
Recent Challenges
in Multifractal Analysis
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Motivation
Purpose of multifractal analysis : Introduce and study classification
and model selection parameters for data (functions, measures,
distributions, signals, images), which are based on global and local
regularity

A key problem along the 19th century was to determine if a
continuous function on R necessarily has points of differentiability

A first negative answer
was obtained by B. Bolzano

in 1830 but was unnoticed

A second counterexample
due to K. Weierstrass
settled the issue in 1872
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Weierstrass functions
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Fonction de Weierstrass : Espace x frequence = 1000x20

WH(x) =
+∞∑

j=0

2−Hj cos(2jx)

0 < H < 1

H = 1/2

Weierstrass result was sharpened using a continuous scale of
pointwise regularity indices



Pointwise regularity

Definition :
Let f : Rd → R be a locally bounded function and x0 ∈ Rd ;
f ∈ Cα(x0) if there exist C > 0 and a polynomial P such that, for
|x − x0| small enough,

|f (x)− P(x − x0)| ≤ C|x − x0|α

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}

Theorem : (Hardy, 1916)
The Hölder exponent of WH is constant and equal to H
(WH is a mono-Hölder function)
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(WH is a mono-Hölder function)



Pointwise regularity

Definition :
Let f : Rd → R be a locally bounded function and x0 ∈ Rd ;
f ∈ Cα(x0) if there exist C > 0 and a polynomial P such that, for
|x − x0| small enough,

|f (x)− P(x − x0)| ≤ C|x − x0|α
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Pointwise regularity : Example and open problems
Riemann’s nondifferentiable function :

R2(x) =
∞∑

n=1

sin(n2x)

n2

The cubic Riemann function : R3(x) =
∞∑

n=1

sin(n3x)

n3

Minkowski’s “question mark” function :
?(x) : [0,1]→ [0,1]

If x = [0; a1, · · · an, · · · ] then

?(x) = 2
∑ (−1)n+1

2a1+···+an

ON THE MINKOWSKI MEASURE 2

FIGURE 1.1. The Minkowski Question Mark Function
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where the ak are the integers appearing in the continued fraction[18] expansion of x:

x = [a0;a1,a2, · · · ,aN ] = a0 +
1

a1 + 1
a2+ 1

a3+···

For the case of general, irrational x, one simply takes the limit N → ∞; it is not hard to
show that the resulting function is well-defined and continuous in the classical sense of
delta-epsilon limits.

The function is symmetric in that ?(1− x) = 1−?(x), and it has a fractal self-similarity
which is generated by [27]

(1.2)
1
2

?(x) =?
�

x
1+ x

�

An equivalent, alternative definition of the function can be given by stating that it is a
correspondence between rationals appearing in the Stern-Brocot, or Farey tree, and the
binary tree of dyadic rationals, shown in figure 1; it maps the Farey tree into the dyadic
tree.

Many insights into the nature and structure of the function, including self-similarity
and transformation properties, can be obtained by contemplating the repercussions of this
infinite binary-tree representation. Most important is perhaps the insight into topology: the
presence of the tree indicates a product topology, and guarantees that the Cantor set will
manifest itself in various ways.

The Question Mark has many peculiarities, and one is that it’s derivative is “singular”
in an unexpected way[25]. One can show, by classical techniques, that its derivative must
vanish on all rationals: it is a very very flat function, as it approaches any rational. Since
the Question Mark itself is continuous, one concludes that the derivative must be non-
zero, and infinite, on the irrationals, and is thus a discontinuous-everywhere function. The

C. Hermite : “Je me détourne avec effroi et horreur de cette plaie
lamentable des fonctions qui n’ont pas de dérivée”

H. Poincaré called such functions “monsters”
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Brownian motion
Economists (L. Bachelier) and physicists (A. Einstein) put into light
the central role played by Brownian motion in modeling
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Brownien : 1000 points

Definition :

Brownian motion is the

unique continuous process

with independent and

stationary increments

Theorem : (Paley, Wiener, Zygmund, 1933) With probability 1,

The Hölder exponent of Brownian motion is constant and equal to 1/2

(Brownian motion has mono-Hölder sample paths)

In 1931, S. Banach proved that a “generic” continuous function on R
is nowhere differentiable (in the sense of Baire categories)
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The Hölder exponent of Brownian motion is constant and equal to 1/2

(Brownian motion has mono-Hölder sample paths)

In 1931, S. Banach proved that a “generic” continuous function on R
is nowhere differentiable (in the sense of Baire categories)



Nowhere differentiable functions
Starting with the example of the surface of colloı̈ds, and the coast of
Brittany, J. Perrin, in his book, “Les atomes” published in 1913, insists
that such examples, far from being exceptional, supply the right
models for natural phenomena

Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)
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Measure this irregularity

and use it for classification

and model selection
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Fractional Brownian Motions

Gaussian

processes

with

stationary

increments

H = 0.3

H = 0.4

H = 0.5

H = 0.6

H = 0.7

Theorem : (A.N. Kolmogorov)
The Hölder exponent of BH is constant and equal to H

Challenge : Find a numerically stable way to decide if a real-life signal
can be modeled by FBM
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Kolmogorov scaling function (1941)
∫
|f (x + δ)− f (x)|pdx ∼ |δ|ζf (p)

⇐⇒ ζf (p) = lim inf
j→+∞

log
(∫
|f (x + δ)− f (x)|pdx

)

log δ

Numerically : Regression on a log-log plot

What is the scaling function of FBM ?
BH is the unique centered Gaussian process such that

∀x , δ ≥ 0, E(|BH(x + δ)− BH(x)|2) = |δ|2H

It follows that
|BH(x + δ)− BH(x)| ∼ |δ|H

∫
|BH(x + δ)− BH(x)|pdx ∼ |δ|Hp

=⇒ Turbulence at small scale cannot be modeled by FBM (1950s)
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Functional interpretation : Lipschitz spaces
∫
|f (x + δ)− f (x)|pdx ∼ |δ|ζf (p)

Definition : Let p ∈ [1,∞) ; f ∈ Lip (s,Lp(Rd )) if

∃C > 0, ∀δ > 0, ‖ f (·+ δ)− f (·) ‖p≤ C · |δ|s

∃C > 0, ∀δ > 0,
∫
|f (x + δ)− f (x)|pdx ≤ C · |δ|ps

∀p ≥ 1, ζf (p) = p · sup {s : f ∈ Lip (s,Lp)}

One can replace the spaces Lip (s,Lp(Rd )) by Sobolev spaces

Lp,s = {f ∈ Lp : (−∆)s/2f ∈ Lp}

The scaling function yields a regularity index in the Lp norm
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One-variable wavelet basis

A wavelet basis on R is generated
by a smooth, well localized, oscillating
function ψ such that the

ψ(2jx − k), j , k ∈ Z
form an orthogonal basis of L2(R)

∀f ∈ L2(R),

f (x) =
∑

j∈Z

∑

k∈Z

cj,k ψ(2jx − k)

where

cj,k = 2j
∫

f (x) ψ(2jx − k) dx

Daubechies Wavelet

Credit to : http ://www.kfs.oeaw.ac.at/content/blogcategory/0/502/lang,8859-1/



Notations for wavelets on R
Dyadic intervals

λ =

[
k
2j ,

k + 1
2j

)

Wavelets
ψλ(x) = ψ(2jx − k)

Wavelet coefficients

cλ = 2j
∫

R
f (x)ψ(2jx − k)dx

Dyadic intervals at scale j

Λj = {λ : |λ| = 2−j}

Wavelet expansion of f

f (x) =
∑

j

∑

λ∈Λj

cλψλ(x)



Wavelets in 2 variables
In 2D, the wavelets used are tensor products :

ψ1(x , y) = ψ(x)ϕ(y)

ψ2(x , y) = ϕ(x)ψ(y)

ψ3(x , y) = ψ(x)ψ(y)

Notations

Dyadic squares : λ =

[
k
2j ,

(k + 1)

2j

]
×
[

l
2j ,

(l + 1)

2j

[

Wavelet coefficients

cλ = 22j
∫ ∫

f (x , y) ψi
(

2jx − k ,2jy − l
)

dx dy
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Computation of 2D wavelet coefficients
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The wavelet scaling function

Let f : Rd → R ; its wavelet scaling function is defined ∀p > 0 by

2−dj
∑

λ∈Λj

|cλ|p ∼ 2−ζf (p)j i.e. ζf (p) = lim inf
j→+∞

log


2−dj

∑

λ∈Λj

|cλ|p



log(2−j )

Besov spaces : Let p > 0 ; f ∈ Bs,∞
p (Rd ) if

∃C,∀j : 2−dj
∑

λ∈Λj

|cλ|p ≤ C · 2−spj

ζf (p) = lim inf
j→+∞

log


2−dj

∑

λ∈Λj

|cλ|p



log(2−j )
= p · sup

{
s : f ∈ Bs,∞

p (Rd )
}

Embeddings between Lipschitz and Besov spaces imply that, when
p ≥ 1, the wavelet scaling function coincides with Kolmogorov’s
scaling function
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The role of the wavelet scaling function

∀p > 0, ζf (p) = p · sup
{

s : f ∈ Bs,∞
p
}

The wavelet scaling function is independent of the (smooth enough)
wavelet basis chosen

It is defined by regression on log-log plots

I If ζf (1) > 1, then f ∈ BV
I If f is a measure, then ζf (1) ≥ 0
I If ζf (1) > 0, f then belongs to L1

I If ζf (2) > 0, then f ∈ L2

Motivations :

I Y. Gousseau, J.-M. Morel : Are natural images of bounded
variation ? (SIAM J. Math. Anal., Vol. 3, 2001)

I Jump models and finite quadratic variation assumption in finance
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Wavelet scaling functions of synthetic images

Wavelet scaling function ζf (p) :

2−2j
∑

λ∈Λj

|cλ|p ∼ 2−ζf (p) j

Disk : ζf (p) = 1 Van Koch snowflake : ζf (p) = 2− log 4
log 3

∼ 0.74
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Figure 2: Functional space assumptions in image processing. Left column: Indicator functions of a
disc (top row) and of the Koch snowflake (2nd row) with superimposed polynomial trend, and of a disc
with F.B.M. texture (3rd row, H = 0.7); natural images (bottom rows). Corresponding Sf (j, p = 1)
(center column) and wavelet scaling functions ηf (p) (right column), estimated from the images in the
left column. For the indicator function of the Koch snowflake and of the disc, the scaling functions
are given by ηf (p) = 2 − log(4)

log(3) ≈ 0.74, and ηf (p) = 1, respectively. Therefore, the latter is in B.V.,
while the Koch snowflake is not because ηf (1) < 1. With an added texture, the latter is not any longer
in B.V., but remains in L2 since ηf (2) > 0. Both natural images are not in B.V., yet the image of
snow (4th row) is found to be in L2, while the image of trees (bottom row) is not in Lp.
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Natural images
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Uniform Hölder regularity
Hölder spaces : Let α ∈ (0,1) ; f ∈ Cα(Rd ) if

∃C, ∀x , y : |f (x)− f (y)| ≤ C · |x − y |α

∀α ∈ R, Cα(Rd ) = Bα∞(Rd )

The uniform Hölder exponent of f is

Hmin
f = sup{α : f ∈ Cα(Rd)}

Numerical computation

Let ωj = sup
λ∈Λj

|cλ| then Hmin
f = lim inf

j→+∞

log(ωj )

log(2−j )

Hmin
f > 0 =⇒ f is continuous

Hmin
f < 0 =⇒ f is not locally bounded
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Validity of jump models in finance
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Classification based on the uniform Hölder exponent
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Function space regularity :

Validity of stochastic integration tools in finance

Definition : A function f : R→ R has finite quadratic variation if

∃C, ∀a,h ∈ (0,1],
∑

n

|f ((n + 1)h − a)− f (nh − a)|2 ≤ C

Proposition : If Hmin
f > 0 and ζf (2) > 1, then f has bounded

quadratic variation
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Limitations

Classification only based on the wavelet scaling function or on the
uniform Hölder exponent proved insufficient in several occurrences
(turbulence, data mining, ... )

Further developments were based on seminal ideas introduced by U.
Frisch and G. Parisi, and paved the way to the construction of a new
scaling function

Giorgio Parisi Uriel Frisch
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Multifractal spectrum (Parisi and Frisch, 1985)
The isohölder sets of f are the sets

EH = {x0 : hf (x0) = H}

Let f be a locally bounded function. The multifractal spectrum
of f is

Df (H) = dim (EH)

where dim stands for the Hausdorff dimension
(by convention, dim (∅) = −∞)

Parisi and Frisch’s fundamental idea was that the nonlinearity of the
scaling function reflects the presence of a whole range of fractal sets
EH , and that the scaling function yields information on the “sizes” of
these sets
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The isohölder sets of f are the sets

EH = {x0 : hf (x0) = H}

Let f be a locally bounded function. The multifractal spectrum
of f is

Df (H) = dim (EH)

where dim stands for the Hausdorff dimension
(by convention, dim (∅) = −∞)

Parisi and Frisch’s fundamental idea was that the nonlinearity of the
scaling function reflects the presence of a whole range of fractal sets
EH , and that the scaling function yields information on the “sizes” of
these sets



Two results showed that multifractal analysis does not
only concern “strange examples” :

I : Probabilistic result :

Definition : A Lévy process is a
stochastic process with independent
and stationary increments, i.e. :

Xt+s − Xt is independent of the
{Xu, u ≤ t} and
has the same law as Xs

Theorem : (S.J.) “Most” Lévy processes
have multifractal sample paths, with a linear multifractal spectrum :

Df (H) =

{
RH if H < 1/R
−∞ else.

In each case, the sets EH are everywhere dense
=⇒

The numerical determination of the Hölder exponent is hopeless
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II : Generic results :

Definition : Let E be a metric Banach space. A Borel set A ⊂ E is
Haar null if there exists a compactly supported probability measure µ
on E such that

∀x ∈ E , µ(A + x) = 0

A set is prevalent if its complement is Haar null
If a property holds on a prevalent set, it is said to hold almost
everywhere

Theorem : (A. Fraysse and S. J.) Let s > d/p ; then quasi-every
and almost every function f of Lp,s(Rd ) is multifractal, and its
spectrum is given by

Df (H) =

{
p(H − s) + d if H ∈

[
s − d

p , s
]

−∞ else
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Wavelet leaders

Let λ be a dyadic cube ; 3λ denotes the cube of same center and
three times wider

Let f be a locally bounded function ; the wavelet leaders of f are

dλ = sup
λ′⊂3λ

|cλ′ |

dλ = supλ’∈  3 λ |cλ|

λ’∈  3 λ

c(j, k)

2j+2

2j+1

2j

...

...



Computation of 2D wavelet leaders

Wavelet leaders allow to estimate the pointwise Hölder exponent



Leader scaling function
Wavelet scaling function Leader scaling function

2−dj
∑

λ∈Λj

|cλ|p ∼ 2−ζf (p)j 2−dj
∑

λ∈Λj

|dλ|p ∼ 2−ηf (p)j

Oscillation spaces : Let p > 0 ; f ∈ Os
p(Rd ) if

∃C,∀j : 2−dj
∑

λ∈Λj

|dλ|p ≤ C · 2−spj

Similar to Wiener Amalgam Spaces (H. Feichtinger, K. Gröchenig)

ηf (p) = lim inf
j→+∞

log
(

2−dj
∑
|dλ|p

)

log(2−j )
= p · sup

{
s : f ∈ Os

p(Rd )
}

Advantages :
I It is “well defined” for all p ∈ R
I For p large enough, ζf (p) = ηf (p)
I If ψi ∈ S(Rd ), then ∀p ∈ R, ηf (p) is independent of the wavelet

basis
I ηf is invariant under “smooth perturbations ” of f
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log
(
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|dλ|p

)

log(2−j )
= p · sup
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s : f ∈ Os

p(Rd )
}

Advantages :
I It is “well defined” for all p ∈ R
I For p large enough, ζf (p) = ηf (p)
I If ψi ∈ S(Rd ), then ∀p ∈ R, ηf (p) is independent of the wavelet

basis
I ηf is invariant under “smooth perturbations ” of f



Leader scaling function
Wavelet scaling function Leader scaling function

2−dj
∑

λ∈Λj

|cλ|p ∼ 2−ζf (p)j 2−dj
∑

λ∈Λj

|dλ|p ∼ 2−ηf (p)j

Oscillation spaces : Let p > 0 ; f ∈ Os
p(Rd ) if

∃C,∀j : 2−dj
∑

λ∈Λj

|dλ|p ≤ C · 2−spj

Similar to Wiener Amalgam Spaces (H. Feichtinger, K. Gröchenig)
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Multifractal formalism

Since ηf is a concave function, there is no loss of information in rather
considering its Legendre transform :

The Legendre Spectrum of f is

Lf (H) = inf
p∈R

(d + Hp − ηf (p))

Theorem : Let Df (H) denote the Hausdorff dimension of the set of
points where hf (x) = H. If f ∈ Cε(Rd ) for an ε > 0 then

∀H ∈ R, Df (H) ≤ inf
p∈R

(d + Hp − ηf (p))

The multifractal formalism is satisfied when equality holds

Open problem : Find “reasonably weak” general hypotheses implying
the validity of the multifractal formalism
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Monohölder vs. Multifractality

0 300 temps (s) 600 900
0

35

70 ∆ = 3.2 ms

Internet traffic

!5 !4 !3 !2 !1 0 1 2 3 4 5
!3

!2

!1

0

1

2

3

q

!(
q)

Wavelet leader scaling function

Data from http ://mawi.wide.ad.jp/mawi/
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Model refutation : Fully developed turbulence
(joint work with Bruno Lashermes)

Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)

Log-normal vs. Log-Poisson model
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Evidence of time-evolution : Finance

Multifractal analysis

of the USD-Euro

change rate
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Multifractal analysis of paintings : Van Gogh challenge
Initiated by the Van Gogh Museum (Amsterdam)

Coordinated by I. Daubechies and R. Johnson

(joint work with D. Rockmore)
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Van Gogh : Arles and Saint-Rémy period
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Challenge : Date
Paris period - Arles, Saint-Rémy period - Unknown

Canals : Red vs. Saturation
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Canals : Red vs. Saturation

!0.2 !0.1 0 0.1 0.2 0.3

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

11

2

12

3

16

7

8
4

14

5
15

6

17
18

10
9

13
19

hmin

h m
in

hmin ! hmin; j=[1,4]/[1,4] ! RGB 0/1 ! CH 2/1



Original and copy : Stylometry issues
Experiment initiated by I. Daubechies

Original paintings and copies by Charlotte Caspers



Original and copy : Charlotte Caspers
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Open problems / Directions of research

I Give an interpretation of the leader scaling function for p < 0

I Find a notion of genericity results that would :
I take into account the whole scaling function (and not only p > 0)
I imply both Baire and prevalence generic results

I Extend multifractality results for solutions of PDEs

I Develop a local multifractal analysis : Pertinent in theory
(Markov processes) and applications (finance)

I Perform the multifractal analysis of invariant measures of
dynamical systems
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