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1 Motivation: Hilbert 16-th (Smale-Pugh) and Center-
Focus problems

Consider the Abel differential equation

y′ = p(x)y2 + q(x)y3 (1.1)

Its solution y(x) is called “periodic” on [a, b] if y(a) = y(b).
Equation (1.1) has a “center” on [a, b] if all its solutions (for y(a)
small enough) are periodic.



Smale-Pugh problem Bound the number of periodic solutions
of (1.1). In particular, for p, q - polynomials is there a bound in
terms of the degrees of p and q?

Center-Focus problem Give conditions on (p, q, a, b) for (1.1)
to have a center.

Versions of the classical Hilbert 16-th and Poinceré Center-Focus
problem (the simplest where the problems are still non-trivial???)



Status of the problems.

Smale-Pugh (counting periodic solutions of the Abel equation
y′ = p(x)y2 + q(x)y3): nothing new!

Center-Focus (conditions for all the solutions of the Abel equa-
tion to be periodic): very good progress in the last few years, espe-
cially in the case where the coefficients p, q are polynomials. ([F.
Pakovich], [A. Cima, A. Gasull, F. Manosas], [J. Gine, M. Grau,
J. Llibre], [M. Briskin, N. Roytvarf, Y. Y.]). More progress in un-
derstanding the Algebraic Geometry of the Center-Focus problem
is expected.
So here the hope that the Abel equation case is indeed more

tractable gets certain confirmation!

Counting periodic solutions requires new approaches. I’ll present
some initial steps in one possible direction: Analytic Continuation.



Consider the Poincaré “first return” mapping G(y) of Abel dif-
ferential equation (1.1)

y′ = p(x)y2 + q(x)y3,

which associates to each initial value y at a the value G(y) of the
corresponding solution of the Abel equation at b.

Periodic solutions of (1.1) correspond to solutions of G(y) = y,
and (1.1) has a center if and only if G(y) ≡ y.

In order to approach the problems above we have to understand
the analytic nature of G, in particular, to bound the number of
zeroes of G(y)− y, and to give conditions for G(y)− y ≡ 0.

Unfortunately, G does not allow for any apparent “close form
representation” or even a good approximation in this form (Dy-
namics). The only known and pretty well understood way to ana-
lytically represent G is through Taylor expansion:



G(y) is given by a convergent for small y power series

G(y) = y +
∞∑
k=2

vk(p, q, 1)y
k. (1.2)

Here the Taylor coefficients vk(p, q, x) of G are determined through
the following recurrence relation:

dvk
dx

(x) = (1− k)p(x)vk−1(x) + (2− k)q(x)vk−2(x),

v0 ≡ 0, v1 ≡ 1, vk(a) = 0, k ≥ 2. (1.3)

So we have to read out the global analytic properties of G from
its Taylor expansion (1.2), or from (1.3). This is a classical setting
of Analytic Continuation.

At present we can handle only very special cases of (1.3), so most
of results are for other (simpler but still non-trivial) recurrence
relations.



2 Taylor Domination

Let f(z) =
∑∞

k=0 akz
k be a series with the radius of convergence

R > 0. Let a natural N , and a positive sequence S(k) of a sub-
exponential growth be fixed.

Definition 2.1. The function f possesses a (N,R, S) - Taylor
domination property if for each k ≥ N + 1 we have

|ak|R
k ≤ S(k) max i=0,...,N |ai|R

i,

The property of Taylor domination allows us to compare the
behavior of f(z) with the behavior of the polynomial PN(z) =∑N

k=0 akz
k.

In particular, the number of zeroes of f can be easily bounded
in this way.



Taylor domination property is essentially equivalent to the bound
on the number of zeroes of f − c for each c:

Theorem 2.1 (Biernacki, 1932). If f is p-valent in DR, i.e.
the number of solutions in DR of f(z) = c for any c does not
exceed p, then for k > p

|ak|R
k ≤ (Ak/p)2pmax i=0,...,p|ai|R

i.

So f possesses (p,R, (Ak/p)2p) Taylor domination property.

For p = 1, a0 = 0, R = 1 the Bieberbach conjecture proved by
De Branges claims that |ak| ≤ k|a1|.



2.1 Uniform Taylor domination

Consider a family

fλ(z) =
∞∑
k=0

ak(λ)z
k, λ ∈ C

n

with the coefficients ak(λ) ∈ C[λ].
The position of singularities (and hence the radius of convergence

R(λ)) for general fλ(z) depend on λ.

Definition 2.2. The family fλ(z) possesses a Uniform Taylor
domination property if

|ak(λ)|R
k(λ) ≤ S(k) max i=0,...,N |ai(λ)|R

i(λ)

with N and S(k) not depending on λ.
Uniform Taylor domination implies a uniform in λ bound on

zeroes in any disk DαR(λ) for any fixed α < 1.



Here are some situations where uniform Taylor domination holds:

1. Families fλ(z) with the Taylor coefficients ak(λ) possessing
certain (rather restrictive) algebraic properties. Here the key ingre-
dient is provided by the Bautin ideals and related algebraic struc-
tures. This covers some cases of (1.3).

2. Taylor coefficients obtained via certain types of linear recur-
rence relations. Here the key fact is the classical Turan’s lemma
which, essentially, provides a uniform Taylor domination for ratio-
nal functions.

3. Taylor coefficients of the Stiltjes transform (i.e. the consec-
utive moments) of functions obeying certain Remez-type inequali-
ties, or of D-finite functions.

We shall continue with the case (2), (and (3), if time allows).



3 Taylor domination via Turan’s lemma

We consider functions whose Taylor coefficients are obtained via
certain types of linear recurrence relations.

1. Taylor coefficients of a rational function R(z) = P (z)
Q(z)

=∑∞
k=0 akz

k of degree d satisfy a linear recurrence relation

d∑
j=0

cjak+j = 0, k = 0, 1, . . . ,

where cj are the coefficients of the denominator Q(z) =
∑d

j=0 cjz
j.

Let z1, . . . , zd be all the poles of R(z), i.e. the roots of Q(z), and
let R = (min ni=1 |zi|) be the radius of convergence.



Theorem 3.1. (Turan, 1953)
For each k ≥ n + 1

akR
k ≤ C(d) kd max i=1,...,d |ai|R

i.

This is a perfect example of uniform Taylor domination.



2. Taylor coefficients of solutions of Fuchsian ODE’s satisfy linear
recurrence relations of “Poincaré type”

d∑
j=0

[cj + ψj(k)]ak+j = 0, k = 0, 1, . . . , lim
k→∞

ψj(k) = 0.

What kind of Taylor domination (Turan-like inequalities) can we
get in this case?
This question is very close to Poincaré-Perron type results on

asymptotic behavior of the solutions. Closely related to Linear
Non-autonomous Dynamics, Lyapunov Exponents, Difference Equa-
tions.

Application: bounding zeroes of solutions of Fuchsian equations.
This is a very active field, also closely related to Hilbert 16-th prob-
lem (recent results of G. Binyamini, D. Novikov, and S. Yakovenko).



Weak Turan inequality

We are given a Poincaré type recurrence relation

d∑
j=0

[cj + ψj(k)]ak+j = 0, k = 0, 1, . . . , lim
k→∞

ψj(k) = 0.

Let z1, . . . , zd be all the roots of Q(z) =
∑d

j=0 cjz
j, and let R =

(min ni=1 |zi|) be the radius of convergence of the corresponding
series, ρ = 1

R. Let us now define N̂ as the first index such that for

k ≥ N̂ + 1 we have |ψj(k)| ≤ 2dρj, and let us put N = N̂ + d.

Theorem 3.2. Let a0, a1, . . . satisfy (5.9). Then for each k ≥
N + 1 we have

|ak|R
k ≤ 2(d+2)k max Nj=0|aj|R

j.

The problem is that in this result the constant grows exponen-
tially with k.



The inequality of Theorem 3.2 implies Taylor domination for
f(z) =

∑∞
k=0 akz

k in a disk of a smaller radius R′ = 2−(d+2)R:

Corollary 3.1. Under conditions of Theorem 3.2 we have

|ak|R
′k ≤ max Nj=0|aj|R

′j,

and the corresponding bound on the number of zeroes of f(z)
in any concentric disk strictly inside the disk of radius R′.



4 Signal Reconstruction from Integral Measurements

The second topic of this talk is related to a certain approach in
Signal Processing, which is under active development today, with
different names: “Algebraic Sampling”, “Algebraic Signal Recon-
struction”, “Signals with finite rate of innovation”, “Moments In-
version” (K.S. Eckhoff, G. Kvernadze, A. Gelb and E. Tadmor, M.
Vetterli, Th. Peter and G. Plonka, D.B. and Y.Y., ... ).

Very shortly, the approach is as follows: assume that a parametric
form of the signal is a priori known, but not the specific values of
the parameters. Substitute this expression symbolically into the
symbolic expression for the measurements (like moments or Fourier
integrals). We get an algebraic system of equations. Solve this
system for the specific measurements values and get the unknown
signal parameters.



The names above give a very small sample - much more groups
work in this direction, but a general framework for this kind of
techniques apparently does not exist. However, very recently some
general lines have appeared, and some promising connections with
“Compressed Sensing” have emerged ([E. Candes and C. Fernandez-
Granda], [Th. Peter and G. Plonka], [D.B and Y.Y]).

In particular, the following result partly settles conjecture of Eck-
hoff (1995):

Theorem 4.1. ([D.B and Y.Y, 2012]) A piecewise Ck function
can be reconstructed from its first N Fourier coefficients with

an error of order N−k
2 .

The conjecture is: N−k, Fourier truncation gives: N−1.
Not less inspiring are the connections (some very recently discov-

ered) with other mathematical fields.



An example

Assume that the signal F (x) is a priori known to be a linear
combination of δ-functions:

F (x) =
d∑
i=1

αiδ(x− xi), (4.1)

with the unknown parameters αi, xi. Our measurements are the
moments mk(F ) =

∫
xkF (x)dx, k = 0, 1, ...

Symbolic substitution gives immediately

mk(F ) =

∫
xk

d∑
i=1

αiδ(x− xi) =
d∑
i=1

αix
k
i .



So for any set of specific measurements mk(F ) = µk we get the
following system of equations (“Prony system”) with respect to the
unknown parameters αi, xi:

n∑
i=1

αix
k
i = µk, k = 0, 1, . . . , 2n.



Turan lemma appear as follows: consider a rational function

R(z) =

n∑
i=1

αi
1− xiz

=

∞∑
k=0

mkz
k,

with mk =
∑d

i=1 αix
k
i as above (a sum of geometric progressions).

Somk are the Taylor coefficients of the rational function of degree
d. By Turan lemma we have

mkR
k ≤ C(d) kd max i=1,...,d |mi|R

i, k = d + 1, d + 2, ...

This statement certainly provides information on robustness of so-
lutions of the Prony system. Indeed, its solutions may “blow up”:
as the points xi collide, the coefficients xi may tend to infinity.
Turan’s lemma shows that this happens in such a way that all the
moments remain bounded.



However, there is a much more accurate result, which implies, in
particular, Turan’s lemma.

As the points x1, ..., xd are fixed, we can consider divided finite
difference ∆j = ∆(x1, ...

′xj). In a natural way ∆j can be inter-
preted as linear combinations of δ-function, which form a basis for
such combinations.

Represent F as F =
∑d

l=1 βl∆l.

Theorem 4.2. There are constants C1, C2 depending only on
d such that

C1(d)C1max di=1|βj| ≤ max di=1|mi(F )| ≤ C2max dj=1|βj|.

Turan’s lemma easily follows from Theorem 4.1.



More connections: Turan - Nazarov inequality and its discrete
version by [O. Friedland and Y.Y.]



Abel equation y′ = py2 + qy3 is to be reconstructed. Mea-
surements - the Taylor coefficients of the Poincaré mapping G(y).
Center-Focus problem - the question non-uniqueness of the re-
construction. Turan-type inequality = Taylor domination - to be
found.



1. Basis of divided differences. Let us recall a definition
of the divided finite differences (see, for example, [?]). Let X =
{x1, . . . , xn} be a set of points inC, and let Y = Y (x) be a complex
function on C, Y (xi) = yi, i = 1, . . . , n. Initially we assume that
all the points xj in X are pairwise different, but later we shall drop
this assumption.

Definition 4.1.The n−1-st divided finite difference ∆[X,Y ] =
∆n−1[X, Y ] is defined as the sum

∆n[X, Y ] =
n∑
i=1

yi
(xi − x1) . . . (xi − xn)

=
n∑
i=1

αjiyi.

In particular, for X = {x1} we have ∆0[X,Y ] = y1, for X =
{x1, x2} we have ∆1[X,Y ] = y2−y1

x2−x1
.

For our purposes it is convenient to interpret the divided differ-
ences as linear combinations of δ-functions. ForX = {x1, . . . , xn} ⊂



C let us denote by δX the function δX =
∑n

i=1 α
n
i δ(x− xi). Then

for each “probe function” f we have ∆n[X, f ] =
∫
f(x)δX(x)dx.

Our construction of the basis of finite differences in the space of
linear combinations of δ-functions at the points ofX = {x1, . . . , xn}
will depend on the choice of a chain C of subsets X1 ⊂ X2 ⊂
· · · ⊂ Xn−1 ⊂ Xn = X, with Xj containing exactly j points for
j = 1, . . . , n. As the chain C has been fixed, we have a natural
order of the points x1, . . . , xn for which Xj = {x1, . . . , xj}, j =
1, . . . , n. This order will be used below.

Definition 4.2. For a chain C as above the basis BC of finite
differences in the space of linear combinations of δ-functions
at the points of X = {x1, . . . , xn} is given by the divided finite
differences δ1 = δX1, δ2 = δX2, . . . , δn = δXn.

BC = {δ1, . . . , δn} is indeed a basis, since its transformation
matrix to the standard basis is triangular, with non-zero coeffi-



cients on the diagonal. For F (x) =
∑n

s=1 αsδ(x − xs) we have
F (x) =

∑n
r=1 βrδr. The explicit transformation matrices cam be

easily written down (see, for example, [?]).

2. Two norms of F . We put ρ = max ni=1 |xi|, and, as above,
R = ρ−1. For X = {x1, . . . , xn} consider the space LX of linear
combinations of δ-functions δ(x − xi). Now for F ∈ LX let us
define ‖F‖ as max n−1

l=0ml(F )R
l and let ‖F‖1 =

∑n
r=1 |βr|R

r. We
show equivalence of the norms ‖F‖ and ‖F‖1 with the bounds
depending only on n. which is defined as max k=0,...,n−1 |mk(F )|.
To simplify the presentation we consider here only the real case.
So we assume that x1, . . . , xn, α1, . . . , αn ∈ R and the moments
are given by mk(F ) =

∫
R
xkF (x)dx.

We shall need the following property of the divided differences,
which in the real case follows easily from the Rolle lemma:

Proposition 4.1. Assume that f(x) is a Cn-function. Then



the divided finite differences of f satisfy ∆j[X, f ] =
1
j!
f (j)(η)

for some η ∈ [x1, xj].

There are certain analogies of this fact in the complex setting
which we discuss in [?].

Let us return to the basis of finite differences BC. The functions
δj(x) forming this bases are linear combinations of δ-functions with
the coefficients tending to infinity as some of the points x1, . . . , xj
approach one another. Still, their moments remain uniformly bounded:

Proposition 4.2. For each x1, . . . , xn in [0, 1] and for each k
we have

0 < mk(δj) ≤ (kj )ρ
k−j.

Proof: Indeed,

mk(δj) =

∫
xkδj(x)dx = ∆j[X, x

k] =
1

j!
(xk)(j)(ηj) = (kj )η

k−j
j



with ηj ∈ [x1, xj+1] ⊂ [0, ρ]. �

3. Equivalence of two norms

The following theorem shows that the divided differences δj and
their bounded linear combinations are, essentially, the only linear
combinations of δ-functions with uniformly bounded moments.

Theorem 4.3. The norms ‖F‖ and ‖F‖1 on LX are equiva-
lent, i.e. there are constants C1, C2 depending only on n such
that

C1‖F‖ ≤ ‖F‖1 ≤ C2‖F‖. (4.2)

Turan lemma can be interpreted
Prony system, and its various modifications appears in numerous

application
Represent our rational function R(z) as a sum of elementary

fractions:



R(z) =
∑n

i=1
αi

1−xiz
=
∑∞

k=0 akz
k,

with ak =
∑n

i=1 αix
k
i .

So Turan’s lemma can be considered as a result on exponential
polynomials. One of the inherent difficulties is that while ak remain
bounded, αi may “blow up”. Finite differences naturally appear in
this context.

Deep relations with Harmonic Analysis, Uncertainty Principle,
Analytic continuation, Number Theory, Signal Processing.



In particular the following “Prony system” appears in numerous
applications:

n∑
i=1

αix
k
i = µk, k = 0, 1, . . . , 2n.

Here αi, xi are unknowns, while the right hand side µk are “mea-
surements”. Turan lemma is a result on the robustness of this
system.
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