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Contents of the talk

The Gap Problem:

Estimating the size of the gap in the Fourier spectrum of a measure.

The Type Problem:

Completeness of complex exponentials in L2-spaces.

A Problem on Oscillations of Fourier Integrals:

How often should a measure with a spectral gap change signs?
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Beurling’s Gap Problem

Let X ⊂ R be a closed set.

Question: Under what conditions on X does there exist a non-zero finite
complex measure µ, suppµ ⊂ X whose Fourier transform

µ̂(x) =

∫
e2πixtdµ(t)

vanishes on an interval? How to determine the maximal size of such an
interval (spectral gap)?

The Gap Problem is a part of an area called Uncertainty Principle in
Harmonic Analysis. In this context the principle says that the supports of
the measure and its Fourier transform cannot both be small.
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Beurling’s Gap Problem

Definition

If X is a closed subset of the real line denote

GX = sup{ a | ∃ µ 6≡ 0, suppµ ⊂ X , such that µ̂ = 0 on [0, a]}

Examples:

1) If X is bounded from below or from above then GX = 0.

2) If µ is the counting measure of Z then µ̂ = µ in the sense of
distributions (Poisson formula). It follows that G 1

d
Z = d .

3) Since Y ⊂ X ⇒ GY ≤ GX , If X contains 1
dZ + c then GX ≥ d .
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Beurling’s Gap Theorem

Definition

A sequence of disjoint intervals {In} is long if

∑ |In|2

1 + dist2(0, In)
=∞

and short otherwise.

Theorem (Beurling’s Gap Theorem)

If the complement of X is long then GX = 0.
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A solution to the Gap Problem: Energy

Let Λ = {λ1, ..., λn} be a finite set of points on R. Consider the quantity

L(Λ) =
∑
k 6=l

log |λk − λl |.

Physical interpretation: L(Λ) is the energy of a system of electrons placed
at the points of Λ (2D Coulomb gas).

Key example:

Let I ⊂ R be an interval, Λ = I ∩ 1
DZ. Then

∆ = #Λ = D|I |+ o(|I |), L(Λ) = ∆2 log |I |+ O(|I |2)

as follows from Stirling’s formula.

(Note: max L(Λ) is attained when the electrons are placed at the endpoints of the interval and at the roots of the Jacobi
polynomial of degree k − 2.)
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A solution to the Gap Problem: Short partitions

Let

... < a−2 < a−1 < a0 = 0 < a1 < a2 < ...

be a two-sided sequence of real points. We say that the intervals
In = (an, an+1] form a short partition of R if |In| → ∞ as |n| → ∞ and the
sequence {In} is short, i.e.

∑ |In|2

1 + dist2(In, 0)
<∞.
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A solution to the Gap Problem: D-uniform sequences

Let Λ = {λn} be a sequence of distinct real points. We say that Λ is
D-uniform if if there exists a short partition In such that

∆n = D|In|+ o(|In|) as n→ ±∞ (density condition)

and

∑
n

∆2
n log |In| − Ln

1 + dist2(0, In)
<∞ (energy condition)

where

∆n = #(Λ ∩ In) and Ln = L(Λ ∩ In) =
∑

λk ,λl∈In, λk 6=λl

log |λk − λl |.
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A solution to the Gap Problem: The main theorem

Recall

GX = sup { a | ∃ µ 6≡ 0, suppµ ⊂ X , such that µ̂ = 0 on [0, a]}

Theorem

GX = sup { D | X contains a D-uniform sequence }.
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Corollaries: separated sequences

Interior BM density of a discrete sequence:
D∗(Λ) = inf{d | ∃ long {In} such that #(Λ ∩ In) 6 d |In|, ∀n}.

Λ is separated if |λn − λk | > c > 0 for all n 6= k .

Corollary (M. Mitkovski, A.P.)

If Λ ⊂ R is a separated sequence then

GΛ = D∗(Λ).

Example

Let Λ = {λn} be a separated sequence such that λn − n = O(n
1
2
−ε). Then

GΛ = 1.
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The Type Problem

Let µ be a finite positive measure on the real line. For a > 0 denote by Ea
the family of exponential functions

Ea = {e2πist | s ∈ [0, a]}.

The exponential type of µ:

Tµ = inf{a > 0| Ea is complete in L2(µ)}

if the set of such a is non-empty and infinity otherwise.

Problem

Find Tµ in terms of µ.
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The Type Problem: History

This question first appears in the work of Wiener, Kolmogorov and Krein
in the context of stationary Gaussian processes in 1930-40’s. If µ is a
spectral measure of a stationary Gaussian process, the property that Ea is
complete in L2(µ) is equivalent to the property that the process at any
time can be predicted from the data for the time period from 0 to a.

The type problem can also be restated in terms of the Bernstein weighted
approximation, see for instance Koosis’ book. Important connections with
spectral theory of second order differential operators were studied by
Gelfand, Levitan and Krein.
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Known results

A classical result by Krein (1945) says that if dµ = w(x)dx and
log w(x)/(1 + x2) is summable then Tµ =∞. A partial inverse, proved by
Levinson and McKean (1964), holds for even monotone w .

A theorem by Duffin and Schaeffer (1945) says that if µ is a measure such
that for any x ∈ R

µ([x − L, x + L]) > d

for some L, d > 0 then
Tµ > L

(here µ is Poisson-finite, i.e.
∫

dµ(x)/(1 + x2) <∞).
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Known results

For discrete measures, in the case suppµ = Z, a deep result by Koosis
shows an analogue of Krein’s result: if µ =

∑
w(n)δn where∑ log w(n)

1 + n2
> −∞

then
Tµ = 1.

A recent result by Borichev and Sodin (2010) says that exponentially small
perturbations of weight or support do not change the type of a measure.
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Type Theorem

Let τ be a finite positive finite measure on the real line. We say that a
function W is a τ -summable weight if W is lower semi-continuous, tends
to ∞ at ±∞, W ≥ 1 on R and W ∈ L1(τ).

Theorem

Let µ be a finite positive measure on the line. Then Tµ ≥ a > 0 if and
only if for any µ-summable weight W and any 0 < D < a there exists a
D-uniform sequence Λ = {λn} ⊂ suppµ such that∑ log W (λn)

1 + λn
2

<∞.
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Corollaries: discrete measures

Extension of Kousis’ result:

Corollary

Let A = {an} ⊂ R be a separated sequence and let µ =
∑

w(n)δan be a
positive finite measure on A. Consider the set S of all subsequences {ank}
of A satisfying ∑

k

log w(nk)

1 + nk
2
> −∞.

Then
Tµ = sup

B∈S
D∗(B).
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Methods

Toeplitz approach (N. Makarov, A. P.). An example.

Let µ be a positive finite singular measure on R. Suppose that there exists
f ∈ L2(µ), f ⊥ e2πist for all s ∈ [0, a]. Then Kf µ is divisible by
Sa = e2πiaz .

Consider an inner function θ(z) in the upper halfplane satisfying

Kµ(z) =

∫
1

t − z
dµ(t) = i

1− θ
1 + θ

.

By Clark theory the function F (z) = (1− θ)Kf µ belongs to the model
space H2 	 θH2 in the upper halfplane. If F = SaG , then G belongs to
the kernel of the Toeplitz operator Tθ̄Sa . Thus the type of µ is greater
than a iff kerTθ̄Sa 6= ∅.
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Oscillations of Fourier Integrals

Theorem (Sturm, 1836; Hurwitz)

Let
f (x) =

∑
n≥m

(cne2πinx + c̄ne−2πinx)

be a smooth function. Then f has at least 2m sign changes on [−1, 1].

Generalizations?
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High-Pass Signals

Let f ∈ L1(R) be such that f̂ = 0 on [0, a] for some a > 0.

Such functions are important in Electrical Engineering: they correspond to
so-called high-pass signals.

Exercise: prove that a high-pass signal cannot be positive.

Problem (Grinevich, 1965; included in Arnold Problems, 2000)

How fast should a function with a spectral gap (a high-pass signal)
oscillate?
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A Theorem by Eremenko and Novikov

If f ∈ L1(R), denote by s(f , r) the number of sign changes of f on [0, r ]
(in any reasonable sense).

Theorem (Eremenko-Novikov, 2003)

Suppose f has a spectral gap, that is f̂ vanishes on [0, a] for some a > 0.
Then

lim inf
r→∞

s(f , r)

r
≥ a.

The theorem proves a conjecture by Grinevich (1965). Extends results by
Krein, Levin, Ostrovski and Ulanovski.
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Oscillations of Fourier Integrals

Let X ,Y ⊂ R be closed sets. Denote

G(X ,Y ) = sup{ a | ∃ µ, µ > 0 on X , µ < 0 on Y , µ̂ = 0 on [0, a]}

Theorem (M. Mitkovski, A.P.)

G(X ,Y ) = sup{D |∃D-uniform {λn}, {λ2n} ⊂ X , {λ2n+1} ⊂ Y }

(Note: D-uniform sequences are enumerated in increasing order.)
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Oscillations of Fourier Integrals

We say that a finite measure µ on R changes signs on (a, b) if there exist
sets A,B ⊂ (a, b) such that µ(A) > 0 and µ(B) < 0.

Corollary

If µ has a spectral gap of the size D then there exists a D-uniform
sequence {λn} such that µ changes signs on each (λn, λn+1).
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