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0. Introduction

Consider differential operators P = P(x, hD; h) on R" or on a
compact n-dimensional manifold. D, = %d% h — 0. h can be
Planck’s constant or the temperature. Assume 0 € o(P) is a
simple eigenvalue and ey a corresponding eigenfunction. Also
assume that o(P) C {z € C; Rz > 0}. The following problems are
“equivalent” or at least closely related:

> Return to equilibrium: Study how fast e tF/h
multiple of ¢y when t — +o00.

» Study the gap between 0 and o(P) \ {0}.

Such problems appear when P is the Schrodinger operator, the
Kramers-Fokker-Planck operator and for systems of coupled
oscillators. Related problems appear in dynamical systems.
The equivalence is clear when P is self-adjoint.

u converges to a

)
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Simplifying feature for Kramers-Fokker-Planck: the presence of a
supersymmetric structure (showing that we have a non-self-adjoint
Witten Laplacian) observed by J.M. Bismut and Tailleur—
Tanase-Nicola—Kurchan and also a reflection symmetry.

This also applies to a chain of two anharmonic oscillators between
heatbaths in the case the temperatures are equal.

New result: Not always the case when the temperatures are
different, so we then need a more direct tunneling approach.
Contrary to the case of Schrédinger operators and the ordinary
Witten Laplacians, our operators are non-self-adjoint and
non-elliptic.
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. Schrodinger operators and Witten Laplacians

Consider
P=—hmA+V(x), 0<VeC®M), (1)

M = R" or = a compact Riemannian manifold. liminf,_.., V >0
in the first case. Assume that VV~1(0) is finite = { Uy, ..., Uy},
where V”(U;) > 0. B. Simon (1983), B. Helffer-Sj (1984) showed
that the eigenvalues in any interval [0, Ch] have complete
asymptotic expansions in powers of h:

Ak = NQh+ o(h), (2)

where )\(Ok) are the eigenvalues of the quadratic approximations
—A+ 3(V"(U))x, x).
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If uis a corresponding normalized eigenfunction:

u(x; h)| < Coe #9009 x e K e M, d(x) = d(x,UNUj),
(3)
Agmon distance, associated to the metric to V/(x)dx?.
Double well case: Assume N =2, Vor =V, where ¢ is an isometry
with 12 =1, (Uy) = U,. The eigenvalues form exponentially close
pairs. The two smallest eigenvalues Ey, E; satisfy

E— Eo = h3b(h)e 4 UnU/h b(h) ~ S b, by > 0. (4)
0

1D: Harrel, Combes-Duclos-Seiler, multi-D: B.Simon, B.Helffer-Sj. The
precise formula (4) is due to Helffer-Sj with an additional non-degeneracy
assumption on the minimizing Agmon geodesics from U; to Us.
Multi-well case: Helffer-Sj: similar result using an interaction
matrix. Sometimes quite explicit, sometimes less when
non-resonant wells are present.
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The Witten complex

Let M be a compact Riemannian manifold, ¢ : M — R a Morse
function, d : C°(M; A‘T*M) — C>(M; N“*1 T*M) the de Rahm
complex.

Witten complex:

dy=e % ohdoeh = hd + dg".
Witten (Hodge) Laplacian:
Op = djdy + dyd
Restriction to ¢-forms
09 = 280 1 1¢/12 + MY, MY = smooth matrix.

Matrix Schrodinger operator with the critical points of ¢ as
potential wells.
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Let C() be the set of critical points of index /. The result (2)

applies to Dg).

Proposition
> If U; € C\Y), then the smallest of the )\J(Ok) is zero.

> If Uy ¢ CO), the all the \\5) are > 0.

Thus Dg) has precisely #C() eigenvalues that are o(h) and using

the intertwining relations, Dgﬂ)dqb = d¢D(/’) and similarly for d;,

one can show that they are actually exponentially small.

In principle it should be possible to analyze the exponentially small
eigenvalues by applying the interaction matrix approch (Helffer-Sj)
to Dgf), but we run into the problem of tunneling through
non-resonant wells, and it turned out to be better to make a
corresponding analysis directly for d,; and d¢*>‘
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Let BY) be the spectral subspace generated by the eigenvalues of
0 that are o(h), so that dim B = #C(). Then hd, splits into
the exact sequence:

BO* L gt gt

and the finite dimensional complex:

BO — M) — - B, (5)

Witten (Simon, Helffer-Sj): analytic proof of the Morse
inequalities. Tunneling analysis (Helffer-Sj) gives an analytic proof
of

Theorem
The Betti numbers can be obtained from the orientation complex.

More recently Bovier—Eckhoff-Gayrard—Klein, Helffer-Klein-Nier
studied the non-vanishing exponentially small eigenvalues in
degeree 0. Le Peutrec-Nier-Viterbo have recent results also in
higher degree.
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2. The Kramers-Fokker-Planck operator (Hérau-Hitrik-Sj)

P—y~%&—WQ)h®+gU—h@)QﬂJ@Jon@i.w)

skew —symmetric >0 dissipative part

h > 0 is the temperature and we will work in the low temperature
limit. v > 0 is the friction.
We will assume that V € COO(Rd; R),

97V = O(1) when |a] > 2, Wbﬂz%hqﬂzq (7)

and also for simplicity that V(x) — +o0, when x — oc.
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» P is maximally accretive, it has a unique closed extension
L? — L2 from S(R?9).

» The spectrum o(P) of P is contained in the closed half-plane
Rz > 0.

> If V(x) — 400 when |x| — oo, then
eo(x,y) == e /2HVE)/h ¢ N(P) so 0 € o(P) and this is
the only eigenvalue on /R. The problem of return to
equilibrium is then to study how fast e~ t"/"y converges to a
multiple of eg when t — +00 “<" Study the gap between 0
and “the next eigenvalue”.

» The problem of return to equilibrium is originally posed in
other spaces.
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Freidlin-Wentzel: probabilistic methods.

Desvillettes, Villani, Eckmann, Hairer, Hérau, F. Nier, Helffer-Nier:
classical PDE (pre-microlocal analysis) methods.

Hérau-Nier showed a global hypoellipticity result and in particular
that there is no spectrum in a parabolic neighborhood of /R away
from a disc around the origin and that the spectrum in that disc is
discrete:

They also showed very interesting estimates relating the first
spectral gap of P with that of the Witten Laplacian dy,dy on
0-forms.
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Assume that

V' is a Morse function with ng local minima. (8)

Hérau-Sj—C. Stolk: The spectrum in any band 0 < Rz < Ch is
discrete and the eigenvalues are of the form

wh+ o(h), complete asymptotic expansion. (9)

1 are the eigenvalues of the quadratic approximations of P at
(xc,0), where x. are the critical points of V/, explicitly known

(H. Risken, HeSjSt). Sometimes the 1 are real, sometimes not, but
in all cases they belong to a sector |Su| < Rpu.

There are precisely ng eigenvalues with 1o = 0 and they are O(h*)
(HeSjSt).
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NB: More difficult than in the Schrodinger case:
» P is non-self-adjoint and non-elliptic.
» Quite advanced microlocal analysis seems to be necessary.

» The difficulties become worse when considering exponential
decay and tunneling.
Important supersymmetric observation by J.M. Bismut,
Tailleur-Tanase-Nicola—Kurchan: P is equal to a “twisted” Witten
Laplacian in degree 0: d(;\’*d¢ which uses a non-symmetric
sesquilinear product on [2.
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2.1. A result

The result is analogous to those of Bovier—Eckhoff—-Gayrard—Klein,
Helffer-Klein-Nier, Nier, Le Peutrec in the case of the Witten
Laplacian. Recall that ¢(x,y) = y?/2 + V(x) and let n = 2d.
Critical points of ¢ of index 1: saddle points. If s € R> is such a
point then for r > 0 small, {(x, y) € B(s,r); ¢(x,y) < ¢(s)} has
two connected components. We say that s is a separating saddle
point (ssp) if these components belong to different components in

{(x,y) € R?"; ¢(x,y) < &(s)}.
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Consider ¢~ (] — oo, o) for decreasing . For o = +00 we get R”
which is connected. Let my be a point of minimum of ¢ and write
Em, = R". When decreasing o, E,,, N ¢~ (] — oo, [) remains
connected and non-empty until one of the following happens:

a) We reach o = ¢(s), where s is one or several ssps in E,,,.
Then ¢~ (] — o0, o) N Ey, splits into several connected
components.

b) We reach 0 = ¢(m1) and the connected component
dissappears: ¢~ (o) N Ep, = (.

In case a) one of the components contains m;. For each of the
other components, E; we choose a global minimum my € Ej, of
|, and write B = Ep,, 0 = o(my). Then continue the
procedure with each of the connected components (including the
one containing my).

Put S, = a(mk) — gb(mk) >0, 51 = +cc.
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Theorem (Hérau-Hitrik-Sj, J. Inst. Math. Jussieu 2011)

» The no eigenvalues that are o(h), are real and exponentially
small:
A< he=2%/h.

> If we assume, after relabelling, that Sy, > max;>3 Skj and that
OEm,, contains only one ssp, then the smallest non-vanishing
eigenvalue is of the form

Ao = hlba(h)|?e™2%/M by ~ by o+ hby 1+ .., bag # 0. (10)

» Under an even stronger generic assumption, all the
A2, A3, .., \p, are as in (10).
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2.2 Reflection symmetry
Let # : (x,y) = (x, —y) and define U, : L>(R") — L?(R") by
U.u=uok:

U2 =1, U = U,,

P*U, = UP.
Introduce the non-degenerate non-positive Hermitian form
(u|v)y := (Ugulv),2, giving a Krein space structure.
P is formally self-adjoint for (-|-),:
(Pulv),, = (UgPulv) = (P*Usulv) = (Ugu|Pv) = (u|Pv),.

Proposition

Let EO) ¢ L?(R™) be the spectral subspace corresponding to

Ay .o Any. Then (-]-). is positive definite on E(®) x E(©) and hence
a scalar product there.

P: E© — E©) js self-adjoint, s0 A1, ..., \,, are real.
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2.3 The supersymmetry

The supersymmetric structure of the KFP operator was observed
by J.M. Bismut and Tailleur—Tanase-Nicola—Kurchan.
Let A: (R")* — R" be linear and invertible. For u, v € AX(R")*,
put

(u|v)a = (AFAulv)
and extend the definition to square integrable k-forms by
integration:

(uv)a = / (u()v(x))adx.
Adjoint: (Qu|v)a = (u|Q@**V)a.

If ¢ € C>°(R"), put d, = e /"o hd 0 e?/h. Twisted Witten
Laplacian:

Oa = d"dy + dpd}", NB: O (e7?/") = 0.
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Example
Let

n _ p2d
R _ X7.y,

Then

1

(&%)

0® = KFp.
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3. Supersymmetric structures, some generalities

Let M be R" or a compact manifold of dimension n, equipped with
a smooth strictly positive volume density w(dx).

§: C®(M; NKFETM) — C°(M; Ak TM) be the adjoint of the de
Rahm complex.

Let A(x) : T;M — T, M depend smoothly on x € M. We have the
bilinear product

(U‘V)A = (/\kAU‘V)Lz(w(dX)), u,v e Cé)O(M, /\k T;M)

When A is pointwise bijective we have formal adjoints, and for the
restriction of the de Rahm operator to zero forms, we get

d?* = §AL.
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Let P be a second order real differential operator on M. In local
coordinates,

P==> 04Bix(x)0x + > vi(x)0y + v, (11)

where (Bj k) is symmetric. Vlewmg P as acting on 0 forms, we
ask whether there is a smooth map A(x) as above, such that

P = d**d = §A'd, (12)
either locally or globally on M.

Proposition

> In order to have (12), it is necessary that

P(1) = 0 and P*(1) = 0. (13)

» If (13) holds and the §-complex is exact in degree 1 for
smooth sections, we can find a smooth matrix A such that
(12) holds. Moreover, A= B + C, where C antisymmetric.
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More generally, we assume that there exist smooth strictly positive
functions e~ and e™¥ in the kernels of P and P* respectively:

P(e=?) =0, P*(e™¥) =0. (14)
This is a necessary condition for having
A,k
P=d, dy. (15)

and also sufficient if we assume that the § complex is exact in
degree 1.



4. Chains of harmonic oscillators and absence of
supersymmetry

We consider a chain of two oscillators coupled to two heat baths:

2

~ ot 2
Pur = 3 3 (=g ) (b0t - (5)) -y ho— (0 W) x—2)-
j=1

> (x;,y;) € R?" are the coordinates of a classical particle,
> y; + W(x) + x?/2 is the classical Hamiltonian,

> z; € R" correspond to each of the heat baths,

> 7= ajh/2 > 0 are the temperatures in the baths,

» ~ > 0 is the friction.
Eckmann—Pillet-Rey-Bellet (99)
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The supersymmetric approach can be applied in two cases:
» Equilibrium case: The exterior temperatures are equal so that
Q= ap =: Q.
» The decoupled case: W = Wy(x) = Wi(x1) + Wa(x2)

In each case we have an explicit function ¢o(x, y, z) such that

Py = &%/ Pye /M = dt*d,

Pw(e=®/M =0, Py (e %/") =0

In the first case (before observing the reflection symmetry) we had
obtained an analogue of the above theorem for KFP in the case
when W is a Morse function with two local minima and one saddle
point.
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In the decoupled case we have

=1 (5 — %)
o(x,y,z ZOTJ 2—|—W (xj) + ———).
1

Py, = e¢o/hf)W e—%o/h

2
=2 aj(—ho; + ( ))(h8+1( = Xj))
1

Q;
+y - hox — (0Wo(x) + x — z) - ho,,

M\«é

Pug(e /") = 0, Piy(e~*/%) = 0.
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Symbol:

aw, (%, y,2:€,1m,¢

M\«Q

2
— )2

Z CJ - OT XJ) )

1

+y &= (0cWo(x) +x = z) -,
To leading order,
Pw, = —qw,(x,y, z; —hOx, —h0,,, —h0y).
Eiconal equation:
qu(X7y7 Z, aX¢07 ay¢07 aZ¢0) =0

Now perturb ﬁWO by replacing Wp by W = Wy = Wy + W, so we

get Py = Py, — . 6W(x) - hd,,
Pw = Py, — 9xdW(x) - (hdy — Oy ¢o).
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The following recent result that we have obtained with F. Hérau
and M. Hitrik shows that the supersymmetric method breaks down
for some perturbations:

Theorem

Take v = 1 and assume that oy # az, o > 0. Let Wi(x1) be a
Morse function with two local minima my, my and a saddle point
so, tending to 400 when x; — oo. Let Wh(x2) be a positive
definite quadratic form. Let 3 < m € N. There exists

C®(R?") 5 6W = O(|x2|™) arbitrarily small, vanishing near M;
and Sg, such that the eiconal equation

Qworow (X, ¥, 2, 0xd, 0y ¢, D,0) = 0 has no smooth solution on R3"
with ¢(My) = 0, ¢/(My) = 0, ¢"(My) > 0. Here, M; = (m;,0),

50 = (50,0), Ml = (Ml,O, Ml).

Consequence: In general for coupled oscillators, there is no simple

way of writing Py = d;?’*dqg with a smooth h-independent
function ¢.
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