Return to equilibrium, non-self-adjointness and symmetries

Johannes Sjöstrand

IMB, Université de Bourgogne

based on joint works with F. Hérau and M. Hitrik

Abel symposium, 21-24.08.2012, Oslo

0. Introduction

Consider differential operators P=P(x,hD;h) on \mathbf{R}^n or on a compact n-dimensional manifold. $D_x=\frac{1}{i}\frac{\partial}{\partial x},\ h\to 0.$ h can be Planck's constant or the temperature. Assume $0\in\sigma(P)$ is a simple eigenvalue and e_0 a corresponding eigenfunction. Also assume that $\sigma(P)\subset\{z\in\mathbf{C};\ \Re z\geq 0\}$. The following problems are "equivalent" or at least closely related:

- ▶ Return to equilibrium: Study how fast $e^{-tP/h}u$ converges to a multiple of e_0 when $t \to +\infty$.
- ▶ Study the gap between 0 and $\sigma(P) \setminus \{0\}$.

Such problems appear when P is the Schrödinger operator, the Kramers-Fokker-Planck operator and for systems of coupled oscillators. Related problems appear in dynamical systems. The equivalence is clear when P is self-adjoint.

Simplifying feature for Kramers-Fokker-Planck: the presence of a supersymmetric structure (showing that we have a non-self-adjoint Witten Laplacian) observed by J.M. Bismut and Tailleur-Tanase-Nicola-Kurchan and also a reflection symmetry. This also applies to a chain of two anharmonic oscillators between heatbaths in the case the temperatures are equal. New result: Not always the case when the temperatures are different, so we then need a more direct tunneling approach. Contrary to the case of Schrödinger operators and the ordinary Witten Laplacians, our operators are non-self-adjoint and non-elliptic.

1. Schrödinger operators and Witten Laplacians

Consider

$$P = -h^2 \Delta + V(x), \quad 0 \le V \in C^{\infty}(M), \tag{1}$$

 $M={\bf R}^n$ or = a compact Riemannian manifold. $\liminf_{x\to\infty}V>0$ in the first case. Assume that $V^{-1}(0)$ is finite $=\{U_1,...,U_N\}$, where $V''(U_j)>0$. B. Simon (1983), B. Helffer–Sj (1984) showed that the eigenvalues in any interval [0,Ch] have complete asymptotic expansions in powers of h:

$$\lambda_{j,k} = \lambda_{j,k}^{(0)} h + o(h), \tag{2}$$

where $\lambda_{j,k}^{(0)}$ are the eigenvalues of the quadratic approximations $-\Delta + \frac{1}{2} \langle V''(U_j)x, x \rangle$.

If u is a corresponding normalized eigenfunction:

$$|u(x;h)| \leq C_{\epsilon,K} e^{-\frac{1}{h}(d(x)-\epsilon)}, \ x \in K \subseteq M, \quad d(x) = d(x, \cup_1^N U_j),$$
(3)

Agmon distance, associated to the metric to $V(x)dx^2$.

Double well case: Assume N=2, $V \circ \iota = V$, where ι is an isometry with $\iota^2=1$, $\iota(U_1)=U_2$. The eigenvalues form exponentially close pairs. The two smallest eigenvalues E_0, E_1 satisfy

$$E_1 - E_0 = h^{\frac{1}{2}}b(h)e^{-d(U_1,U_2)/h}, \ b(h) \sim \sum_{j=0}^{\infty} b_j h^j, \ b_0 > 0.$$
 (4)

1D: Harrel, Combes-Duclos-Seiler, multi-D: B.Simon, B.Helffer-Sj. The precise formula (4) is due to Helffer-Sj with an additional non-degeneracy assumption on the minimizing Agmon geodesics from U_1 to U_2 . Multi-well case: Helffer-Sj: similar result using an interaction matrix. Sometimes quite explicit, sometimes less when non-resonant wells are present.

The Witten complex

Let M be a compact Riemannian manifold, $\phi: M \to \mathbb{R}$ a Morse function, $d: C^{\infty}(M; \wedge^{\ell} T^*M) \to C^{\infty}(M; \wedge^{\ell+1} T^*M)$ the de Rahm complex.

Witten complex:

$$d_{\phi} = e^{-\frac{\phi}{h}} \circ hd \circ e^{\frac{\phi}{h}} = hd + d\phi^{\wedge}.$$

Witten (Hodge) Laplacian:

$$\Box_{\phi} = d_{\phi}^* d_{\phi} + d_{\phi} d_{\phi}^*$$

Restriction to ℓ-forms

$$\Box_\phi^{(\ell)} = -h^2 \Delta^{(\ell)} + |\phi'|^2 + h M_\phi^{(\ell)}, \quad M_\phi^{(\ell)} = \text{ smooth matrix}.$$

Matrix Schrödinger operator with the critical points of ϕ as potential wells.

Let $C^{(\ell)}$ be the set of critical points of index ℓ . The result (2) applies to $\Box_\phi^{(\ell)}$.

Proposition

- ▶ If $U_j \in C^{(\ell)}$, then the smallest of the $\lambda_{j,k}^{(0)}$ is zero.
- ▶ If $U_j \notin C^{(\ell)}$, the all the $\lambda_{j,k}^{(0)}$ are > 0.

Thus $\Box_{\phi}^{(\ell)}$ has precisely $\sharp C^{(\ell)}$ eigenvalues that are o(h) and using the intertwining relations, $\Box_{\phi}^{(\ell+1)}d_{\phi}=d_{\phi}\Box^{(\ell)}$ and similarly for d_{ϕ}^* , one can show that they are actually exponentially small.

In principle it should be possible to analyze the exponentially small eigenvalues by applying the interaction matrix approch (Helffer-Sj) to $\Box_{\phi}^{(\ell)}$, but we run into the problem of tunneling through non-resonant wells, and it turned out to be better to make a corresponding analysis directly for d_{ϕ} and d_{ϕ}^{*} .

Let $\mathcal{B}^{(\ell)}$ be the spectral subspace generated by the eigenvalues of $\Box_{\phi}^{(\ell)}$ that are o(h), so that $\dim \mathcal{B}^{(\ell)} = \#\mathcal{C}^{(\ell)}$. Then hd_{ϕ} splits into the exact sequence:

$$\mathcal{B}^{(0)^{\perp}} o \mathcal{B}^{(1)^{\perp}} o ... o \mathcal{B}^{(n)^{\perp}}$$

and the finite dimensional complex:

$$\mathcal{B}^{(0)} \to \mathcal{B}^{(1)} \to \dots \to \mathcal{B}^{(n)}. \tag{5}$$

Witten (Simon, Helffer-Sj): analytic proof of the Morse inequalities. Tunneling analysis (Helffer-Sj) gives an analytic proof of

Theorem

The Betti numbers can be obtained from the orientation complex.

More recently Bovier–Eckhoff–Gayrard–Klein, Helffer-Klein-Nier studied the non-vanishing exponentially small eigenvalues in degeree 0. Le Peutrec-Nier-Viterbo have recent results also in higher degree.

2. The Kramers-Fokker-Planck operator (Hérau-Hitrik-Sj)

$$P = \underbrace{y \cdot h\partial_{x} - V'(x) \cdot h\partial_{y}}_{\text{skew-symmetric}} + \underbrace{\frac{\gamma}{2}(y - h\partial_{y}) \cdot (y + h\partial_{y})}_{\geq 0 \text{ dissipative part}} \text{ on } \mathbf{R}_{x,y}^{2d}.$$
 (6)

h>0 is the temperature and we will work in the low temperature limit. $\gamma>0$ is the friction.

We will assume that $V \in C^{\infty}(\mathbf{R}^d; \mathbf{R})$,

$$\partial^{\alpha}V = \mathcal{O}(1) \text{ when } |\alpha| \ge 2, \quad |V'(x)| \ge \frac{1}{C} \text{ for } |x| \ge C,$$
 (7)

and also for simplicity that $V(x) \to +\infty$, when $x \to \infty$.

- ▶ *P* is maximally accretive, it has a unique closed extension $L^2 \to L^2$ from $S(\mathbb{R}^{2d})$.
- ▶ The spectrum $\sigma(P)$ of P is contained in the closed half-plane $\Re z > 0$.
- ▶ If $V(x) \to +\infty$ when $|x| \to \infty$, then $e_0(x,y) := e^{-(y^2/2 + V(x))/h} \in \mathcal{N}(P)$ so $0 \in \sigma(P)$ and this is the only eigenvalue on $i\mathbf{R}$. The problem of return to equilibrium is then to study how fast $e^{-tP/h}u$ converges to a multiple of e_0 when $t \to +\infty$ " \Leftrightarrow " Study the gap between 0 and "the next eigenvalue".
- ► The problem of return to equilibrium is originally posed in other spaces.

Freidlin-Wentzel: probabilistic methods.

Desvillettes, Villani, Eckmann, Hairer, Hérau, F. Nier, Helffer-Nier: classical PDE (pre-microlocal analysis) methods.

Hérau-Nier showed a global hypoellipticity result and in particular that there is no spectrum in a parabolic neighborhood of *iR* away from a disc around the origin and that the spectrum in that disc is discrete:

They also showed very interesting estimates relating the first spectral gap of P with that of the Witten Laplacian $d_V^*d_V$ on 0-forms.

Assume that

$$V$$
 is a Morse function with n_0 local minima. (8)

Hérau–Sj–C. Stolk: The spectrum in any band $0 \le \Re z < Ch$ is discrete and the eigenvalues are of the form

$$\mu h + o(h)$$
, complete asymptotic expansion. (9)

 μ are the eigenvalues of the quadratic approximations of P at $(x_c,0)$, where x_c are the critical points of V, explicitly known (H. Risken, HeSjSt). Sometimes the μ are real, sometimes not, but in all cases they belong to a sector $|\Im \mu| \leq \Re \mu$. There are precisely n_0 eigenvalues with $\mu=0$ and they are $\mathcal{O}(h^\infty)$ (HeSjSt).

NB: More difficult than in the Schrödinger case:

- P is non-self-adjoint and non-elliptic.
- Quite advanced microlocal analysis seems to be necessary.
- ► The difficulties become worse when considering exponential decay and tunneling.

Important supersymmetric observation by J.M. Bismut, Tailleur–Tanase-Nicola–Kurchan: P is equal to a "twisted" Witten Laplacian in degree 0: $d_{\phi}^{A,*}d_{\phi}$ which uses a non-symmetric sesquilinear product on L^2 .

2.1. A result

The result is analogous to those of Bovier–Eckhoff–Gayrard–Klein, Helffer-Klein-Nier, Nier, Le Peutrec in the case of the Witten Laplacian. Recall that $\phi(x,y)=y^2/2+V(x)$ and let n=2d. Critical points of ϕ of index 1: saddle points. If $s\in \mathbf{R}^{2d}$ is such a point then for r>0 small, $\{(x,y)\in B(s,r);\;\phi(x,y)<\phi(s)\}$ has two connected components. We say that s is a separating saddle point (ssp) if these components belong to different components in $\{(x,y)\in \mathbf{R}^{2n};\;\phi(x,y)<\phi(s)\}$.

Consider $\phi^{-1}(]-\infty,\sigma[)$ for decreasing σ . For $\sigma=+\infty$ we get \mathbf{R}^n which is connected. Let m_1 be a point of minimum of ϕ and write $E_{m_1}=\mathbf{R}^n$. When decreasing σ , $E_{m_1}\cap\phi^{-1}(]-\infty,\sigma[)$ remains connected and non-empty until one of the following happens:

- a) We reach $\sigma=\phi(s)$, where s is one or several ssps in E_{m_1} . Then $\phi^{-1}(]-\infty,\sigma[)\cap E_{m_1}$ splits into several connected components.
- b) We reach $\sigma = \phi(m_1)$ and the connected component dissappears: $\phi^{-1}(\sigma) \cap E_{m_1} = \emptyset$.

In case a) one of the components contains m_1 . For each of the other components, E_k we choose a global minimum $m_k \in E_k$ of $\phi_{|E_k}$ and write $E_k = E_{m_k}$, $\sigma = \sigma(m_k)$. Then continue the procedure with each of the connected components (including the one containing m_1).

Put
$$S_k = \sigma(m_k) - \phi(m_k) > 0$$
, $S_1 = +\infty$.

Theorem (Hérau-Hitrik-Sj, J. Inst. Math. Jussieu 2011)

► The n_0 eigenvalues that are o(h), are real and exponentially small:

$$\lambda_j \asymp h e^{-2S_j/h}$$
.

▶ If we assume, after relabelling, that $S_{k_2} > \max_{j \ge 3} S_{k_j}$ and that $\partial E_{m_{k_2}}$ contains only one ssp, then the smallest non-vanishing eigenvalue is of the form

$$\lambda_2 = h|b_2(h)|^2 e^{-2S_{k_2}/h}, \ b_2 \sim b_{2,0} + hb_{2,1} + ..., \ b_{2,0} \neq 0.$$
 (10)

▶ Under an even stronger generic assumption, all the $\lambda_2, \lambda_3, ..., \lambda_{n_0}$ are as in (10).

2.2 Reflection symmetry

Let $\kappa: (x,y) \mapsto (x,-y)$ and define $U_{\kappa}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ by $U_{\kappa}u = u \circ \kappa$:

$$U_{\kappa}^2 = 1, \ U_{\kappa}^* = U_{\kappa},$$

$$P^*U_{\kappa}=U_{\kappa}P.$$

Introduce the non-degenerate non-positive Hermitian form

$$(u|v)_{\kappa} := (U_{\kappa}u|v)_{L^2}$$
, giving a Krein space structure.

P is formally self-adjoint for $(\cdot|\cdot)_{\kappa}$:

$$(Pu|v)_{\kappa} = (U_{\kappa}Pu|v) = (P^*U_{\kappa}u|v) = (U_{\kappa}u|Pv) = (u|Pv)_{\kappa}.$$

Proposition

Let $E^{(0)} \subset L^2(\mathbf{R}^n)$ be the spectral subspace corresponding to $\lambda_1, ..., \lambda_{n_0}$. Then $(\cdot|\cdot)_{\kappa}$ is positive definite on $E^{(0)} \times E^{(0)}$ and hence a scalar product there.

$$P: E^{(0)} \to E^{(0)}$$
 is self-adjoint, so $\lambda_1, ..., \lambda_{n_0}$ are real.

2.3 The supersymmetry

The supersymmetric structure of the KFP operator was observed by J.M. Bismut and Tailleur–Tanase-Nicola–Kurchan.

Let $A: (\mathbf{R}^n)^* \to \mathbf{R}^n$ be linear and invertible. For $u, v \in \wedge^k(\mathbf{R}^n)^*$, put

$$(u|v)_A = \langle \wedge^k A u | v \rangle$$

and extend the definition to square integrable k-forms by integration:

$$(u|v)_A = \int (u(x)|v(x))_A dx.$$

Adjoint: $(Qu|v)_A=(u|Q^{A,*}v)_A$. If $\phi\in C^\infty(\mathbf{R}^n)$, put $d_\phi=e^{-\phi/h}\circ hd\circ e^{\phi/h}$. Twisted Witten Laplacian:

$$\square_A := d_{\phi}^{A,*} d_{\phi} + d_{\phi} d_{\phi}^{A,*}, \text{ NB: } \square_A^{(0)} (e^{-\phi/h}) = 0.$$

Example

Let

$$\mathbf{R}^{n} = \mathbf{R}_{x,y}^{2d}, \quad A = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & \gamma \end{pmatrix}, \quad \phi(x,y) = \frac{y^{2}}{2} + V(x).$$

Then

$$\Box_A^{(0)} = \text{KFP}.$$

3. Supersymmetric structures, some generalities

Let M be \mathbb{R}^n or a compact manifold of dimension n, equipped with a smooth strictly positive volume density $\omega(dx)$.

 $\delta: C^\infty(M; \wedge^{k+1}TM) \to C^\infty(M; \wedge^kTM)$ be the adjoint of the de Rahm complex.

Let $A(x): T_x^*M \to T_xM$ depend smoothly on $x \in M$. We have the bilinear product

$$(u|v)_{\mathcal{A}}=(\wedge^k Au|v)_{L^2(\omega(dx))},\ u,v\in C_0^\infty(M;\wedge^k T_x^*M).$$

When A is pointwise bijective we have formal adjoints, and for the restriction of the de Rahm operator to zero forms, we get

$$d^{A,*} = \delta A^{t}$$
.

Let P be a second order real differential operator on M. In local coordinates,

$$P = -\sum \partial_{x_j} B_{j,k}(x) \partial_{x_k} + \sum v_j(x) \partial_{x_j} + v_0, \qquad (11)$$

where $(B_{j,k})$ is symmetric. Viewing P as acting on 0 forms, we ask whether there is a smooth map A(x) as above, such that

$$P = d^{A,*}d = \delta A^{t}d, \tag{12}$$

either locally or globally on M.

Proposition

▶ In order to have (12), it is necessary that

$$P(1) = 0 \text{ and } P^*(1) = 0.$$
 (13)

▶ If (13) holds and the δ -complex is exact in degree 1 for smooth sections, we can find a smooth matrix A such that (12) holds. Moreover, A = B + C, where C antisymmetric.

More generally, we assume that there exist smooth strictly positive functions $e^{-\phi}$ and $e^{-\psi}$ in the kernels of P and P^* respectively:

$$P(e^{-\phi}) = 0, \ P^*(e^{-\psi}) = 0.$$
 (14)

This is a necessary condition for having

$$P = d_{\psi}^{A,*} d_{\phi}. \tag{15}$$

and also sufficient if we assume that the δ complex is exact in degree $1. \label{eq:delta}$

4. Chains of harmonic oscillators and absence of supersymmetry

We consider a chain of two oscillators coupled to two heat baths:

$$\widetilde{P}_W = \frac{\gamma}{2} \sum_{i=1}^2 \alpha_j (-h \partial_{z_j}) (h \partial_{z_j} + \frac{2}{\alpha_j} (z_j - x_j)) + y \cdot h \partial_x - (\partial_x W(x) + x - z) \cdot h \partial_y.$$

- ▶ $(x_j, y_j) \in \mathbb{R}^{2n}$ are the coordinates of a classical particle,
- $ightharpoonup rac{y^2}{2} + W(x) + x^2/2$ is the classical Hamiltonian,
- ▶ $z_i \in \mathbb{R}^n$ correspond to each of the heat baths,
- ▶ $T_i = \alpha_i h/2 > 0$ are the temperatures in the baths,
- $ightharpoonup \gamma > 0$ is the friction.

Eckmann-Pillet-Rey-Bellet (99)

The supersymmetric approach can be applied in two cases:

- ▶ Equilibrium case: The exterior temperatures are equal so that $\alpha_1 = \alpha_2 =: \alpha$.
- ▶ The decoupled case: $W = W_0(x) = W_1(x_1) + W_2(x_2)$ In each case we have an explicit function $\phi_0(x, y, z)$ such that

$$P_W := e^{\phi_0/h} \widetilde{P}_W e^{-\phi_0/h} = d_{\phi_0}^{A,*} d_{\phi_0},$$

$$P_W(e^{-\phi_0/h}) = 0, \ P_W^*(e^{-\phi_0/h}) = 0$$

In the first case (before observing the reflection symmetry) we had obtained an analogue of the above theorem for KFP in the case when W is a Morse function with two local minima and one saddle point.

In the decoupled case we have

$$\phi_0(x,y,z) = \sum_{j=1}^2 \frac{1}{\alpha_j} (\frac{y_j^2}{2} + W_j(x_j) + \frac{(x_j - z_j)^2}{2}).$$

$$P_{W_0} = e^{\phi_0/h} \widetilde{P}_{W_0} e^{-\phi_0/h}$$

$$= \frac{\gamma}{2} \sum_{1}^{2} \alpha_j (-h\partial_z + \frac{1}{\alpha_j} (z_j - x_j)) (h\partial_z + \frac{1}{\alpha_j} (z_j - x_j))$$

$$+ y \cdot h\partial_x - (\partial_x W_0(x) + x - z) \cdot h\partial_y,$$

$$P_{W_0}(e^{-\phi_0/h}) = 0, \ P_{W_0}^*(e^{-\phi_0/h}) = 0.$$

Symbol:

$$q_{W_0}(x, y, z; \xi, \eta, \zeta) = \frac{\gamma}{2} \sum_{1}^{2} \alpha_j (\zeta_j^2 - \frac{1}{\alpha_j} (z_j - x_j)^2) + y \cdot \xi - (\partial_x W_0(x) + x - z) \cdot \eta,$$

To leading order,

$$P_{W_0} = -q_{W_0}(x, y, z; -h\partial_x, -h\partial_y, -h\partial_z).$$

Eiconal equation:

$$q_{W_0}(x, y, z; \partial_x \phi_0, \partial_y \phi_0, \partial_z \phi_0) = 0$$

Now perturb \widetilde{P}_{W_0} by replacing W_0 by $W=W_0=W_0+\delta W$, so we get $\widetilde{P}_W=\widetilde{P}_{W_0}-\partial_x\delta W(x)\cdot h\partial_y$, $P_W=P_{W_0}-\partial_x\delta W(x)\cdot (h\partial_y-\partial_y\phi_0)$.

The following recent result that we have obtained with F. Hérau and M. Hitrik shows that the supersymmetric method breaks down for some perturbations:

Theorem

Take $\gamma=1$ and assume that $\alpha_1\neq\alpha_2,\,\alpha_j>0$. Let $W_1(x_1)$ be a Morse function with two local minima $m_1,\,m_2$ and a saddle point s_0 , tending to $+\infty$ when $x_1\to\infty$. Let $W_2(x_2)$ be a positive definite quadratic form. Let $3\leq m\in \mathbb{N}$. There exists $C^\infty(\mathbf{R}^{2n})\ni \delta W=\mathcal{O}(|x_2|^m)$ arbitrarily small, vanishing near M_j and S_0 , such that the eiconal equation $q_{W_0+\delta W}(x,y,z,\partial_x\phi,\partial_y\phi,\partial_z\phi)=0$ has no smooth solution on \mathbf{R}^{3n} with $\phi(\widetilde{M}_1)=0,\,\phi'(\widetilde{M}_1)=0,\,\phi''(\widetilde{M}_1)>0$. Here, $M_j=(m_j,0),\,S_0=(s_0,0),\,\widetilde{M}_1=(M_1,0,M_1)$.

Consequence: In general for coupled oscillators, there is no simple way of writing $P_W=d_\psi^{A,*}d_\phi$ with a smooth *h*-independent function ϕ .