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There are three parts to the talk. Only L? is considered.

@ Statement of the theorem: an indicator/interval characterization of
the two weight inequality for the Hilbert transform.

E. Sawyer (McMaster University) Two weight 12 inequality August 24 2012 3/49



There are three parts to the talk. Only L? is considered.
@ Statement of the theorem: an indicator/interval characterization of
the two weight inequality for the Hilbert transform.

@ Proof of the theorem: using Haar decompositions, random grids,
stopping times, energy and minimal bounded fluctuation.

E. Sawyer (McMaster University) Two weight 12 inequality August 24 2012 3/49



There are three parts to the talk. Only L? is considered.
@ Statement of the theorem: an indicator/interval characterization of
the two weight inequality for the Hilbert transform.

@ Proof of the theorem: using Haar decompositions, random grids,
stopping times, energy and minimal bounded fluctuation.

© What is left: comments on the NTV conjecture.
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Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.

E. Sawyer (McMaster University) Two weight 12 inequality August 24 2012 4/ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.

@ The one weight inequality for the Hilbert transform

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4./ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4./ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4/ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the Ay condition,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4/ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4/ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.

© The two weight inequality for the Hilbert transform

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4./ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.

© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4./ 49



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.
© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization
@ Developing a geometric characterization,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.
© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function, fractional integrals and testing conditions,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.
© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function, fractional integrals and testing conditions,
@® The T1 theorem of David and Journe,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.
© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function, fractional integrals and testing conditions,
® The T1 theorem of David and Journe,
© The Nazarov-Treil-Volberg theorem,

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012



Outline of Part |: Statement of the theorem

@ The Hilbert transform as singular integral.
@ The one weight inequality for the Hilbert transform

@ The Helson-Szego theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function and the A condition,
@ The Hunt-Muckenhoupt-Wheeden theorem.

© The two weight inequality for the Hilbert transform

@ The Cotlar-Sadosky theorem; a function theoretic characterization
@ Developing a geometric characterization,

@ The maximal function, fractional integrals and testing conditions,
® The T1 theorem of David and Journe,

© The Nazarov-Treil-Volberg theorem,

@ Our indicator/interval characterization.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 4./ 49



The Hilbert transform

as singular integral

The Hilbert transform Hf arose in 1905 in connection with Hilbert's
twenty-first problem, and for f € L2 (R) is defined almost everywhere by
the principle value singular integral

HEG) = pv. [ 2 f(y)dy

1
lim / f(y)dy, aex€clR.
e=0Jjy—x|>e Yy — X

The convolution kernel of H
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Helson-Szego theorem (1960)

a function theoretic characterization of the one weight inequality

@ A locally finite positive Borel measure w on T satisfies the property
/\Hf\QdaJ < c/ f2dw, feC®(T),

if and only if
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Helson-Szego theorem (1960)

a function theoretic characterization of the one weight inequality

@ A locally finite positive Borel measure w on T satisfies the property
/|Hf\2dw < C/|f|2dw, fe Co(T),

if and only if

@ dw (x) = w (x) dx and where there are bounded real-valued functions
u, v on the circle such that the Helson-Szegé condition holds:
u(x)+Hv(x)

w(x) = e , aexElR,

o < d 00 < ~
[l o (w) oo and [[v (g 2
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Toward a geometric characterization

The one weight inequality for the maximal function

@ In 1972 B. Muckenhoupt showed that the ‘poor cousin’ maximal
function

Definition (maximal function)

)= s o (),

intervals Q: x€Q
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function

Definition (maximal function)

)= s o (),

intervals Q: x€Q

e satisfies the L2 weighted norm inequality with weight w,

/Mf dx<C/|f Y2 w (x) dx,

o if and only if w satisfies the ‘A, condition’

Definition (Ax condition)

(@1e” ) (1@ o wr®) <
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The one weight inequality for the Hilbert transform

@ In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden showed that

Definition (Hilbert transform)
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The one weight inequality for the Hilbert transform

@ In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden showed that

Definition (Hilbert transform)

Hf (x) = p.v./_o:o @dy,

o satisfies the L2 weighted norm inequality with weight w,
J1HEGOP w (x) dx < € [1F (0 w(x) d,
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The two weight Hilbert transform inequality

a function theoretic characterization analogous to Helson-Szego

@ In 1979 Cotlar and Sadosky showed that
/ |Hf|? deoy < A/ F2dws,  fe C®(T),
T T

if and only if
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The two weight Hilbert transform inequality

a function theoretic characterization analogous to Helson-Szego
@ In 1979 Cotlar and Sadosky showed that
/ |Hf|? deoy < A/ F>dews,  f e C(T),
T T
if and only if

dwi <€ db, dw < Adwsy,
and there exists a holomorphic function h € H! (D), i.e.
|Allyap) = sup / b (re)| db < oo,
0<r<1

such that
’Ada&‘+(ﬂ014*hd9‘f;’Ada&‘*(ﬂulw
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Toward a geometric characterization

The two weight inequality for the maximal function

@ In 1981 Sawyer showed that the maximal function Mf satisfies the L2
two weight norm inequality with weight pair (w, 0),

/M(fa) (x)? dew (x) < C/|f(x)|2dc7(x),

(in the one weight setting o ~ w™1)
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The two weight inequality for the maximal function
@ In 1981 Sawyer showed that the maximal function Mf satisfies the L2
two weight norm inequality with weight pair (w, 0),

/M(fa) (x)? dew (x) < C/\f(x)|2d0(x),

(in the one weight setting o ~ w™1)
e if and only if the pair of weights (w, o) satisfies the testing condition:

Definition (maximal testing condition)

| M (xoe) (0 deo (x) < €1Ql,
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Toward a geometric characterization

The two weight inequality for fractional and Poisson integrals

@ In 1986 Sawyer showed that
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Toward a geometric characterization

The two weight inequality for fractional and Poisson integrals

@ In 1986 Sawyer showed that

Definition (fractional integral)

If (x) = /]R" Ix —y|"""f(y) dy

@ satisfies the two weight norm inequality

/|la(f¢7)|2da) < C/|f|2d(7

@ if and only if the following two testing conditions hold:

/la ()(QO')QC/(USC|Q|U and /QI“ (XQw)2d0§C|Q|w.
JQ
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Toward a geometric characterization

The two weight inequality for fractional and Poisson integrals

@ In 1986 Sawyer showed that

Definition (fractional integral)

If (x) = /]R" Ix —y|"""f(y) dy

@ satisfies the two weight norm inequality

/|la(f¢7)|2da) < C/|f|2d(7

o if and only if the following two testing conditions hold:

/Q"" (xo0)? dw < C|Q|, and /Q"" (xow)?do < C|Ql,.

@ and a similar result for the Poisson integral

t
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Toward a geometric characterization

The T1 theorem for Calderén-Zygmund kernels

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on IR”,

Clx—y|™",

o (1K= x]\°
o (22
x =yl

K (x.y)]

’K(x',y) —K(X,y)| 4 ..

IA

IN
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The T1 theorem for Calderén-Zygmund kernels

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on R",

Kyl < Clx—=y[™",
/ o
cra ()
x =yl
e and if Tf (x) = [, K (x,y) f (y)dy for x & supp f, then T is
bounded on L? (R") if and only if T € WBP and
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Toward a geometric characterization

The T1 theorem for Calderén-Zygmund kernels

@ In 1984 David and Journé showed that if K (x, y) is a standard kernel
on R",

K(xy)l < Clx—y|™"
/ _ e |Xl—x| )
K (<.y) = Koy 4o < Clemyl " (2E221)

o and if Tf (x) = [z, K (x,y) f (y)dy for x & supp f, then T is
bounded on L2 (R") if and only if T € WBP and

Definition (T1 or testing conditions)

T1€ BMO (@/Q\TXQ|2§CIQ|>.

T*1 € BMO (@/Q}T*mfgqm).
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Toward a geometric characterization

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

00 |1
Z l‘w /"X/00)2 < P’% ’/O“T; P(/,V) B /“|2+X2

v(x),

for all decompositions of an interval [y into subintervals /,,
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Toward a geometric characterization

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

3 /
ZI’ o PUn 2, 0)2 < P2lll,; P(1,v) /“'I | v o),

+x2

for all decompositions of an interval y into subintervals /,,

o then the Hilbert transform H satisfies the two weight L? inequality
/|H(fc7)\2dw < c/ 172 do,

uniformly for all smooth truncations of the Hilbert transform,
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies
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The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A2 condition on steroids)

supP(l,w)-P(l,0) = A} < 0,
/
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A2 condition on steroids)

supP(l,w)-P(l,0) = A} < 0,
/

o as well as the two interval testing conditions
2
//|H()(,U)| do < I,

JIH @) do < (311,
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Maximal inequalities and doubling

@ Nazarov, Treil and Volberg showed that the pivotal conditions are
implied by the boundedness of the maximal operator and its ‘dual’:

M:L?(0) — L?(w) and M : L? (w) — L2 (7).
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Maximal inequalities and doubling

@ Nazarov, Treil and Volberg showed that the pivotal conditions are
implied by the boundedness of the maximal operator and its ‘dual’:

M:L?(0) — L?(w) and M : L? (w) — L? (7).

@ They also showed that the pivotal conditions are implied by the
testing conditions and the A, condition if the measures ¢ and w are

both doubling:
dc7</dc7and/ dwg/ dw

for all intervals Q.
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The role of cancellation

@ In 2002 Nazarov showed that the strengthened A, condition alone is
not enough for the two weight inequality to hold. The reason for the
failure lies in the fact that this condition is a consequence solely of

the size and smoothness of the kernel.
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failure lies in the fact that this condition is a consequence solely of
the size and smoothness of the kernel.

@ Indeed, strengthened A, follows from the ‘kernel’ inequality tested
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The role of cancellation

@ In 2002 Nazarov showed that the strengthened A, condition alone is
not enough for the two weight inequality to hold. The reason for the
failure lies in the fact that this condition is a consequence solely of
the size and smoothness of the kernel.

@ Indeed, strengthened A, follows from the ‘kernel’ inequality tested

over f (y) = l(a—r,a) (v) T+ly=x1"

Definition (kernel inequality)

/ |H(f(7)|2dw§./\/2/ 12 dor
R\support f R

o |t is the pair of testing conditions that encode the cancellation
required for the L? norm inequality.
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Energy and hybrid conditions

@ Two years ago, Lacey Sawyer and Uriarte-Tuero showed that the
pivotal conditions are not necessary, that the following energy
condition is,

= x1\2)
w(dx)mw(dx’ X=X
E(/,w):<1E,< JE >< 0 >> ,

Y- () ()Pl 1,0)]* < o).
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Energy and hybrid conditions

@ Two years ago, Lacey Sawyer and Uriarte-Tuero showed that the
pivotal conditions are not necessary, that the following energy
condition is,

o\ 1/2
_ | eldo gl ((1x =X
E(I,w):(]E, E ( 7 )> .

[ee]

Zw(/r)[E(/r,w)P(Ir,)(,OU)]z < &0 (ly),

@ and that the following hybrid condition is ‘sufficient’ for 0 < ¢ <1
(but still not necessary):

Zw E(lr, w)"P(lr, x,,0))> < €0 (),

for all intervals ly, and decompositions {/, : r > 1} of Iy into disjoint
intervals I, C Iy. Note that for v = 0 this is the pivotal condition,

=

while for v = 1 it is the energy condition.
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Bounded fluctuation characterization

@ Last year Lacey Sawyer Shen and Uriarte-Tuero showed the Hilbert
transform two weight inequality is equivalent to the A, condition and
the bounded fluctuation conditions taken over all dyadic grids D:

/IH(l,fU)zdw < C{|I|a+/l|f|2da}, (1)
/IH(llgw)sz < C{\I\w+//|g|2dw},

for all I € D and all functions f, g of unit D-fluctuation on /.
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Bounded fluctuation characterization

@ Last year Lacey Sawyer Shen and Uriarte-Tuero showed the Hilbert
transform two weight inequality is equivalent to the A, condition and
the bounded fluctuation conditions taken over all dyadic grids D:

/IH(I,fU)de < C{|I|a—|—/l|f|2d0}, (1)
/IH(1,gw)2da < C{|I|w+/l|g|2dw},

for all / € D and all functions f, g of unit D-fluctuation on /.

e A function f € L2 () is of unit D-fluctuation on I, written
f e BF,(l), if it is supported in / and ﬁ [y [f| do < 1 for all
dyadic subintervals K of / on which f is not constant.
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Bounded fluctuation characterization

@ Last year Lacey Sawyer Shen and Uriarte-Tuero showed the Hilbert
transform two weight inequality is equivalent to the A, condition and
the bounded fluctuation conditions taken over all dyadic grids D:

/IH(I,fU)de < C{|I|a—|—/l|f|2d0}, (1)
/IH(1,gw)2da < C{|I|w+/l|g|2dw},

for all / € D and all functions f, g of unit D-fluctuation on /.

e A function f € L2 () is of unit D-fluctuation on I, written
f € BFy(I),if it is supported in | and ﬁfK |f| do <1 for all
dyadic subintervals K of | on which f is not constant.

@ Such functions are special cases of dyadic BMOp (o) functions of
norm 1, and include functions bounded by 1 in modulus. They arise
as the good functions in a Calderén-Zygmund decomposition.
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The Nazarov Treil Volberg conjecture

@ A question raised in Volberg's 2003 CBMS book, which we refer to as
the NTV conjecture, is whether or not

/]R]H(fa)\chgm/lR]ffa, fel?(o), 2)

is equivalent to the A, condition and the two interval testing
conditions.
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The Nazarov Treil Volberg conjecture

@ A question raised in Volberg's 2003 CBMS book, which we refer to as
the NTV conjecture, is whether or not

/R|H(f(r)|2w§‘ﬁ/]R]f]2cr, fel?(o), 2)

is equivalent to the A, condition and the two interval testing
conditions.

@ A weaker conjecture, that we refer to as the indicator/interval NTV
conjecture, is that (2) is equivalent to the A, condition and the two
indicator/interval testing conditions,

JIHae)P o<, [IHew) o<, @)

for all intervals | and closed subsets E of /. Note that E does not
appear on the right side of these inequalities, and that if H were a
positive operator we could take E = |.
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Our characterization of the two weight Hilbert transform
inequality

The indicator/interval NTV conjecture

The best constant M in the two weight inequality (2) for the Hilbert
transform satisfies

N Ay + A+ A%,

i.e. Hy is bounded from L? (o) to L% (w) if and only if the strong Ay and
indicator/interval testing conditions hold.

August 24 2012 20 / 49
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Our characterization of the two weight Hilbert transform
inequality

The indicator/interval NTV conjecture

The best constant M in the two weight inequality (2) for the Hilbert
transform satisfies

N Ay + A+ A%,

i.e. Hy is bounded from L? (o) to L% (w) if and only if the strong Ay and
indicator/interval testing conditions hold.

| \

Corollary

The Hilbert transform H, is bounded from L2 (0) to L? (w) if and only if
both it and its dual H,, are weak type (2,2), i.e.

P2 {Hof > MYy S [ IF1? dor and 2% [{IHug] > MY, S [ lef d

v
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Outline of Part II: the proof of the theorem

© The Haar decomposition
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Outline of Part II: the proof of the theorem

© The Haar decomposition

@ The random grids of NTV

@ Interval size splitting of the bilinear form
© Triple corona decomposition of the functions
© Parallel corona splitting of the bilinear form
@ The near term

@ Restricted bounded fluctuation

® Minimal bounded fluctuation
© The far term

@ The functional energy inequality
@ The two weight norm inequality for the Poisson operator
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Haar functions adapted to a measure

@ The Haar function h{ adapted to a positive measure ¢ and a dyadic
interval | € D is a positive (negative) constant on the left (right)
child, has vanishing mean f h‘,’dU =0, and is normalized

171l ;2(p) = 1. For example if |[2,3][, = {5 and [[3,4]|, = 15, then

4T

The Haar function h‘[72’4}
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Haar functions adapted to a measure

@ The Haar function h{ adapted to a positive measure ¢ and a dyadic
interval | € D is a positive (negative) constant on the left (right)
child, has vanishing mean f h‘,’da =0, and is normalized

1A7 || 2(s) = 1. For example if |[2, 3], = = and |[3,4]|, = {5, then

4+
y S
Pas
1 1 2 3 4 s
2+ ——
The Haar function h‘[T2 4
@ The supremum norm of h{ is quite large if ¢ is very unbalanced (not

doubling).

E. Sawyer (McMaster University)
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The good dyadic grids of NTV

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ_{f<m4y+w+22’w>}
i<n neZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}%.
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The good dyadic grids of NTV

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ:{T<mJ%+k+Zp’%J}
i<n nEZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}2.

@ For weights w and o, consider random choices of dyadic grids D%
and DY. Fix € > 0 and for a positive integer r, an interval J € D% is
said to be r-bad if there is an interval | € DV with |/| > 2"|J|, and

dist(e(/),J) < L|JE[1]F .

where e(/) is the set of the three discontinuities of h{. Otherwise, J
is said to be r-good.
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The good dyadic grids of NTV

e Forany B = {B,} € {0,1}#, define the dyadic grid D to be the
collection of intervals

Dﬁ:{T<mJ%+h+22’%J}
i<n nEZ, keZ

and place the usual uniform probability measure IP on the space
{0,1}%.

@ For weights w and o, consider random choices of dyadic grids D%
and DY. Fix € > 0 and for a positive integer r, an interval J € D% is
said to be r-bad if there is an interval | € D7 with |/| > 2"|J|, and

dist(e(/),J) < L|JE[1)F .

where e(/) is the set of the three discontinuities of hJ. Otherwise, J
is said to be r-good.
@ We have
P (Jis r-bad) < C27%.
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Reduction to good projections

@ Let DY be randomly selected with parameter 8, and D with
parameter B'. Define a projection

goodf = Z AT,

| is r-good €D”

and likewise for Pgoodg.
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Reduction to good projections

@ Let DY be randomly selected with parameter 8, and D with
parameter B’. Define a projection

o — o
goodf = Z A/ f,
I is r-good €D

and likewise for Pg’oodg.

@ Define P}_,f = f — P

goodf. Then

Ep [IPfaaflli2) < €272 Il 2o -

and likewise for P} g.
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Reduction to good projections

@ Let DY be randomly selected with parameter 8, and D with
parameter B’. Define a projection

o — a
Peoodl = Z A,
I is r-good €D
S w
and likewise for Pgoodg.

o Define P}_,f = f — P

goodf. Then

Ep [IPLaaf i) < C27 % Il 2(e)

and likewise for P, g.

@ There is an absolute choice of r so that if T : L?(¢) — L[?(w) is a
bounded linear operator, then

I THL2(0)—>L2(w) <2 sup sup IE/SIE;;’KTPgoodf: Pg’oodg>w! -
HfHL2(g):1 HgHL2(w):1

E. Sawyer (McMaster University) Two weight 12 inequality August 24 2012 24 / 49



The Haar expansion

@ Let D7 and D be an r-good pair of grids, and let {h{},_p- and
{hY} jepw be the corresponding Haar bases, so that

fo= Y. A(f=Y (Ffh)) h =Y F(I) H,

1D €D €D
g = ), Djg= ) (&hy) hy= ) &) H,
JeDw JeDw JeDw

where the appropriate grid is understood in the notation ?(I) and
g(J).
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The Haar expansion

o Let D7 and D“ be an r-good pair of grids, and let {h{},_ - and
{hY} ;epw be the corresponding Haar bases, so that

fo= Y AF=Y (FH) b =Y F(I)

1eDe 1D €D
g = ) AYg=Y (ah)) h=Y &) H,
JeDw JeDw JeDw

where the appropriate grid is understood in the notation ?(I) and

g ()
@ Inequality (2) is equivalent to boundedness of the bilinear form
H(f.g)=(H(fo).g),= ), (H(@A]F), Afe),

1€D” and JeD¥
on L2 (0) x L? (w), i.e.

H(f.g)l <M HfHB(a) HgHLQ(w)
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Splitting of the form by interval size

Virtually all attacks on the two weight inequality (2) to date have
proceeded by first splitting the bilinear form ‘H into three natural forms
determined by the relative size of the intervals / and J in the inner product:

H = Hiower + Hdiagonal + Hupper; (4)
Hiower (f, g) = Z <H (UA(IT f) ' Ljug>w'
1€DY and J€DY
[J]<27"|{]
Hdiagonal(fv g) = Z <H (UA(IT f) ' ilug>aJ'

1€DY and JeD¥
2|1 < ]I <21
(H(e AT ), AYg),,

1€D7 and JeDY
[J]>27]1]

Hupper (f. &)

and then continuing to establish boundedness of each of these three forms.
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Boundedness of the split forms

@ Now the boundedness of the diagonal form Hyjsg0nas is an automatic
consequence of that of H since it is shown by NTV that

(\/ Ao +$+$*> 11l 20 1181l 2 (@)
N1l 20) 8l 2 () -

|Hdiagonal (f, g)| g
~
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Boundedness of the split forms

@ Now the boundedness of the diagonal form Hgjsgona/ is an automatic
consequence of that of H since it is shown by NTV that

(\/ Ao +$+S*) 11l 20 1181l 2 (0
NNl 20 &l 2 () -

|Hdiagonal (f, g)| S
S

@ However, it is not known if the boundedness of H jower and Hpper
follow from that of H, which places in jeopardy the entire method of
attack based on the splitting (4) of the form H.
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Circumventing the obstacles

The triple coronas

@ The triple corona decomposition consists of a series of three
reductions performed with two Calderén-Zygmund corona
decompositions, followed by an energy corona decomposition, in order
to identify the extremal functions that fail to yield to the standard
analyses.
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analyses.

@ These extremals are certain bounded functions, and functions of

minimal bounded fluctuation, occurring in a corona with energy
control.
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Circumventing the obstacles

The triple coronas

@ The triple corona decomposition consists of a series of three
reductions performed with two Calderén-Zygmund corona
decompositions, followed by an energy corona decomposition, in order
to identify the extremal functions that fail to yield to the standard
analyses.

@ These extremals are certain bounded functions, and functions of
minimal bounded fluctuation, occurring in a corona with energy
control.

@ In the end, the standard NTV methodology is, to some extent,
decisive when used on these extremal functions with very special
structure.
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Circumventing the obstacles

Parallel coronas

@ We use parallel corona splittings of the bilinear form, followed by an
analysis of the extremal functions that fail both the energy and
Calderén-Zygmund stopping time methodology.
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Circumventing the obstacles

Parallel coronas

@ We use parallel corona splittings of the bilinear form, followed by an
analysis of the extremal functions that fail both the energy and
Calderén-Zygmund stopping time methodology.

@ The parallel corona splitting involves defining upper and lower and

diagonal forms relative to the tree of triple corona stopping time
intervals, rather than the full tree of dyadic intervals.
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Circumventing the obstacles

Parallel coronas

@ We use parallel corona splittings of the bilinear form, followed by an
analysis of the extremal functions that fail both the energy and
Calderén-Zygmund stopping time methodology.

@ The parallel corona splitting involves defining upper and lower and
diagonal forms relative to the tree of triple corona stopping time
intervals, rather than the full tree of dyadic intervals.

@ The enemy of Calderén-Zygmund stopping times is degeneracy of the
doubling property, while the enemy of energy stopping times is
degeneracy of the energy functional (since nondegenerate doubling
implies nondegenerate energy, it is really the failure of doubling in
both weights that is the common enemy).
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CZ stopping trees

@ In order to improve on the splitting in (4), we introduce stopping
trees F and G for the functions f € L% (¢) and g € L? (w). Let F be
a collection of Calderén-Zygmund stopping intervals for f, and let
D’ = U Cr be the associated corona decomposition of the dyadic

FeF
grid DY.

August 24 2012 30 / 49
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CZ stopping trees

@ In order to improve on the splitting in (4), we introduce stopping
trees F and G for the functions f € L2 (¢) and g € L? (w). Let F be
a collection of Calderén-Zygmund stopping intervals for f, and let
DY = U Cr be the associated corona decomposition of the dyadic

FeF
grid DY.

@ For | € DY let mtpel be the D7-parent of | in the grid DY, and let
77l be the smallest member of F that contains /. For F, F' € F, we
say that F" is an F-child of F if 7tz (7tp- F') = F, and we denote by
€ (F) the set of F-children of F.
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CZ stopping trees

@ In order to improve on the splitting in (4), we introduce stopping
trees F and G for the functions f € L2 (¢) and g € L? (w). Let F be
a collection of Calderén-Zygmund stopping intervals for f, and let
DY = U Cr be the associated corona decomposition of the dyadic

FeF
grid DY.

@ For | € DY let mtpel be the D7-parent of | in the grid DY, and let
x| be the smallest member of F that contains /. For F, F' € F, we
say that F’ is an F-child of F if 7tz (ip-F') = F, and we denote by
€ (F) the set of F-children of F.

@ For F € F, define the projection PgF onto the linear span of the Haar
functions {h'},_._ by

¢ f = Z ANE= Z (f h)), hY: f = Z PZ_f,

1€Ck 1€Ck FeF

[ Pef e =0. It = T IP6A

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 30 / 49



The triple corona decomposition

@ We perform a corona decomposition three times on each grid D7 and
DY, improving the upper blocks of functions as follows:
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The triple corona decomposition

@ We perform a corona decomposition three times on each grid DY and
DY, improving the upper blocks of functions as follows:

o PgFf is of bounded fluctuation after the first CZ decomposition,
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The triple corona decomposition

@ We perform a corona decomposition three times on each grid DY and
DY, improving the upper blocks of functions as follows:

(1) PgFf is of bounded fluctuation after the first CZ decomposition,

Qo PgK (PgF f) is of minimal bounded fluctuation or simply bounded
appropriately after a complicated second CZ decomposition,
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The triple corona decomposition

@ We perform a corona decomposition three times on each grid DY and
DY, improving the upper blocks of functions as follows:

o PgFf is of bounded fluctuation after the first CZ decomposition,

Qo PgK (PgF f) is of minimal bounded fluctuation or simply bounded
appropriately after a complicated second CZ decomposition,

Q Pgs PZK (PgF f)) is as in step 2 but with additional energy control

after the third energy decomposition, analogous to the pivotal stopping
time corona of NTV/, but using the necessary energy condition instead.
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The triple corona decomposition

@ We perform a corona decomposition three times on each grid DY and
DY, improving the upper blocks of functions as follows:

o PgFf is of bounded fluctuation after the first CZ decomposition,

Qo PgK (PgF f) is of minimal bounded fluctuation or simply bounded
appropriately after a complicated second CZ decomposition,

(s ) Pgs PZK (ng f)) is as in step 2 but with additional energy control

after the third energy decomposition, analogous to the pivotal stopping
time corona of NTV/, but using the necessary energy condition instead.

@ This is called the triple corona decomposition for f, and there is an
analogous decomposition for g.

August 24 2012 31 /49
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The parallel corona splitting

o Consider the following parallel corona splitting of the inner product
(H(fo),g), that involves the projections PZ_ acting on f and the
projections P‘é’G acting on g. We have

(H(fo) . g)o= )}, (H(oPef). (PE.8)),  (5)
(F,G)EF%G

eoE oo o)

€Near(FxG) (F,G)eDisjoint(FxG) (F,G)eFar(FxG)
x (H(oPe.f). (PE.8)),
= Hpear (f,g) + Hdisjoint (f,g) + Her (f,g) .
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The parallel corona splitting

@ Consider the following parallel corona splitting of the inner product
(H(fo),g), that involves the projections P{_ acting on f and the
projections P‘é’G acting on g. We have

(H(fo).g)o= ). (H(oPef). (PEe)), ()
(F,G)eFxG

eoEo vaiBs o B

€Near(FxG) (F,G)eDisjoint(FxG) (F,G)eFar(FxQ)
x (H (0Pg,f)  (PE.8)).,
= Hnear (f, g) + Hdisjoint (f, g) + Hfar (f,g) .

@ These forms are no longer linear in f and g as the ‘cut’ is determined
by the coronas Cr and Cg, which depend on f and g.
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Near and far definitions

@ Here Near (F x G) is the set of pairs (F, G) € F x G such that F is
maximal in G, or G is maximal in F, more precisely: either

F C G and thereisno Gy € G\ {G} with F C G, C G,
or

G C F and there isno F; € F\ {F} with G C F; C F.
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Near and far definitions

o Here Near (F x G) is the set of pairs (F, G) € F x G such that F is
maximal in G, or G is maximal in F, more precisely: either

F C G and thereisno G; € G\ {G} with F C G, C G,
or
G C F and thereisno F; € F\ {F} with G C F; C F.

@ The set Disjoint (F x G) is the set of pairs (F, G) € F x G such
that FNG = @.
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Near and far definitions

o Here Near (F x G) is the set of pairs (F, G) € F x G such that F is
maximal in G, or G is maximal in F, more precisely: either

F C G and thereisno G; € G\ {G} with F C G, C G,
or
G C F and thereisno F; € F\ {F} with G C F; C F.

@ The set Disjoint (F x G) is the set of pairs (F, G) € F x G such
that FNG = @.

@ The set Far (F x G) is the complement of
Near (F x G) U Disjoint (F x G) in F x G:

Far (F x G) = F x G\ {Near (F x G) UDisjoint (F x G)} .
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Near and far definitions

o Here Near (F x G) is the set of pairs (F, G) € F x G such that F is
maximal in G, or G is maximal in F, more precisely: either

F C G and thereisno G; € G\ {G} with F C G, C G,
or
G C F and thereisno F; € F\ {F} with G C F; C F.

@ The set Disjoint (F x G) is the set of pairs (F, G) € F x G such
that FNG = @.

@ The set Far (F x G) is the complement of
Near (F x G) U Disjoint (F x G) in F x G:

Far (F x G) = F x G\ {Near (F x G) UDisjoint (F x G)}.

@ The parallel corona splitting (5) is somewhat analogous to the
splitting (4) except that corona blocks are used in place of individual
intervals to determine the ‘cut’.
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The form estimates

@ The disjoint form Hgisjoint (f,g) is easily controlled by the strong A,
condition and the interval testing conditions:

‘HdISJomt f g (\/ —FS—FT*) HfHL2 Hg||L2(w)

E. Sawyer (McMaster University) Two weight 12 inequality August 24 2012 34 / 49



The form estimates

e The disjoint form Hgisjoint (f, g) is easily controlled by the strong Aj
condition and the interval testing conditions:

|Haisjoint (f. &) < <\/ Ay + T+ E*) 11l 120 181 200 -
@ We show that the far form satisfies

Hr (F.8)] S (VA +T+T) [l 2oy gl 2oy

using our functional energy inequality.
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The form estimates

e The disjoint form Hgisjoint (f, g) is easily controlled by the strong Aj
condition and the interval testing conditions:

|Haisjoint (f. &) < <\/ Ay + T+ E*) 11l 120 181 1200
@ We show that the far form satisfies

Hor (F.8)] S (VA +T+T) [l 2oy Nl 2

using our functional energy inequality.

e Finally we show that the near form H,e, (f, g) is controlled by the
strong A, condition and the indicator testing conditions:

Huear (£.8)] S (VA2 + 2427 £l 2(c) Nl iz
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The near form

Bounded fluctuation

e Recall that f € BF, (K) if there is a pairwise disjoint collection /Cr
of DY-subintervals of K such that

/fU:Oand /yfya<1 I e K,
Jk 1],

f =ax € Ron K and lak:| > 2, K' € K¢,
where I/C\f is the corona determined by K and K¢:

Ia:{IGDU:/CKandng’forsomeK'Ele}.
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The near form

Bounded fluctuation

@ Recall that f € BF, (K) if there is a pairwise disjoint collection Kr
of DY-subintervals of K such that

1 e
/fazoand—/|f|(7§1, I e K,
K g i
f=ax €Ron K’ and |ax/| >2, K €Ky,
where ’/C\f is the corona determined by K and K¢:

I/C\f:{IED‘T:ICKandI;K'forsomeK'Gle}.

@ Using the facts that ﬁ [i1flo<1forle K and “i'f, |fl|o > 2 for
I € IC, the collection K is uniquely determined by the simple function
f of bounded fluctuation, and we write /Cr for this collection.
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The near form

Minimal bounded fluctuation functions

@ Define the collection MBF, (K) of functions of minimal bounded
fluctuation by

MBF, (K) = {f € BFy (K) :supp f C n/cf} ,
where f: D — C by f (1) = (f, h{), is the Haar coefficient map
(with underlying measure ¢ being understood), and

ke = {NDK/ K € IC,C}.

Thus the functions f € MBF, (K) have their Haar support supp f
as small as possible given that they satisfy the conditions for
belonging to BF, (K).
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The near form

Minimal bounded fluctuation functions

o Define the collection MBF, (K) of functions of minimal bounded
fluctuation by

MBF, (K) = {f € BF, (K) : supp f C n/cf} ,

where f: D — C by f (1) = (f, h{), is the Haar coefficient map
(with underlying measure ¢ being understood), and

ks = {NDK/ K € ]Cf}

Thus the functions f € MBF, (K) have their Haar support supp
as small as possible given that they satisfy the conditions for
belonging to BF, (K).

@ Note that while ¢ consists of pairwise disjoint intervals for
f e MBF,(K), the collection of parents ¢ may have
considerable overlap, and this represents the main difficulty for further
investigation.
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An essential property of minimal bounded fluctuation

o If f € MBF, () is of minimal bounded fluctuation, then there is a
collection KCr of pairwise disjoint subintervals of / such that

f= Y F() h= Y Af,

lenky lenky

where if | = K, then K = I_, the child of | with smallest
O-measure.
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An essential property of minimal bounded fluctuation

o If f € MBF (I) is of minimal bounded fluctuation, then there is a
collection KCr of pairwise disjoint subintervals of / such that

f= Y Ff() =Y Aff

lenKr lenKy

where if | = K, then K = I_, the child of | with smallest
O-measure.
@ The key additional property, besides that of bounded fluctuation, of

such an f is
lE‘f+ A f >0, for all | € KCr.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 37/



Analysis of the near form

@ There is the decomposition
Pecf = (Pef), + (Pe.f),: (6)
|2, ez
1

W( Cpf)QEBfU(F)'
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Analysis of the near form

@ There is the decomposition
g/—‘f:( gpf)1+(ngf)2; (6)
| (Pe.0), || S EE1E1.
1

W( gFf)2EBfU(F),

@ A second more complicated CZ decomposition produces blocks

PgKF (ng f) satisfying

1 o o o0
WPCKF( Cpf) € (L%), (K) + MBF, (K).
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Analysis of the near form

@ There is the decomposition
Pe, = (PG, ), + (PS.f), (6)
| (Pe.0), || S EE1E1.
1 [
—_— f F
3]Ecl7__|f|( Cr )268‘?‘7( )'
@ A second more complicated CZ decomposition produces blocks

ngp (PgF f) satisfying

1 00

CEL 1] Cor (PCF) € (L7); (K)+ MBF, (K).

@ This decomposition leads to control of the near form by the A, and
indicator/interval testing conditions. Indeed, the I/l testing conditions
apply to (L*); (K), while the special properties of MBF, (K)
permit control by A, and interval testing.
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Analysis of the far form

e Now we decompose the far form Hg, (f, g) into lower and upper
forms in analogy with Hower and Hypper in (4):

Hfar(fvg> - Z + Z <H(U’Pg[__f), Ccdcg>
(F,G)eFar(FxG) (F,G)eFar(FxQ)
GCF FCG

= Hfar lower (f,g) + Hfar upper (fvg) .
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Analysis of the far form

e Now we decompose the far form Hg, (f, g) into lower and upper
forms in analogy with Hower and Hpper in (4):

Hfar (f,g) = E + Z <H (O'Pg’__f) ! LCUGg>
(F,G)eFar(FxG) (F,G)eFar(FxG)
GCF FCG

= Hfar lower (f,g) + Hfar upper (f- g) -

o We will use a functional energy inequality to control Hsy, jower (f, g),
which is defined in terms of F-adapted collections of intervals.
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F-adapted collections of intervals

Definition
Let F be a collection of dyadic intervals satisfying a Carleson condition

Y |Fl,<Crlsl,, SeF
FeF: FCS

where Cr is referred to as the Carleson norm of F. A collection of
functions {gr } Fer in L2(w) is said to be F-adapted if there are
collections of intervals J (F) C {J € D7 : J € F}, with J* (F)
consisting of the maximal dyadic intervals in J (F), such that the
following three conditions hold:
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F-adapted conditions

@ for each F € F, the Haar coefficients gr (J) = (gr, hy),, of gr are
nonnegative and supported in J (F), i.e.

{EF(J)ZO forall Je J(F) Fer

gr(J)=0 forall Jg T(F) '

O the collection {gr }Fcr is pairwise orthogonal in L2 (w),

@ and there is a positive constant C such that for every interval / in
D7, the collection of intervals

B ={JCl:J' € J"(F) forsome F D I}

has overlap bounded by C, i.e. } e, 1+ < C, forall I € D7.
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The functional energy condition

@ The functional energy condition is:

Definition

Let § be the smallest constant in the inequality below, holding for all
non-negative h € L2(c), all o-Carleson collections F, and all F-adapted
1/2
< Al 20 [2 ||gF||fz(w)] :

collections {gr } Fer:
X
(= g
/7] w Fer
(7)

Here J* (F) consists of the maximal intervals J in the collection [J (F).

Y. ). P(Jho)

FEF J*€J*(F)

v
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The functional energy condition

@ The functional energy condition is:

Let § be the smallest constant in the inequality below, holding for all
non-negative h € L2(c), all o-Carleson collections F, and all F-adapted
1/2
< Al 20 [2 ||gF||fz(w)] :

collections {gr } Fer:
X
(= g
/7] w Fer
(7)

Here J* (F) consists of the maximal intervals J in the collection [J (F).

v

Y. ). P(Jho)

FEF J*€J*(F)

@ The dual version of this condition has constant §*.
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The functional energy condition

@ The functional energy condition is:

Definition

Let § be the smallest constant in the inequality below, holding for all
non-negative h € L2(c), all o-Carleson collections F, and all F-adapted
1/2
< Al 20 [2 ||gF||fz(w)] :

collections {gr } Fer:
X
(= g
/7] w Fer
(7)

Here J* (F) consists of the maximal intervals J in the collection [J (F).

Y. ). P(Jho)

FEF J*€J*(F)

v

@ The dual version of this condition has constant §*.

@ The functional energy condition (7) controls the lower far form
Hfar tower (f, &) using a monotonicity property of the Hilbert
transform.
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The monotonicity property of the Hilbert transform

Lemma (Monotonicity Property)

Suppose that v is a signed measure, and i is a positive measure with
U > |v|, both supported outside an interal I. Then for J € | we have

(H, )] < (B 1)~ (Tt P ).

The proof uses that

)= [{ [, (G55 ) v 05 () de ),

and then that the following expression is positive for all y not in /:

( 11 )hw(x):(x—xj)h‘j(x)

y=—X y-—xj y=—x)(y—xs)
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Necessity of the functional energy condition

The energy measure in the plane

@ |t remains to prove that the functional energy conditions are implied
by the strong A5 and interval testing conditions.

TS A+ T and FF < Ar + TF
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Necessity of the functional energy condition

The energy measure in the plane

@ It remains to prove that the functional energy conditions are implied
by the strong A, and interval testing conditions.

TS A+ T and FF < Ar + TF

@ To prove this lemma we fix F as in (7) and set

=Y % 2

X
O (e ) (8)
FEF J*€T*(F) 2(w)

T

where the projections P ;. onto Haar functions are defined by

w — w
PF'J* pu— Z AJ .
JCJ*: mpd=F
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Necessity of the functional energy condition

The energy measure in the plane

@ It remains to prove that the functional energy conditions are implied
by the strong A, and interval testing conditions.

TS A+ T and FF < Ar + TF

@ To prove this lemma we fix F as in (7) and set

=Y % 2

FEF J*eJ*(F)

X

——
FITT

'5C *’ * ’ (8)
ey D

where the projections P ;. onto Haar functions are defined by
w — w
PF'J* = Z AJ .
JCJ*: mpd=F

@ Here 0, denotes a Dirac unit mass at a point g in the upper half plane
]Ri. Note that we can replace x by x — ¢ for any choice of ¢ we.wish,
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Two weight Poisson inequality

@ We prove the two-weight inequality
IPCFO) 2 r2 gy S I lle2e) (9)

for all nonnegative f in L2 (), noting that F and f are not related
here.
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Two weight Poisson inequality

@ We prove the two-weight inequality
IP(Fo)l 2 r2 gy S I lle2e) (9)

for all nonnegative f in L2 (¢), noting that F and f are not related
here.

@ Above, IP(-) denotes the Poisson extension to the upper half-plane, so
that in particular

2

w X

IP(Fo) 2z gy = 2 E ]P(fff)(C(J*),\J*I)Q

FeF JreJ*(

L2(w)

and so (9) implies (7) by the Cauchy-Schwarz inequality.
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Reduction to Poisson tent testing

By the two-weight inequality for the Poisson operator, inequality (9)
requires checking these two inequalities

Jy

P (10) (x, )* dp (x, £) = [P (L0) {25,y S (A2 +F) o(1), (10)

2
F

/ P (£1;) 20 (dx) < A /A £ u(dx, dt), (11)
R i

for all dyadic intervals | € D, where T = I x [0, |/]] is the box over / in the
upper half-plane, and

2

P*(t15) = /A (dy, dt) .

24 x— yPF
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Outline of Part Ill: what is left?

@ What could prove the NTV conjecture?
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Outline of Part Ill: what is left?

@ What could prove the NTV conjecture?
@ What can we prove from the NTV hypotheses?
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What could prove the NTV conjecture?

The bounded over square integrable stopping form

@ What is needed is to show that the indicator/interval condition is
controlled by the NTV hypotheses:

/ Hole2 dw < (MSW) |1],,  for all intervals /.
I
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What could prove the NTV conjecture?

The bounded over square integrable stopping form

@ What is needed is to show that the indicator/interval condition is
controlled by the NTV hypotheses:

/|H(,1E|2 dw < (MTV) |1],,  for all intervals /.
/

@ Our proof reduces this to bounding the L*/L? stopping form by
NTV:

[Bstop (12, 8)| < (MZTV) /11, gl 12(w)

for all compact E C | and g € L? (w) with support in /, an interval.
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What we can prove from the NTV hypotheses

@ We are presently able to bound the weaker L*/L* form:
[Bstop (1, 17)| < (NTV) /|11, |11,

for all compact subsets E and F of an interval /.
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What we can prove from the NTV hypotheses

@ We are presently able to bound the weaker L*/L* form:

|Bstop (1E11F)| S (‘II‘I‘B) \/ |/|(r|l|w'

for all compact subsets E and F of an interval /.

@ The NTV boundedness of the L*/L? stopping form should appear in
the near future.
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What we can prove from the NTV hypotheses

@ We are presently able to bound the weaker L*/L* form:

|Bstop (]-Ey]-F)| S (‘II‘I‘B) \/ |/|(r|l|w'

for all compact subsets E and F of an interval /.

@ The NTV boundedness of the L*®/L? stopping form should appear in
the near future.

e Thanks.
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