural

monomorphism from K0(D) into Q. All this together happens if and only if K0(D) is

a subring of Q or is zero. It follows that the (infinite) tensor products of the examples

in (iv) exhaust all purely infinite D of (iii) in the UCT class by the classification theory

for simple p.i.s.u.n. algebras.

(viii) Suppose now that D has a tracial state. Then D has the Dixmier property. D
and D ⊗ Z have the same KK-class and same ordered K0. The tracial state gives an

order and ring isomorphism from K0 into Q if D is in the UCT class. One does not

know whether D ∼= D ⊗ Z or not, even if D is in the UCT class. From recent results

of M. Rørdam [14] it follows that D⊗Z has stable rank one and D⊗Z has real rank

zero if K0(D) 6∼= Z.

(ix) Since E := (M2 ⊕M3) ⊗ (M2 ⊕M3) ⊗ . . . contains a simple unital AF-algebra

of infinite dimension (by an observation of M. Rørdam), E contains also a copy of Z
(in fact E ⊗ Z ∼= E). Thus, by (v), (vi) and (A.9) A ∼= Z ⊗ A if there is a unital

*-homomorphism from M2 ⊕M3 into Ac/Ann(A).

The Remarks 2.12 lead to the following questions.

Questions 2.13. Let D as in part (iii) of 2.12.

(i) Is cov(D) <∞ ? (The answer is positive if 1D is infinite.)

(ii) Is Z unitally contained in D? (Then D ∼= D⊗Z and cov(D) ≤ 2. This is the case

if D has no tracial state.)

(iii) Is always K1(D) = 0? Is U(D)/U0(D) → K1(D) an isomorphism? (K1(D) = 0

holds if D is in the UCT–class. U(D)/U0(D) → K1(D) is an isomorphism if D has no

tracial state, or if D has stable rank one.)
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(iv) Is u∗ ⊗ u ∈ U0(D ⊗ D) for every unitary u ∈ U(D)? (Is the case if D is purely

infinite by an old result of J. Cuntz, or if D has stable rank one.)

(v) Is (non-unital !) A approximately divisible if there is a unital *-homomorphism

from M2⊕M3 into Ac/Ann(A)? (We believe that the answer is negative, and that the

conclusion A⊗Z ∼= A is the best possible.)

(vi) Does there exist a C∗-algebra A such that A is stably projection-less and that the

flip automorphism of A⊗min A is approximately inner (by unitaries in M(A⊗min A)).

(vii) Let D be as at the beginning of Remarks 2.12. Is D stably finite if 1D is finite? Is

the flip automorphism of D⊗D then approximately inner? (The answers are positive

for D.)

Remark 2.14. The families of relations for the definition of cov(B,m) are semi-

projective, because we can suppose that the d1, . . . , dn and hj : C0((0, 1]) ⊗ Fj → B

of Definition 2.1 satisfy in addition d∗1d1 + . . . + d∗ndn = 1 and hj(f0 ⊗ 1)dj = dj for

j = 1, . . . , n := cov(B).

Indeed, let hj : C0((0, 1]) ⊗ Fj → B and d1, . . . , dn such that 1 =
∑

j d
∗
jhj(f0 ⊗ 1)dj

(where Fj is finite-dimensional and every irreducible representation of Fj is of dimension

≥ m for j = 1, . . . , n). We δ ∈ (0, 1) such that 1/2 ≥ g :=
∑

j d
∗
jhj((f0−δ)+⊗1)dj ≤ 1.

Let d̃j := hj((f0 − δ)+ ⊗ 1)1/2djg
−1/2 then d̃∗1d̃1 + . . . + d̃∗nd̃n = 1. There is a unique

*-monomorphism ψ : C0(0, 1] → C0(0, 1] with ψ(f0) = gδ where gδ(t) := min(t/δ, 1).

Let h̃j := hj ◦ (ψ ⊗ idFj
), then h̃j(f0 ⊗ 1)d̃j = d̃j.

3. Appendix: Elementary properties of Ac

The following list of properties of Ac are of elementary nature. Sometimes we only

sketch the proofs. We suppose in general that A is separable, but in (A.1) we need only

that A and D ⊂ A are σ-unital. More details on the given arguments can be found in

the preliminaries (or in the technical chapters) of [9], [12]. Recall that πω : `∞(A) → Aω

denotes the natural quotient map.

(A.1) The (two-sided) annihilator Ann(A) := Ann(A,Aω) of A in Aω is a closed ideal

of Ac, and Ac/Ann(A) is a unital C∗-algebra. Ann(A) = {0} if and only if A is unital.

If d ∈ A+ is a positive contraction that is full in A then ‖b+Ann(A)‖ = supn ‖bd1/n‖
for all b ∈ Ac. There is a natural *-homomorphism

ρ : (Ac/Ann(A))⊗max A→ Aω

given by ρ((b+Ann(A))⊗ c) := bc for b ∈ Ac and c ∈ A. (Thus ρ(1⊗ c) = c for c ∈ A.)
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Let D ⊂ A a full hereditary C∗–subalgebra of A. There is a natural *-isomorphism ι

from Ac/Ann(A) onto Dc/Ann(D,Dω) with ρA(b⊗d) = ρD(ι(b)⊗d) for b ∈ Ac/Ann(A)

and d ∈ D. (ι is determined by the values ρD(ι(b)⊗ d) for a fixed full element d ∈ D.)

In particular, Ac/Ann(A) ∼= (pAp)c ⊂ pAωp ∼= (pAp)ω if p is a full projection in A.

Proof. If Ab = {0} = bA then Acb = {0} = cbA and Abc = {0} = bcA for c ∈ Ac.

Clearly, Ann(A) = {0} if A is unital. Conversely, if A is not unital and if a ∈ A+ is a

strictly positive contraction with ‖a‖ = 1, then there exists a sequence α1 > α2 > . . .

in Spec(a) \ {0} with limn αn = 0. Let fn(t) := min(α−1
n+1t, 1) − min(α−1

n t, 1). Then

fn(a) ≥ 0, ‖fn(a)‖ = 1 and ‖fn(a)a‖ ≤ αn. c := πω(f1(a), f2(a), . . .) satisfies c ≥ 0,

‖c‖ = 1 and ca = ac = 0 for a ∈ A. Thus Ann(A) 6= {0}.

If a ∈ A+ is a strictly positive contraction in A, then the positive contraction e :=

πω(a, a1/2, a1/3, . . .) satisfies ea = ae = a. Thus e − e2 ∈ Ann(A) and b − be, b − eb ∈
Ann(A) for all b ∈ Ac. Thus e+ Ann(A) is a unit element of Ac/Ann(A).

Let d ∈ A+ a positive contraction that is full in A. N(b) := sup ‖bd1/n‖ is a semi-

norm on Ac with N(b) ≤ ‖b‖, N(b∗) = N(b) and N(b) = 0 if and only if bd = db = 0.

bd = 0 holds if and only if bg = gb = 0 for every g ∈ A because d is full in A, i.e. every

g ∈ A can be approximated by finite sums
∑

j ejdfj with ej, fj ∈ A. Thus N(b) = 0

if and only if b ∈ Ann(A). N(bc) ≤ N(b)N(c) because ‖bcd1/n‖ ≤ ‖bd1/(2n)‖‖cd1/(2n)‖.
‖bd1/n‖2 = ‖b∗bd2/n‖ ≤ ‖b∗bd1/n‖ because b∗b and d commute. Thus N(b)2 ≤ N(b∗b),

and N is a C∗–norm on Ac with N(b) = 0 if and only if b ∈ Ann(A), i.e. N(b) :=

‖b+ Ann(A)‖.

It follows that the natural C∗-algebra homomorphism from Ac ⊗max A into DA :=

aAωa ⊂ Aω given by b⊗ x 7→ bx factorizes over

(Ac/Ann(A))⊗max A ∼= (Ac ⊗max A)/(Ann(A)⊗max A)

and defines a *-epimorphism ρ from (Ac/Ann(A))⊗maxA onto the C∗–algebra generated

by Ac · A. We get that ρ is well-defined, satisfies ρ((b + Ann(A)) ⊗ x) = bx for

b ∈ Ac, x ∈ A, and c = 0 if ρ(c⊗ d) = 0 and span(AdA) is dense in A.

Let D ⊂ A a full hereditary C∗–subalgebra of A. Since D is separable, D contains

a strictly positive contraction d ∈ D+. Let f := πω(d1/2, d1/3, . . .) ∈ Dω ⊂ Aω and

let T (b) := fbf for T is a completely positive contraction from Ac into Dc such that

bg = T (b)g = gT (b) for all g ∈ D, T (Ann(A)) ⊂ Ann(D) := Ann(D,Dω) and T (b∗b)−
T (b)∗T (b) ∈ Ann(D). Thus ι(b + Ann(A)) := T (b) + Ann(D) (for b ∈ Ac) is a well-

defined *-homomorphism from Ac/Ann(A) into Dc/Ann(D) with

ρA((b+ Ann(A))⊗ g) = bg = T (b)g = ρD((T (b) + Ann(D))⊗ g)
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for g ∈ D ι is a unital *-monomorphism, because fefd = d and 0 = T (b)d = bd implies

b ∈ Ann(A) for b ∈ Ac. ι is uniquely determined by the values ρD(ι(b+Ann(A))⊗d) =

bd, because ρD((ι(b+Ann(A))−x)⊗d) = 0 implies x = ι(b+Ann(A)) if x ∈ Dc/Ann(D).

(Here d can be any full element of D.)

Now suppose that D is a full corner of A, P ∈M(A) is the projection with PAP =

D, and that d ∈ D+ a strictly positive contraction of D.

There exists a partial isometry V in M(A ⊗ K) with V ∗V = 1 − (P ⊗ e1,1) and

V V ∗ = (P ⊗ 1) − (P ⊗ e1,1), because P ⊗ (1 − e1,1) and 1 = 1 ⊗ 1 are Murray–von-

Neumann equivalent in M(A⊗K) by [4, lem. 2.5],

1 ≥ 1− (P ⊗ e1,1) ≥ 1⊗ (1− e1,1) ≥ P ⊗ (1− e1,1)

are properly infinite projections and K0(M(A⊗K)) = 0 (cf. [5]).

Let c ∈ Dc
+ and (c1, c2, . . .) ∈ `∞(D)+ a representing sequence for c, i.e. c :=

πω(c1, c2, . . .). We define hn ∈ A⊗K by

hn := cn ⊗ e1,1 + V ∗(cn ⊗ (e2,2 + · · ·+ en,n))V

and bn ∈ A+ by bn⊗ e1,1 := (1⊗ e1,1)hn(1⊗ e1,1). (Here ej,k denote the matrix units of

K.) P⊗(1−e1,1) It is easy to check that b := πω(b1, b2, . . .) is in Ac and V (b)d = bd = cd.

Thus ρD((ι(b+ Ann(A))− (c+ Ann(D)))⊗ d) = 0, i.e. ι(b+ Ann(A)) = c+ Ann(D),

and ι is surjective.

The general case of a full hereditary C∗–subalgebra D ⊂ A reduces to the case of a

full corner of A:

We may identify A with A ⊗ e1,1 ⊂ A ⊗ M2 and D with D ⊗ e1,1 ⊂ E := D ⊗
M2 ⊂ A ⊗ M2. Let B denote the hereditary C∗–subalgebra of A ⊗ M2 generated

by (A ⊗ e1,1) + (D ⊗ e2,2). Then A and F := D ⊗ e2,2 are full corners of B, and

of E ⊂ B. Consider the unital *-monomorphisms ι1 : Bc/Ann(B) → Ac/Ann(A),

ι2 : Bc/Ann(B) → Dc/Ann(D), ι3 : Bc/Ann(B) → Ec/Ann(E), ι4 : Bc/Ann(B) →
F c/Ann(F ), ι5 : Ec/Ann(E) → Dc/Ann(D), and ι6 : Ec/Ann(E) → F c/Ann(F ).

Then ι2 = ι ◦ ι1, ι2 = ι5 ◦ ι3 and ι4 = ι6 ◦ ι3 (by uniqueness with respect to ρ). ι1,

ι4, ι5 and ι6 are isomorphisms, because A ⊂ B, F ⊂ B, D ⊂ E and F ⊂ E are full

corners. It follows that ι3, ι2 and ι must be isomorphisms (i.e. must be surjective). �

(A.2) If J is a non-trivial closed ideal of A, then Jω is a closed ideal of Aω. The ideal

Ac ∩ Jω is not contained in Ann(A) and Ann(A) + (Ac ∩ Jω) does not contain Ac. (I.e.

(Ac ∩ Jω)/(Ann(A) ∩ Jω) is a non-trivial closed ideal of Ac/Ann(A).)

In particular, A is simple if Ac/Ann(A) is simple. A is simple and unital if Ac is

simple.
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Proof. It is clear that Jω is a closed ideal of Aω, that Jω ∩ A = J and that Ac ∩ Jω

is a closed ideal of Ac. If a is a strictly positive contraction in A+ and b ∈ C+ a

strictly positive contraction for C, then there are b1, b2, . . . ∈ C∗(b)+ with ‖bn‖ = 1,

bnbn+1 = bn, ‖bn − bnb‖ < 1/n and limn→∞ ‖bnd − dbn‖ = 0 for all d ∈ A. Thus

c := πω(b1, b2, . . .) is in Ac ∩ Jω and cb = b 6= 0. Thus c 6∈ Ann(A). Ac is not contained

in Ann(A) + (Ac ∩ Jω), because otherwise ρ(1 ⊗ a) = a is in Jω, i.e. a ∈ J , which

contradicts the non-triviality of J . �

(A.3) If B is a separable C∗–subalgebra of Aω and µ a pure state on B, then

there exists a sequence of pure states µ1, µ2, . . . on A such that µ is the restriction

of µω : Aω → C ∼= Cω to B. Further there are positive contractions gn ∈ A+ with

µn(gn) = 1 and gbg = µ(b)g2 for b ∈ B, where g := πω(g1, g2, . . .). g commutes with B

if (and only if) µ is a character of B.

Proof. By an old observation of J. Glimm there exists b ∈ B+ with µ(b) = ‖b‖ = 1

such that ν(b) = 1 and ‖ν‖ = 1 implies ν = µ. It follows limn→∞ ‖bnabn−µ(a)b2n‖ = 0

for every a ∈ B.

Further there exist a sequence b1, b2, . . . ∈ B+ with ‖bn‖ = 1 and πω(b1, b2, . . .) = b.

Let µ1, µ2, . . . pure states on B with µn(bn) = 1. Then µω(b) = 1. Thus µω|B = µ.

If fn(t) = max(0, 1 − n(1 − t)) and gn := fn(bn), then g := πω(g1, g2, . . .) is as

desired. �

(A.4) Suppose that P1, P2, . . . is a sequence of (non-commutative) polynomials in in

non-commuting variables x, x∗ with coefficients in Aω.

If, for every n ∈ N and ε > 0, there is a contraction a ∈ Ac with ‖Pk(a, a
∗)‖ < ε for

k = 1, . . . , n, then there is a contraction x0 ∈ Ac with Pn(x0, x
∗
0) = 0 for all n ∈ N.

Proof. The result is true for Aω in place of Ac by [12, lem. 2.5], cf. also [9, sec.

2]. One gets the corresponding result for Ac if one adds to the sequence P1, P2, . . .

the sequence of polynomials Q1, Q2, . . . given by Qn(x, x∗) := dnx − xdn for a dense

sequence d1, d2, . . . in the selfadjoint contractions in A. �

(A.5) Suppose that there exists a positive element b ∈ Aω with ‖b‖ = 1,such that

bA 6= {0}, Ab+ bA is contained in the hereditary C∗–subalgebra E := bAωb of Aω, and

A ∩ E 6= A. Then there are a ∈ A+ and d ∈ Ac
+ with ‖d‖ = 1, da 6= a and da 6= 0.

In particular, d+ Ann(A) is a non-scalar element of Ac/Ann(A).

Proof. Let B := C∗(b, A), then J := bBb is a closed ideal of B such that A+ J = B,

A 6⊂ J and J 6⊂ Ann(A). There is a strictly positive contraction a ∈ A+ of A with

‖a+J‖ = 1. (Indeed, there is a strictly positive contraction f ∈ A/(A∩J) with ‖f‖ = 1
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and a positive and contractive lift f1 ∈ A of f . Then C∗(f1, J ∩ A)/(J ∩ A) = C∗(f).

Let χ the (unique) character on C∗(f1, J ∩ A) with χ(J ∩ A) = 0 and χ(f1) = 1. A

strictly positive contraction a ∈ C∗(f1, J ∩ A)+ with χ(a) = 1 = ‖a‖ exists by the

argument in the beginning of the proof of (A.3).)

It holds ba 6= 0, because bA 6= {0}. We find pure states µ, ν on B with µ(a) = 1,

µ(J) = 0, ν(b) = 1. By (A.3) there are positive contractions g, h ∈ Aω with ‖g‖ = 1 =

‖h‖, gdg = µ(d)g2 and hdh = ν(d)h2 for d ∈ B. This implies bg = 0, bh = h, and

ag = g.

We find in C∗(b) ⊂ J a sequence of positive contractions b1, b2, . . . with bnbn+1 = bn,

‖b− bnb‖ < 1/n and limn→∞ ‖bnc− cbn‖ = 0 for all c ∈ A, cf. [15, thm. 3.12.14]. Note

that bng = 0 and bnh = h for all n ∈ N.

If a1, a2, . . . is a dense sequence in the positive part of the unit ball of A, then the

sequence of polynomials P1(x, x
∗) := b−x∗xb, P2(x, x

∗) := x∗xg, P3(x, x
∗) := h−x∗xh,

Pn+3(x, x
∗) := x∗xan−anx

∗x have approximate zeros given by contractions x := (bn)1/2.

Thus there is a contraction x0 ∈ Aω with Pn(x0, x
∗
0) = 0 for all n ∈ N, cf. [12, lem.

2.5].

It follows that d := x∗0x0 is a contraction in Ac with db = b, dg = 0 and dh = h.

da 6= 0 because bda = ba 6= 0. da 6= a because dag = dg = 0 and ag = g and g 6= 0. �

(A.6) If the closed hereditary C∗-subalgebra DA := AAωA of Aω contains a non-zero

hereditary C∗–subalgebra D with AD + DA ⊂ D and D 6= DA, then Ac/Ann(A)

contains a non-scalar element.

In particular, Ac/Ann(A) contains a non-scalar element if the closed ideal JA of Aω

generated by A is not simple.

Proof. Let c ∈ D+ a non-zero positive element. Since c ∈ D ⊂ DA, we have Ac 6= {0}.
Consider the separable C∗–subalgebra C of D generated by Ac ∪ cA ∪ {c}. Then

AC+CA ⊂ C ⊂ J . A strictly positive element b ∈ C+ ⊂ Aω with ‖b‖ = 1 satisfies the

assumptions of (A.5), because b ∈ D ⊂ DA. Thus, there exist a non-scalar element in

Ac/Ann(A) by (A.5).

The closed hereditary C∗–subalgebra DA := AAωA is full in JA. Thus, if JA is not

simple and J is a non-trivial closed ideal of JA, then D := DA ∩J is a non-trivial ideal

of DA with A 6⊂ D. �

(A.7) For positive contractions a ∈ Ac and b ∈ Aω with ab = 0 there exist positive

contractions c, d ∈ Ac with cd = 0 and ca = a, db = b.
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In particular, Ac is “sub-Stonean”. This property passes to quotients. Thus

Ac/Ann(A) is also “sub-Stonean”.

Proof. It suffices to find d ≥ 0 in Ac with ‖d‖ ≤ 1, da = 0 and db = b (because then

one can repeat with (b, d) in place of (a, b)).

Let (b1, b2, . . .) a sequence of positive contractions in A with b = πω(b1, b2, . . .) and

let f ∈ A+ a strictly positive contraction. There are kn ∈ N with ‖f 1/knbn−bn‖ < 1/n.

Consider P1(x, x
∗) := x∗xb and P2(x, x

∗) := a − x∗xa and apply (A.4). d := x∗0x0

for a contractive solution x of P1 = P2 = 0. The approximate solutions are given by

x = (1− a1/n)f ∈ Ac, where e ∈ Ac is given by e := πω(f 1/k1 , f1/k2 , . . .). �

(A.8) For every non-zero positive contraction c ∈ Ac and positive contraction g ∈ Aω

with cg = g there is a positive contraction d ∈ Ac with ‖d‖ = 1 and dc = cd = ‖c‖d
and dg = g.

In particular, for every non-zero positive contraction c ∈ Ac there is a positive

contraction d ∈ Ac with ‖d‖ = 1 and dc = cd = ‖c‖d.

Proof. It follows that ‖c‖ = 1. By (A.4) one gets d := x∗0x0 as contractive solution of

P1 = 0 = P2 for P1(x, x
∗) = g − x∗xg and P2(x, x

∗) = x∗xc − x∗x. The approximate

solutions are given by x := cn.

If only c ∈ Ac is given, we can suppose ‖c‖ = 1. By (A.3) there is g ∈ (Aω)+ with

gc = cg = g. Thus there is a positive contraction d ∈ Ac with dg = g and cd = d. �

(A.9) If A is separable and B is a separable C∗–subalgebra of Ac such that the image

of B in Ac/Ann(A) contains 1, then for every separable C∗–subalgebra C of Aω there is

a *-homomorphism h from B into (A+B+C)′∩Aω such that h(B∩Ann(A)) ⊂ Ann(A)

and the image of h(B) in Ac/Ann(A) contains 1.

Proof. Let H∞ denote the free involutive semi-group on countably many genera-

tors, and let C∗(H∞) := C∗(`1(H∞)). Since C∗(H∞) is projective, there are *-

homomorphisms hn : C∗(H∞) → A such that

hω = (h1, h2, . . .)ω : f ∈ C∗(H∞) 7→ πω(h1(f), h2(f), . . .) ∈ Aω

is an epimorphism from C∗(H∞) onto B. Let e1 a strictly positive contraction of the

kernel of hω, e2 a strictly positive contraction in h−1
ω (B ∩ Ann(A)) and e3 a positive

contraction in C∗(H∞) with hω(e3) + Ann(A) = 1 in Ac/Ann(A), and let a ∈ A+ a

strictly positive contraction in A. A suitable subsequence (hkn)n∈N induces the desired

homomorphism from C∗(H∞) into (A+B+C)′∩Aω with (hk1 , hk2 , . . .)ω(e1) = 0. More

precisely, given a separable C∗–algebra D of `∞(A) with πω(D) ⊃ A+B +C, one can

find the subsequence k1, k2, . . . , such that limn→∞ ‖hkn(e1)‖ = 0, limn→∞ ‖hkn(e2)a‖+
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‖a − hkn(e3)a‖ = 0 and (hk1(f)d1 − d1hk1(f), hk2(f)d2 − d2hk2(f), . . .) is in c0(A) for

every f ∈ C∗(H∞) and d ∈ D. �

(A.10) If A is antiliminary (=NGCR) then for every positive b ∈ Aω with ‖b‖ = 1

there exists a *-monomorphism ψ from C0((0, 1],K) into Aω with bψ(c) = ψ(c) for

every c ∈ C0((0, 1],K).

Proof. Let (b1, b2, . . .) ∈ `∞(A)+ a representing sequence for b with ‖bn‖ = 1, and

let Dn := (bn − (n− 1)/n)+A(bn − (n− 1)/n)+. Then bc = c for all elements c in∏
ω{Dn ; n ∈ N} ⊂ Aω.

Since C0((0, 1],K) ⊂
∏

ω{C0((0, 1],Mn) ; n ∈ N}, is suffices to find faithful *-

homomorphisms ψn : C0((0, 1],Mn) → Dn. By the Glimm halving lemma (cf. [15,

lem. 6.7.1]) there is a non-zero *-homomorphism hn : C0((0, 1],Mn) → Dn. Let En the

hereditary C∗-subalgebra of Dn ⊂ A generated by hn(f0 ⊗ e1,1). If M is a maximal

Abelian C∗-subalgebra of En with hn(f0 ⊗ e1,1) ∈ M , then M can not contain a min-

imal idempotent, because A is antiliminary. It follows that hn can be replaced by a

*-monomorphism ψ : C0((0, 1],Mn) → Dn. �

Remarks 3.1. The below listed additional properties of Ac and Ann(A) are not needed

for the proofs of our main results. A is not necessarily separable.

(i) Suppose that A is a σ-unital C∗–algebra. The double annihilator Ann(Ann(A)) of

Ann(A) in Aω is nothing else the hereditary C∗–subalgebra DA of Aω generated by A.

(ii) If A is a simple C∗-algebra, then for every g, h ∈ (Aω)+ with ‖g‖ = ‖h‖ = 1 there

is z ∈ Aω with ‖z‖ = 1 and zz∗g = zz∗, z∗zh = z∗z. In particular, Ann(A) does not

contain a non-zero closed ideal of Aω if A is simple.

(iii) Suppose that A is σ-unital. Ac contains an approximate unit of Aω. More pre-

cisely: For every countable subset X ⊂ M(Aω) there is b ∈ (Ac)+ with ba = a = ab

for a ∈ A, ‖b‖ = 1, cb = bc, A(c− cb) = {0} = (c− cb)A and ‖bc‖ = ‖b‖ for all c ∈ X
(cf. [9]).

Thus, the inclusion map Ac ↪→ Aω is non-degenerate and the induced natural *-

monomorphism from M(Ac) into M(Aω) is a *-isomorphism from M(Ac) onto A′ ∩
M(Aω). The isomorphism maps M(Ac,Ann(A)) := {t ∈ M(Ac) ; tAc ⊂ Ann(A)}
onto Ann(A,M(Aω)). It follows

(A′ ∩M(A)ω)/Ann(A,M(A)ω) ∼= M(Ac)/M(Ac,Ann(A)) ∼= Ac/Ann(A) ,

because Ac ⊂ A′ ∩M(A)ω ⊂ A′ ∩M(Aω).
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(iv) Suppose that A is a σ-unital C∗–algebra. DA := AAωA. The non-degenerate

*-homomorphism ρ from (Ac/Ann(A)) ⊗max A into DA defines a natural unital *-

monomorphism from

Ac/Ann(A) ∼= (Ac/Ann(A))⊗ 1M(A) ⊂M((Ac/Ann(A))⊗max A)

into A′ ∩ M(DA) = M(A)′ ∩ M(DA). It is an isomorphism from Ac/Ann(A) onto

A′ ∩M(DA), because A is σ-unital.
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