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0. Introduction

Consider differential operators P = P(x , hD; h) on Rn or on a
compact n-dimensional manifold. Dx = 1

i
∂
∂x , h→ 0. h can be

Planck’s constant or the temperature. Assume 0 ∈ σ(P) is a
simple eigenvalue and e0 a corresponding eigenfunction. Also
assume that σ(P) ⊂ {z ∈ C; <z ≥ 0}. The following problems are
“equivalent” or at least closely related:

I Return to equilibrium: Study how fast e−tP/hu converges to a
multiple of e0 when t → +∞.

I Study the gap between 0 and σ(P) \ {0}.
Such problems appear when P is the Schrödinger operator, the
Kramers-Fokker-Planck operator and for systems of coupled
oscillators. Related problems appear in dynamical systems.
The equivalence is clear when P is self-adjoint.
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Simplifying feature for Kramers-Fokker-Planck: the presence of a
supersymmetric structure (showing that we have a non-self-adjoint
Witten Laplacian) observed by J.M. Bismut and Tailleur–
Tanase-Nicola–Kurchan and also a reflection symmetry.
This also applies to a chain of two anharmonic oscillators between
heatbaths in the case the temperatures are equal.
New result: Not always the case when the temperatures are
different, so we then need a more direct tunneling approach.
Contrary to the case of Schrödinger operators and the ordinary
Witten Laplacians, our operators are non-self-adjoint and
non-elliptic.
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1. Schrödinger operators and Witten Laplacians

Consider

P = −h2∆ + V (x), 0 ≤ V ∈ C∞(M), (1)

M = Rn or = a compact Riemannian manifold. lim infx→∞ V > 0
in the first case. Assume that V−1(0) is finite = {U1, ...,UN},
where V ′′(Uj) > 0. B. Simon (1983), B. Helffer–Sj (1984) showed
that the eigenvalues in any interval [0,Ch] have complete
asymptotic expansions in powers of h:

λj ,k = λ
(0)
j ,k h + o(h), (2)

where λ
(0)
j ,k are the eigenvalues of the quadratic approximations

−∆ + 1
2〈V

′′(Uj)x , x〉.
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If u is a corresponding normalized eigenfunction:

|u(x ; h)| ≤ Cε,K e−
1
h

(d(x)−ε), x ∈ K b M, d(x) = d(x ,∪N
1 Uj),

(3)
Agmon distance, associated to the metric to V (x)dx2.

Double well case: Assume N = 2, V ◦ ι = V , where ι is an isometry
with ι2 = 1, ι(U1) = U2. The eigenvalues form exponentially close
pairs. The two smallest eigenvalues E0,E1 satisfy

E1 − E0 = h
1
2 b(h)e−d(U1,U2)/h, b(h) ∼

∞∑
0

bjh
j , b0 > 0. (4)

1D: Harrel, Combes-Duclos-Seiler, multi-D: B.Simon, B.Helffer-Sj. The

precise formula (4) is due to Helffer–Sj with an additional non-degeneracy

assumption on the minimizing Agmon geodesics from U1 to U2.

Multi-well case: Helffer-Sj: similar result using an interaction
matrix. Sometimes quite explicit, sometimes less when
non-resonant wells are present.
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The Witten complex

Let M be a compact Riemannian manifold, φ : M → R a Morse
function, d : C∞(M;∧`T ∗M)→ C∞(M;∧`+1T ∗M) the de Rahm
complex.
Witten complex:

dφ = e−
φ
h ◦ hd ◦ e

φ
h = hd + dφ∧.

Witten (Hodge) Laplacian:

�φ = d∗φdφ + dφd∗φ

Restriction to `-forms

�(`)
φ = −h2∆(`) + |φ′|2 + hM

(`)
φ , M

(`)
φ = smooth matrix.

Matrix Schrödinger operator with the critical points of φ as
potential wells.
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Let C (`) be the set of critical points of index `. The result (2)

applies to �(`)
φ .

Proposition

I If Uj ∈ C (`), then the smallest of the λ
(0)
j ,k is zero.

I If Uj 6∈ C (`), the all the λ
(0)
j ,k are > 0.

Thus �(`)
φ has precisely ]C (`) eigenvalues that are o(h) and using

the intertwining relations, �(`+1)
φ dφ = dφ�(`) and similarly for d∗φ,

one can show that they are actually exponentially small.

In principle it should be possible to analyze the exponentially small
eigenvalues by applying the interaction matrix approch (Helffer-Sj)

to �(`)
φ , but we run into the problem of tunneling through

non-resonant wells, and it turned out to be better to make a
corresponding analysis directly for dφ and d∗φ.
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Let B(`) be the spectral subspace generated by the eigenvalues of

�(`)
φ that are o(h), so that dimB(`) = #C (`). Then hdφ splits into

the exact sequence:

B(0)⊥ → B(1)⊥ → ...→ B(n)⊥

and the finite dimensional complex:

B(0) → B(1) → ...→ B(n). (5)

Witten (Simon, Helffer-Sj): analytic proof of the Morse
inequalities. Tunneling analysis (Helffer-Sj) gives an analytic proof
of

Theorem
The Betti numbers can be obtained from the orientation complex.

More recently Bovier–Eckhoff–Gayrard–Klein, Helffer-Klein-Nier
studied the non-vanishing exponentially small eigenvalues in
degeree 0. Le Peutrec-Nier-Viterbo have recent results also in
higher degree.
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2. The Kramers-Fokker-Planck operator (Hérau-Hitrik-Sj)

P = y · h∂x − V ′(x) · h∂y︸ ︷︷ ︸
skew−symmetric

+
γ

2
(y − h∂y ) · (y + h∂y )︸ ︷︷ ︸
≥0 dissipative part

on R2d
x ,y .

(6)

h > 0 is the temperature and we will work in the low temperature
limit. γ > 0 is the friction.
We will assume that V ∈ C∞(Rd ; R),

∂αV = O(1) when |α| ≥ 2, |V ′(x)| ≥ 1

C
for |x | ≥ C , (7)

and also for simplicity that V (x)→ +∞, when x →∞.
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I P is maximally accretive, it has a unique closed extension
L2 → L2 from S(R2d).

I The spectrum σ(P) of P is contained in the closed half-plane
<z ≥ 0.

I If V (x)→ +∞ when |x | → ∞, then
e0(x , y) := e−(y2/2+V (x))/h ∈ N (P) so 0 ∈ σ(P) and this is
the only eigenvalue on iR. The problem of return to
equilibrium is then to study how fast e−tP/hu converges to a
multiple of e0 when t → +∞ “⇔” Study the gap between 0
and “the next eigenvalue”.

I The problem of return to equilibrium is originally posed in
other spaces.
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Freidlin-Wentzel: probabilistic methods.
Desvillettes, Villani, Eckmann, Hairer, Hérau, F. Nier, Helffer-Nier:
classical PDE (pre-microlocal analysis) methods.
Hérau-Nier showed a global hypoellipticity result and in particular
that there is no spectrum in a parabolic neighborhood of iR away
from a disc around the origin and that the spectrum in that disc is
discrete:

They also showed very interesting estimates relating the first
spectral gap of P with that of the Witten Laplacian d∗V dV on
0-forms.
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Assume that

V is a Morse function with n0 local minima. (8)

Hérau–Sj–C. Stolk: The spectrum in any band 0 ≤ <z < Ch is
discrete and the eigenvalues are of the form

µh + o(h), complete asymptotic expansion. (9)

µ are the eigenvalues of the quadratic approximations of P at
(xc , 0), where xc are the critical points of V , explicitly known
(H. Risken, HeSjSt). Sometimes the µ are real, sometimes not, but
in all cases they belong to a sector |=µ| ≤ <µ.
There are precisely n0 eigenvalues with µ = 0 and they are O(h∞)
(HeSjSt).
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NB: More difficult than in the Schrödinger case:

I P is non-self-adjoint and non-elliptic.

I Quite advanced microlocal analysis seems to be necessary.

I The difficulties become worse when considering exponential
decay and tunneling.

Important supersymmetric observation by J.M. Bismut,
Tailleur–Tanase-Nicola–Kurchan: P is equal to a “twisted” Witten
Laplacian in degree 0: dA,∗

φ dφ which uses a non-symmetric

sesquilinear product on L2.
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2.1. A result

The result is analogous to those of Bovier–Eckhoff–Gayrard–Klein,
Helffer-Klein-Nier, Nier, Le Peutrec in the case of the Witten
Laplacian. Recall that φ(x , y) = y 2/2 + V (x) and let n = 2d .
Critical points of φ of index 1: saddle points. If s ∈ R2d is such a
point then for r > 0 small, {(x , y) ∈ B(s, r); φ(x , y) < φ(s)} has
two connected components. We say that s is a separating saddle
point (ssp) if these components belong to different components in
{(x , y) ∈ R2n; φ(x , y) < φ(s)}.
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Consider φ−1(]−∞, σ[) for decreasing σ. For σ = +∞ we get Rn

which is connected. Let m1 be a point of minimum of φ and write
Em1 = Rn. When decreasing σ, Em1 ∩ φ−1(]−∞, σ[) remains
connected and non-empty until one of the following happens:

a) We reach σ = φ(s), where s is one or several ssps in Em1 .
Then φ−1(]−∞, σ[) ∩ Em1 splits into several connected
components.

b) We reach σ = φ(m1) and the connected component
dissappears: φ−1(σ) ∩ Em1 = ∅.

In case a) one of the components contains m1. For each of the
other components, Ek we choose a global minimum mk ∈ Ek of
φ|Ek

and write Ek = Emk
, σ = σ(mk). Then continue the

procedure with each of the connected components (including the
one containing m1).

Put Sk = σ(mk)− φ(mk) > 0, S1 = +∞.
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Theorem (Hérau-Hitrik-Sj, J. Inst. Math. Jussieu 2011)

I The n0 eigenvalues that are o(h), are real and exponentially
small:

λj � he−2Sj/h.

I If we assume, after relabelling, that Sk2 > maxj≥3 Skj
and that

∂Emk2
contains only one ssp, then the smallest non-vanishing

eigenvalue is of the form

λ2 = h|b2(h)|2e−2Sk2
/h, b2 ∼ b2,0 + hb2,1 + .., b2,0 6= 0. (10)

I Under an even stronger generic assumption, all the
λ2, λ3, .., λn0 are as in (10).
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2.2 Reflection symmetry
Let κ : (x , y) 7→ (x ,−y) and define Uκ : L2(Rn)→ L2(Rn) by
Uκu = u ◦ κ:

U2
κ = 1, U∗κ = Uκ,

P∗Uκ = UκP.

Introduce the non-degenerate non-positive Hermitian form

(u|v)κ := (Uκu|v)L2 , giving a Krein space structure.

P is formally self-adjoint for (·|·)κ:

(Pu|v)κ = (UκPu|v) = (P∗Uκu|v) = (Uκu|Pv) = (u|Pv)κ.

Proposition

Let E (0) ⊂ L2(Rn) be the spectral subspace corresponding to
λ1, ..., λn0 . Then (·|·)κ is positive definite on E (0) × E (0) and hence
a scalar product there.
P : E (0) → E (0) is self-adjoint, so λ1, ..., λn0 are real.
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2.3 The supersymmetry

The supersymmetric structure of the KFP operator was observed
by J.M. Bismut and Tailleur–Tanase-Nicola–Kurchan.
Let A : (Rn)∗ → Rn be linear and invertible. For u, v ∈ ∧k(Rn)∗,
put

(u|v)A = 〈∧kAu|v〉

and extend the definition to square integrable k-forms by
integration:

(u|v)A =

∫
(u(x)|v(x))Adx .

Adjoint: (Qu|v)A = (u|QA,∗v)A.
If φ ∈ C∞(Rn), put dφ = e−φ/h ◦ hd ◦ eφ/h. Twisted Witten
Laplacian:

�A := dA,∗
φ dφ + dφdA,∗

φ , NB: �(0)
A (e−φ/h) = 0.
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Example

Let

Rn = R2d
x ,y , A =

1

2

(
0 1
−1 γ

)
, φ(x , y) =

y 2

2
+ V (x).

Then
�(0)

A = KFP.
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3. Supersymmetric structures, some generalities

Let M be Rn or a compact manifold of dimension n, equipped with
a smooth strictly positive volume density ω(dx).
δ : C∞(M;∧k+1TM)→ C∞(M;∧kTM) be the adjoint of the de
Rahm complex.
Let A(x) : T ∗x M → TxM depend smoothly on x ∈ M. We have the
bilinear product

(u|v)A = (∧kAu|v)L2(ω(dx)), u, v ∈ C∞0 (M;∧kT ∗x M).

When A is pointwise bijective we have formal adjoints, and for the
restriction of the de Rahm operator to zero forms, we get

dA,∗ = δAt.
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Let P be a second order real differential operator on M. In local
coordinates,

P = −
∑

∂xj Bj ,k(x)∂xk
+
∑

vj(x)∂xj + v0, (11)

where (Bj ,k) is symmetric. Viewing P as acting on 0 forms, we
ask whether there is a smooth map A(x) as above, such that

P = dA,∗d = δAtd , (12)

either locally or globally on M.

Proposition

I In order to have (12), it is necessary that

P(1) = 0 and P∗(1) = 0. (13)

I If (13) holds and the δ-complex is exact in degree 1 for
smooth sections, we can find a smooth matrix A such that
(12) holds. Moreover, A = B + C , where C antisymmetric.
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More generally, we assume that there exist smooth strictly positive
functions e−φ and e−ψ in the kernels of P and P∗ respectively:

P(e−φ) = 0, P∗(e−ψ) = 0. (14)

This is a necessary condition for having

P = dA,∗
ψ dφ. (15)

and also sufficient if we assume that the δ complex is exact in
degree 1.
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4. Chains of harmonic oscillators and absence of
supersymmetry

We consider a chain of two oscillators coupled to two heat baths:

P̃W =
γ

2

2∑
j=1

αj(−h∂zj )(h∂zj +
2

αj
(zj−xj))+y ·h∂x−(∂xW (x)+x−z)·h∂y .

I (xj , yj) ∈ R2n are the coordinates of a classical particle,

I y2

2 + W (x) + x2/2 is the classical Hamiltonian,

I zj ∈ Rn correspond to each of the heat baths,

I Tj = αjh/2 > 0 are the temperatures in the baths,

I γ > 0 is the friction.

Eckmann–Pillet–Rey-Bellet (99)
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The supersymmetric approach can be applied in two cases:

I Equilibrium case: The exterior temperatures are equal so that
α1 = α2 =: α.

I The decoupled case: W = W0(x) = W1(x1) + W2(x2)

In each case we have an explicit function φ0(x , y , z) such that

PW := eφ0/hP̃W e−φ0/h = dA,∗
φ0

dφ0 ,

PW (e−φ0/h) = 0, P∗W (e−φ0/h) = 0

In the first case (before observing the reflection symmetry) we had
obtained an analogue of the above theorem for KFP in the case
when W is a Morse function with two local minima and one saddle
point.
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In the decoupled case we have

φ0(x , y , z) =
2∑
1

1

αj
(

y 2
j

2
+ Wj(xj) +

(xj − zj)
2

2
).

PW0 = eφ0/hP̃W0e−φ0/h

=
γ

2

2∑
1

αj(−h∂z +
1

αj
(zj − xj))(h∂z +

1

αj
(zj − xj))

+ y · h∂x − (∂xW0(x) + x − z) · h∂y ,

PW0(e−φ0/h) = 0, P∗W0
(e−φ0/h) = 0.
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Symbol:

qW0(x , y , z ; ξ, η, ζ) =
γ

2

2∑
1

αj(ζ
2
j −

1

αj
(zj − xj)

2)

+ y · ξ − (∂xW0(x) + x − z) · η,

To leading order,

PW0 = −qW0(x , y , z ;−h∂x ,−h∂y ,−h∂z).

Eiconal equation:

qW0(x , y , z ; ∂xφ0, ∂yφ0, ∂zφ0) = 0

Now perturb P̃W0 by replacing W0 by W = W0 = W0 + δW , so we

get P̃W = P̃W0 − ∂xδW (x) · h∂y ,
PW = PW0 − ∂xδW (x) · (h∂y − ∂yφ0).
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The following recent result that we have obtained with F. Hérau
and M. Hitrik shows that the supersymmetric method breaks down
for some perturbations:

Theorem
Take γ = 1 and assume that α1 6= α2, αj > 0. Let W1(x1) be a
Morse function with two local minima m1, m2 and a saddle point
s0, tending to +∞ when x1 →∞. Let W2(x2) be a positive
definite quadratic form. Let 3 ≤ m ∈ N. There exists
C∞(R2n) 3 δW = O(|x2|m) arbitrarily small, vanishing near Mj

and S0, such that the eiconal equation
qW0+δW (x , y , z , ∂xφ, ∂yφ, ∂zφ) = 0 has no smooth solution on R3n

with φ(M̃1) = 0, φ′(M̃1) = 0, φ′′(M̃1) > 0. Here, Mj = (mj , 0),

S0 = (s0, 0), M̃1 = (M1, 0,M1).

Consequence: In general for coupled oscillators, there is no simple
way of writing PW = dA,∗

ψ dφ with a smooth h-independent
function φ.
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