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Three parts

There are three parts to the talk. Only L2 is considered.

1 Statement of the theorem: an indicator/interval characterization of
the two weight inequality for the Hilbert transform.

2 Proof of the theorem: using Haar decompositions, random grids,
stopping times, energy and minimal bounded �uctuation.

3 What is left: comments on the NTV conjecture.
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Outline of Part I: Statement of the theorem

1 The Hilbert transform as singular integral.

2 The one weight inequality for the Hilbert transform

1 The Helson-Szego theorem; a function theoretic characterization
2 Developing a geometric characterization,

1 The maximal function and the A2 condition,
2 The Hunt-Muckenhoupt-Wheeden theorem.

3 The two weight inequality for the Hilbert transform

1 The Cotlar-Sadosky theorem; a function theoretic characterization
2 Developing a geometric characterization,

1 The maximal function, fractional integrals and testing conditions,
2 The T1 theorem of David and Journe,
3 The Nazarov-Treil-Volberg theorem,
4 Our indicator/interval characterization.
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The Hilbert transform
as singular integral

The Hilbert transform Hf arose in 1905 in connection with Hilbert�s
twenty-�rst problem, and for f 2 L2 (R) is de�ned almost everywhere by
the principle value singular integral

Hf (x) = p.v .
Z 1
y � x f (y) dy

� lim
ε!0

Z
jy�x j>ε

1
y � x f (y) dy , a.e.x 2 R.

4 2 2 4

2

1

1

2

x

y

The convolution kernel of H
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Helson-Szego theorem (1960)
a function theoretic characterization of the one weight inequality

A locally �nite positive Borel measure ω on T satis�es the propertyZ
jHf j2 dω � C

Z
jf j2 dω, f 2 C∞ (T) ,

if and only if

dω (x) = w (x) dx and where there are bounded real-valued functions
u, v on the circle such that the Helson-Szegö condition holds:

w (x) = eu(x )+Hv (x ), a.e.x 2 R,

kukL∞(R) < ∞ and kvkL∞(R) <
π

2
.
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Toward a geometric characterization
The one weight inequality for the maximal function

In 1972 B. Muckenhoupt showed that the �poor cousin�maximal
function

De�nition (maximal function)

Mf (x) � sup
intervals Q : x2Q

1
jQ j

Z
Q
jf (y)j dy ,

satis�es the L2 weighted norm inequality with weight w ,Z
Mf (x)2 w (x) dx � C

Z
jf (x)j2 w (x) dx ,

if and only if w satis�es the �A2 condition�

De�nition (A2 condition)�
1
jQ j

Z
Q
w (y) dy

��
1
jQ j

Z
Q

1
w (y)

dy
�
� C .
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The one weight inequality for the Hilbert transform

In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden showed that

De�nition (Hilbert transform)

Hf (x) � p.v .
Z ∞

�∞

f (x � y)
y

dy ,

satis�es the L2 weighted norm inequality with weight w ,Z
jHf (x)j2 w (x) dx � C

Z
jf (x)j2 w (x) dx ,

if and only if w satis�es the A2 condition.
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The two weight Hilbert transform inequality
a function theoretic characterization analogous to Helson-Szegö

In 1979 Cotlar and Sadosky showed thatZ
T
jHf j2 dω1 � A

Z
T
jf j2 dω2, f 2 C∞ (T) ,

if and only if

dω1 � dθ, dω1 � Adω2,

and there exists a holomorphic function h 2 H1 (D), i.e.

khkH1(D) � sup
0<r<1

Z
T

���h �re iθ���� dθ < ∞,

such that
jAdω2 + dω1 � hdθj � jAdω2 � dω1j .

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 9 / 49



The two weight Hilbert transform inequality
a function theoretic characterization analogous to Helson-Szegö

In 1979 Cotlar and Sadosky showed thatZ
T
jHf j2 dω1 � A

Z
T
jf j2 dω2, f 2 C∞ (T) ,

if and only if

dω1 � dθ, dω1 � Adω2,

and there exists a holomorphic function h 2 H1 (D), i.e.

khkH1(D) � sup
0<r<1

Z
T

���h �re iθ���� dθ < ∞,

such that
jAdω2 + dω1 � hdθj � jAdω2 � dω1j .

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 9 / 49



Toward a geometric characterization
The two weight inequality for the maximal function

In 1981 Sawyer showed that the maximal function Mf satis�es the L2

two weight norm inequality with weight pair (ω, σ),Z
M (f σ) (x)2 dω (x) � C

Z
jf (x)j2 dσ (x) ,

(in the one weight setting σ � ω�1)

if and only if the pair of weights (ω, σ) satis�es the testing condition:

De�nition (maximal testing condition)Z
Q
M
�
χQσ

�
(x)2 dω (x) � C jQ jσ .
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Toward a geometric characterization
The two weight inequality for fractional and Poisson integrals

In 1986 Sawyer showed that

De�nition (fractional integral)

Iαf (x) �
Z

Rn
jx � y jα�n f (y) dy

satis�es the two weight norm inequalityZ
jIα (f σ)j2 dω � C

Z
jf j2 dσ

if and only if the following two testing conditions hold:Z
Q
Iα
�
χQσ

�2 dω � C jQ jσ and
Z
Q
Iα
�
χQω

�2 dσ � C jQ jω .

and a similar result for the Poisson integral

Pf (x , t) =
Z

R

t
t2 + x2

f (t) dt.
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Toward a geometric characterization
The T1 theorem for Calderón-Zygmund kernels

In 1984 David and Journé showed that if K (x , y) is a standard kernel
on Rn,

jK (x , y)j � C jx � y j�n ,��K �x 0, y��K (x , y)��+ ... � C jx � y j�n
�
jx 0 � x j
jx � y j

�δ

,

and if Tf (x) �
R

Rn K (x , y) f (y) dy for x /2 supp f , then T is
bounded on L2 (Rn) if and only if T 2 WBP and

De�nition (T1 or testing conditions)

T1 2 BMO
�
,
Z
Q

��TχQ
��2 � C jQ j� ,

T �1 2 BMO
�
,
Z
Q

��T �χQ ��2 � C jQ j� .
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Toward a geometric characterization

In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(ω, σ) satis�es the pivotal condition

∞

∑
r=1
jIr jω P(Ir ,χI0σ)

2 � P2� jI0jσ ; P(I , ν) =
Z jI j
jI j2 + x2

dν (x) ,

for all decompositions of an interval I0 into subintervals Ir ,

4 2 0 2 4

1.0

x

y

then the Hilbert transform H satis�es the two weight L2 inequalityZ
jH (f σ)j2 dω � C

Z
jf j2 dσ,

uniformly for all smooth truncations of the Hilbert transform,
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Toward a geometric characterization
The NTV conditions

if and only if the weight pair (ω, σ) satis�es

De�nition (A2 condition on steroids)

sup
I
P(I ,ω) � P(I , σ) � A22 < ∞ ,

as well as the two interval testing conditionsZ
I
jH (χIσ)j

2 dω � T2 jI jσ ,Z
I
jH (χIω)j

2 dσ � (T�)2 jI jω .
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Maximal inequalities and doubling

Nazarov, Treil and Volberg showed that the pivotal conditions are
implied by the boundedness of the maximal operator and its �dual�:

M : L2 (σ)! L2 (ω) and M : L2 (ω)! L2 (σ) .

They also showed that the pivotal conditions are implied by the
testing conditions and the A2 condition if the measures σ and ω are
both doubling: Z

2Q
dσ .

Z
Q
dσ and

Z
2Q
dω .

Z
Q
dω

for all intervals Q.
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The role of cancellation

In 2002 Nazarov showed that the strengthened A2 condition alone is
not enough for the two weight inequality to hold. The reason for the
failure lies in the fact that this condition is a consequence solely of
the size and smoothness of the kernel.

Indeed, strengthened A2 follows from the �kernel�inequality tested
over f (y) = 1(a�r ,a) (y)

jI j
jI j+jy�xI j :

De�nition (kernel inequality)Z
Rnsupport f

jH(f σ)j2 dω . N 2
Z

R
jf j2 dσ

It is the pair of testing conditions that encode the cancellation
required for the L2 norm inequality.
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Energy and hybrid conditions

Two years ago, Lacey Sawyer and Uriarte-Tuero showed that the
pivotal conditions are not necessary, that the following energy
condition is,

E(I ,ω) �
 

E
ω(dx )
I E

ω(dx 0)
I

� jx � x 0j
jI j

�2!1/2

,

∞

∑
r=1

ω(Ir )[E(Ir ,ω)P(Ir ,χI0σ)]
2 � E2σ(I0),

and that the following hybrid condition is �su¢ cient�for 0 � γ < 1
(but still not necessary):

∞

∑
r=1

ω(Ir )[E(Ir ,ω)γP(Ir ,χI0σ)]
2 � E2γσ(I0),

for all intervals I0, and decompositions fIr : r � 1g of I0 into disjoint
intervals Ir ( I0. Note that for γ = 0 this is the pivotal condition,
while for γ = 1 it is the energy condition.
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Bounded �uctuation characterization

Last year Lacey Sawyer Shen and Uriarte-Tuero showed the Hilbert
transform two weight inequality is equivalent to the A2 condition and
the bounded �uctuation conditions taken over all dyadic grids D:Z

I
H (1I f σ)2 dω � C

�
jI jσ +

Z
I
jf j2 dσ

�
, (1)Z

I
H (1I gω)2 dσ � C

�
jI jω +

Z
I
jg j2 dω

�
,

for all I 2 D and all functions f , g of unit D-�uctuation on I .

A function f 2 L2 (σ) is of unit D-�uctuation on I , written
f 2 BFσ (I ), if it is supported in I and 1

jK jσ

R
K jf j dσ � 1 for all

dyadic subintervals K of I on which f is not constant.

Such functions are special cases of dyadic BMOD (σ) functions of
norm 1, and include functions bounded by 1 in modulus. They arise
as the good functions in a Calderón-Zygmund decomposition.
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The Nazarov Treil Volberg conjecture

A question raised in Volberg�s 2003 CBMS book, which we refer to as
the NTV conjecture, is whether or notZ

R
jH (f σ)j2 ω � N

Z
R
jf j2 σ, f 2 L2 (σ) , (2)

is equivalent to the A2 condition and the two interval testing
conditions.

A weaker conjecture, that we refer to as the indicator/interval NTV
conjecture, is that (2) is equivalent to the A2 condition and the two
indicator/interval testing conditions,Z

I
jH (1E σ)j2 ω � A jI jσ ,

Z
I
jH (1Eω)j2 σ � A� jI jω , (3)

for all intervals I and closed subsets E of I . Note that E does not
appear on the right side of these inequalities, and that if H were a
positive operator we could take E = I .
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Our characterization of the two weight Hilbert transform
inequality
The indicator/interval NTV conjecture

Theorem

The best constant N in the two weight inequality (2) for the Hilbert
transform satis�es

N �
p
A2 +A+A�,

i.e. Hσ is bounded from L2 (σ) to L2 (ω) if and only if the strong A2 and
indicator/interval testing conditions hold.

Corollary

The Hilbert transform Hσ is bounded from L2 (σ) to L2 (ω) if and only if
both it and its dual Hω are weak type (2, 2), i.e.

λ2 jfjHσf j > λgjω .
Z
jf j2 dσ and λ2 jfjHωg j > λgjσ .

Z
jg j2 dω.
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Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV

2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions

3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form

4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation

2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality

2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Outline of Part II: the proof of the theorem

1 The Haar decomposition

1 The random grids of NTV
2 Interval size splitting of the bilinear form

2 Triple corona decomposition of the functions
3 Parallel corona splitting of the bilinear form
4 The near term

1 Restricted bounded �uctuation
2 Minimal bounded �uctuation

5 The far term

1 The functional energy inequality
2 The two weight norm inequality for the Poisson operator

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 21 / 49



Haar functions adapted to a measure

The Haar function hσ
I adapted to a positive measure σ and a dyadic

interval I 2 D is a positive (negative) constant on the left (right)
child, has vanishing mean

R
hσ
I dσ = 0, and is normalized

khσ
I kL2(σ) = 1. For example if j[2, 3]jσ =

1
15 and j[3, 4]jσ =

1
10 , then

1 1 2 3 4 5

2

2

4y

The Haar function hσ
[2,4]

The supremum norm of hσ
I is quite large if σ is very unbalanced (not

doubling).
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The good dyadic grids of NTV

For any β = fβlg 2 f0, 1gZ, de�ne the dyadic grid Dβ to be the
collection of intervals

Dβ =

(
2n
 
[0, 1) + k + ∑

i<n
2i�nβi

!)
n2Z, k2Z

and place the usual uniform probability measure P on the space
f0, 1gZ.

For weights ω and σ, consider random choices of dyadic grids Dω

and Dσ. Fix ε > 0 and for a positive integer r , an interval J 2 Dω is
said to be r -bad if there is an interval I 2 Dσ with jI j � 2r jJ j, and

dist(e(I ), J) � 1
2 jJ j

εjI j1�ε .

where e(I ) is the set of the three discontinuities of hσ
I . Otherwise, J

is said to be r -good.
We have

P (J is r -bad) � C2�εr .
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Reduction to good projections

Let Dσ be randomly selected with parameter β, and Dω with
parameter β0. De�ne a projection

Pσ
good f � ∑

I is r -good 2Dσ

∆σ
I f ,

and likewise for Pω
goodg .

De�ne Pσ
bad f � f � Pσ

good f . Then

Eβ0 kPσ
bad f kL2(σ) � C2�

εr
2 kf kL2(σ) .

and likewise for Pω
badg .

There is an absolute choice of r so that if T : L2(σ)! L2(ω) is a
bounded linear operator, then

kTkL2(σ)!L2(ω) � 2 sup
kf kL2 (σ)=1

sup
kgkL2 (ω)=1

EβEβ0 j


TPσ

good f ,P
ω
goodg

�
ω
j .
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kf kL2 (σ)=1

sup
kgkL2 (ω)=1

EβEβ0 j


TPσ

good f ,P
ω
goodg

�
ω
j .
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The Haar expansion

Let Dσ and Dω be an r -good pair of grids, and let fhσ
I gI2Dσ and

fhω
J gJ2Dω be the corresponding Haar bases, so that

f = ∑
I2Dσ

4σ
I f = ∑

I2Dσ

hf , hσ
I i hσ

I = ∑
I2Dσ

bf (I ) hσ
I ,

g = ∑
J2Dω

4ω
J g = ∑

J2Dω

hg , hω
J i hω

J = ∑
J2Dω

bg (J) hω
J ,

where the appropriate grid is understood in the notation bf (I ) andbg (J).

Inequality (2) is equivalent to boundedness of the bilinear form

H (f , g) � hH (f σ) , giω = ∑
I2Dσ and J2Dω

hH (σ4σ
I f ) ,4ω

J giω

on L2 (σ)� L2 (ω), i.e.
jH (f , g)j � N kf kL2(σ) kgkL2(ω) .
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Splitting of the form by interval size

Virtually all attacks on the two weight inequality (2) to date have
proceeded by �rst splitting the bilinear form H into three natural forms
determined by the relative size of the intervals I and J in the inner product:

H = Hlower +Hdiagonal +Hupper ; (4)

Hlower (f , g) � ∑
I2Dσ and J2Dω

jJ j<2�r jI j

hH (σ4σ
I f ) ,4ω

J giω ,

Hdiagonal (f , g) � ∑
I2Dσ and J2Dω

2�r jI j�jJ j�2r jI j

hH (σ4σ
I f ) ,4ω

J giω ,

Hupper (f , g) � ∑
I2Dσ and J2Dω

jJ j>2r jI j

hH (σ4σ
I f ) ,4ω

J giω ,

and then continuing to establish boundedness of each of these three forms.
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Boundedness of the split forms

Now the boundedness of the diagonal form Hdiagonal is an automatic
consequence of that of H since it is shown by NTV that

jHdiagonal (f , g)j .
�p

A2 + T+ T�
�
kf kL2(σ) kgkL2(ω)

. N kf kL2(σ) kgkL2(ω) .

However, it is not known if the boundedness of Hlower and Hupper

follow from that of H, which places in jeopardy the entire method of
attack based on the splitting (4) of the form H.
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Circumventing the obstacles
The triple coronas

The triple corona decomposition consists of a series of three
reductions performed with two Calderón-Zygmund corona
decompositions, followed by an energy corona decomposition, in order
to identify the extremal functions that fail to yield to the standard
analyses.

These extremals are certain bounded functions, and functions of
minimal bounded �uctuation, occurring in a corona with energy
control.

In the end, the standard NTV methodology is, to some extent,
decisive when used on these extremal functions with very special
structure.
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Circumventing the obstacles
Parallel coronas

We use parallel corona splittings of the bilinear form, followed by an
analysis of the extremal functions that fail both the energy and
Calderón-Zygmund stopping time methodology.

The parallel corona splitting involves de�ning upper and lower and
diagonal forms relative to the tree of triple corona stopping time
intervals, rather than the full tree of dyadic intervals.

The enemy of Calderón-Zygmund stopping times is degeneracy of the
doubling property, while the enemy of energy stopping times is
degeneracy of the energy functional (since nondegenerate doubling
implies nondegenerate energy, it is really the failure of doubling in
both weights that is the common enemy).
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CZ stopping trees

In order to improve on the splitting in (4), we introduce stopping
trees F and G for the functions f 2 L2 (σ) and g 2 L2 (ω). Let F be
a collection of Calderón-Zygmund stopping intervals for f , and let
Dσ =

[
F2F

CF be the associated corona decomposition of the dyadic

grid Dσ.

For I 2 Dσ let πDσ I be the Dσ-parent of I in the grid Dσ, and let
πF I be the smallest member of F that contains I . For F ,F 0 2 F , we
say that F 0 is an F -child of F if πF (πDσF 0) = F , and we denote by
C (F ) the set of F -children of F .
For F 2 F , de�ne the projection Pσ

CF onto the linear span of the Haar
functions fhσ

I gI2CF by

Pσ
CF f = ∑

I2CF
4σ
I f = ∑

I2CF
hf , hσ

I iσ h
σ
I ; f = ∑

F2F
Pσ
CF f ,Z �

Pσ
CF f
�

σ = 0, kf k2L2(σ) = ∑
F2F

Pσ
CF f
2
L2(σ)

.
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The triple corona decomposition

We perform a corona decomposition three times on each grid Dσ and
Dω, improving the upper blocks of functions as follows:

1 Pσ
CF f is of bounded �uctuation after the �rst CZ decomposition,

2 Pσ
CK

�
Pσ
CF f
�
is of minimal bounded �uctuation or simply bounded

appropriately after a complicated second CZ decomposition,
3 Pσ

CS

�
Pσ
CK

�
Pσ
CF f
��

is as in step 2 but with additional energy control

after the third energy decomposition, analogous to the pivotal stopping
time corona of NTV , but using the necessary energy condition instead.

This is called the triple corona decomposition for f , and there is an
analogous decomposition for g .
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The parallel corona splitting

Consider the following parallel corona splitting of the inner product
hH (f σ) , giω that involves the projections P

σ
CF acting on f and the

projections Pω
CG acting on g . We have

hH (f σ) , giω = ∑
(F ,G )2F�G



H
�
σPσ

CF f
�
,
�
Pω
CG g
��

ω
(5)

=

(
∑

(F ,G )2Near(F�G)
+ ∑
(F ,G )2Disjoint(F�G)

+ ∑
(F ,G )2Far(F�G)

)
�


H
�
σPσ

CF f
�
,
�
Pω
CG g
��

ω

� Hnear (f , g) +Hdisjoint (f , g) +Hfar (f , g) .

These forms are no longer linear in f and g as the �cut�is determined
by the coronas CF and CG , which depend on f and g .
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Near and far de�nitions

Here Near (F � G) is the set of pairs (F ,G ) 2 F � G such that F is
maximal in G , or G is maximal in F , more precisely: either

F � G and there is no G1 2 G n fGg with F � G1 � G ,

or

G � F and there is no F1 2 F n fFg with G � F1 � F .

The set Disjoint (F � G) is the set of pairs (F ,G ) 2 F � G such
that F \ G = ∅.
The set Far (F � G) is the complement of
Near (F � G) [Disjoint (F � G) in F � G:

Far (F � G) = F � G n fNear (F � G) [Disjoint (F � G)g .

The parallel corona splitting (5) is somewhat analogous to the
splitting (4) except that corona blocks are used in place of individual
intervals to determine the �cut�.
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The form estimates

The disjoint form Hdisjoint (f , g) is easily controlled by the strong A2
condition and the interval testing conditions:

jHdisjoint (f , g)j .
�p

A2 + T+ T�
�
kf kL2(σ) kgkL2(ω) .

We show that the far form satis�es

jHfar (f , g)j .
�p

A2 + T+ T�
�
kf kL2(σ) kgkL2(ω) ,

using our functional energy inequality.

Finally we show that the near form Hnear (f , g) is controlled by the
strong A2 condition and the indicator testing conditions:

jHnear (f , g)j .
�p

A2 +A+A�
�
kf kL2(σ) kgkL2(ω) .
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The near form
Bounded �uctuation

Recall that f 2 BFσ (K ) if there is a pairwise disjoint collection Kf
of Dσ-subintervals of K such thatZ

K
f σ = 0 and

1
jI jσ

Z
I
jf j σ � 1, I 2 cKf ,

f = aK 0 2 R on K 0 and jaK 0 j > 2, K 0 2 Kf ,

where cKf is the corona determined by K and Kf :cKf = �I 2 Dσ : I � K and I % K 0 for some K 0 2 Kf
	
.

Using the facts that 1
jI jσ

R
I jf j σ � 1 for I 2 bK and 1

jI jσ

R
I jf j σ > 2 for

I 2 K, the collection K is uniquely determined by the simple function
f of bounded �uctuation, and we write Kf for this collection.
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The near form
Minimal bounded �uctuation functions

De�ne the collectionMBFσ (K ) of functions of minimal bounded
�uctuation by

MBFσ (K ) =
n
f 2 BFσ (K ) : supp bf � πKf

o
,

where bf : D ! C by bf (I ) � hf , hσ
I iσ is the Haar coe¢ cient map

(with underlying measure σ being understood), and

πKf �
�

πDK
0 : K 0 2 Kf

	
.

Thus the functions f 2 MBF σ (K ) have their Haar support supp bf
as small as possible given that they satisfy the conditions for
belonging to BF σ (K ).

Note that while Kf consists of pairwise disjoint intervals for
f 2 MBF σ (K ), the collection of parents πKf may have
considerable overlap, and this represents the main di¢ culty for further
investigation.
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Thus the functions f 2 MBF σ (K ) have their Haar support supp bf
as small as possible given that they satisfy the conditions for
belonging to BF σ (K ).
Note that while Kf consists of pairwise disjoint intervals for
f 2 MBF σ (K ), the collection of parents πKf may have
considerable overlap, and this represents the main di¢ culty for further
investigation.
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An essential property of minimal bounded �uctuation

If f 2 MBF σ (I ) is of minimal bounded �uctuation, then there is a
collection Kf of pairwise disjoint subintervals of I such that

f = ∑
I2πKf

bf (I ) hσ
I = ∑

I2πKf
4σ
I f ,

where if I = πK , then K = I�, the child of I with smallest
σ-measure.

The key additional property, besides that of bounded �uctuation, of
such an f is

Eσ
I+ 4

σ
I f � 0, for all I 2 Kf .
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Analysis of the near form

There is the decomposition

Pσ
CF f =

�
Pσ
CF f
�
1
+
�
Pσ
CF f
�
2
; (6)�Pσ

CF f
�
1


∞
. Eσ

F jf j ,
1

3Eσ
F jf j

�
Pσ
CF f
�
2
2 BFσ (F ) ,

A second more complicated CZ decomposition produces blocks
Pσ
CKF

�
Pσ
CF f
�
satisfying

1
CEσ

K jf j
Pσ
CKF
�
Pσ
CF f
�
2 (L∞)1 (K ) +MBFσ (K ) .

This decomposition leads to control of the near form by the A2 and
indicator/interval testing conditions. Indeed, the I/I testing conditions
apply to (L∞)1 (K ), while the special properties ofMBFσ (K )
permit control by A2 and interval testing.
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Analysis of the far form

Now we decompose the far form Hfar (f , g) into lower and upper
forms in analogy with Hlower and Hupper in (4):

Hfar (f , g) =

8><>: ∑
(F ,G )2Far(F�G)

G�F

+ ∑
(F ,G )2Far(F�G)

F�G

9>=>;
H �σPσ
CF f
�
,Pω
CG g
�

ω

� Hfar lower (f , g) +Hfar upper (f , g) .

We will use a functional energy inequality to control Hfar lower (f , g),
which is de�ned in terms of F-adapted collections of intervals.
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F-adapted collections of intervals

De�nition

Let F be a collection of dyadic intervals satisfying a Carleson condition

∑
F2F : F�S

jF jσ � CF jS jσ , S 2 F ,

where CF is referred to as the Carleson norm of F . A collection of
functions fgF gF2F in L2(w) is said to be F -adapted if there are
collections of intervals J (F ) � fJ 2 Dσ : J b Fg, with J � (F )
consisting of the maximal dyadic intervals in J (F ), such that the
following three conditions hold:
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F-adapted conditions

De�nition
1 for each F 2 F , the Haar coe¢ cients cgF (J) = hgF , hω

J iω of gF are
nonnegative and supported in J (F ), i.e.� cgF (J) � 0 for all J 2 J (F )cgF (J) = 0 for all J /2 J (F ) , F 2 F ,

2 the collection fgF gF2F is pairwise orthogonal in L2 (ω),
3 and there is a positive constant C such that for every interval I in
Dσ, the collection of intervals

BI � fJ� � I : J� 2 J � (F ) for some F � Ig

has overlap bounded by C , i.e. ∑J �2BI 1J � � C , for all I 2 Dσ.
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The functional energy condition

The functional energy condition is:

De�nition

Let F be the smallest constant in the inequality below, holding for all
non-negative h 2 L2(σ), all σ-Carleson collections F , and all F -adapted
collections fgF gF2F :

∑
F2F

∑
J �2J �(F )

P(J�, hσ)

����� x
jJ�j , gF 1J �

�
ω

���� � FkhkL2(σ)
"

∑
F2F

kgF k2L2(ω)

#1/2

.

(7)
Here J � (F ) consists of the maximal intervals J in the collection J (F ).

The dual version of this condition has constant F�.
The functional energy condition (7) controls the lower far form
Hfar lower (f , g) using a monotonicity property of the Hilbert
transform.
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The monotonicity property of the Hilbert transform

Lemma (Monotonicity Property)

Suppose that ν is a signed measure, and µ is a positive measure with
µ � jνj, both supported outside an interal I . Then for J b I we have

jhHν, hω
J iωj � hHµ, hω

J iω �
�
x
jJ j , h

ω
J

�
ω

P (J, µ) .

The proof uses that

hHν, hω
J iω =

Z
J

�Z
RnI

�
1

y � x �
1

y � xJ

�
dν (y)

�
hω
J (x) dω (x) ,

and then that the following expression is positive for all y not in I :�
1

y � x �
1

y � xJ

�
hω
J (x) =

(x � xJ ) hω
J (x)

(y � x) (y � xJ )
.
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Necessity of the functional energy condition
The energy measure in the plane

It remains to prove that the functional energy conditions are implied
by the strong A2 and interval testing conditions.

Lemma

F . A2 + T and F� . A2 + T�.

To prove this lemma we �x F as in (7) and set

µ � ∑
F2F

∑
J �2J �(F )

Pω
F ,J �

x
jJ�j

2
L2(ω)

� δ(c (J �),jJ �j) , (8)

where the projections Pω
F ,J � onto Haar functions are de�ned by

Pω
F ,J � � ∑

J�J � : πF J=F

4ω
J .

Here δq denotes a Dirac unit mass at a point q in the upper half plane
R2
+. Note that we can replace x by x � c for any choice of c we wish.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 44 / 49



Necessity of the functional energy condition
The energy measure in the plane

It remains to prove that the functional energy conditions are implied
by the strong A2 and interval testing conditions.

Lemma

F . A2 + T and F� . A2 + T�.

To prove this lemma we �x F as in (7) and set

µ � ∑
F2F

∑
J �2J �(F )

Pω
F ,J �

x
jJ�j

2
L2(ω)

� δ(c (J �),jJ �j) , (8)

where the projections Pω
F ,J � onto Haar functions are de�ned by

Pω
F ,J � � ∑

J�J � : πF J=F

4ω
J .

Here δq denotes a Dirac unit mass at a point q in the upper half plane
R2
+. Note that we can replace x by x � c for any choice of c we wish.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 44 / 49



Necessity of the functional energy condition
The energy measure in the plane

It remains to prove that the functional energy conditions are implied
by the strong A2 and interval testing conditions.

Lemma

F . A2 + T and F� . A2 + T�.

To prove this lemma we �x F as in (7) and set

µ � ∑
F2F

∑
J �2J �(F )

Pω
F ,J �

x
jJ�j

2
L2(ω)

� δ(c (J �),jJ �j) , (8)

where the projections Pω
F ,J � onto Haar functions are de�ned by

Pω
F ,J � � ∑

J�J � : πF J=F

4ω
J .

Here δq denotes a Dirac unit mass at a point q in the upper half plane
R2
+. Note that we can replace x by x � c for any choice of c we wish.

E. Sawyer (McMaster University) Two weight L2 inequality August 24 2012 44 / 49



Two weight Poisson inequality

We prove the two-weight inequality

kP(f σ)kL2(R2
+,µ)

. kf kL2(σ) , (9)

for all nonnegative f in L2 (σ), noting that F and f are not related
here.

Above, P(�) denotes the Poisson extension to the upper half-plane, so
that in particular

kP(f σ)k2L2(R2
+,µ)

= ∑
F2F

∑
J �2J �(F )

P (f σ) (c(J�), jJ�j)2
Pω

F ,J �
x
jJ�j

2
L2(ω)

,

and so (9) implies (7) by the Cauchy-Schwarz inequality.
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Reduction to Poisson tent testing

By the two-weight inequality for the Poisson operator, inequality (9)
requires checking these two inequalitiesZ

R2
+

P (1Iσ) (x , t)
2 dµ (x , t) � kP (1Iσ)k2L2(bI ,µ) . �A2 + T2� σ(I ) , (10)

Z
R
[P�(t1bIµ)]2σ(dx) . A2

Z
bI t2µ(dx , dt), (11)

for all dyadic intervals I 2 D, where bI = I � [0, jI j] is the box over I in the
upper half-plane, and

P�(t1bIµ) =
Z
bI

t2

t2 + jx � y j2 µ(dy , dt) .
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Outline of Part III: what is left?

1 What could prove the NTV conjecture?

2 What can we prove from the NTV hypotheses?
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What could prove the NTV conjecture?
The bounded over square integrable stopping form

What is needed is to show that the indicator/interval condition is
controlled by the NTV hypotheses:Z

I
jHσ1E j2 dω . (NTV) jI jσ , for all intervals I .

Our proof reduces this to bounding the L∞/L2 stopping form by
NTV :

jBstop (1E , g)j � (NTV)
q
jI jσ kgkL2(ω) ,

for all compact E � I and g 2 L2 (ω) with support in I , an interval.
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What we can prove from the NTV hypotheses

We are presently able to bound the weaker L∞/L∞ form:

jBstop (1E , 1F )j � (NTV)
q
jI jσ jI jω,

for all compact subsets E and F of an interval I .

The NTV boundedness of the L∞/L2 stopping form should appear in
the near future.

Thanks.
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